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Abstract Glioblastoma (GBM) harbors a highly immunosuppressive tumor microenvironment 
(TME) which influences glioma growth. Major efforts have been undertaken to describe the TME 
on a single-cell level. However, human data on regional differences within the TME remain scarce. 
Here, we performed high-depth single-cell RNA sequencing (scRNAseq) on paired biopsies from 
the tumor center, peripheral infiltration zone and blood of five primary GBM patients. Through 
analysis of >45,000 cells, we revealed a regionally distinct transcription profile of microglia (MG) 
and monocyte-derived macrophages (MdMs) and an impaired activation signature in the tumor-
peripheral cytotoxic-cell compartment. Comparing tumor-infiltrating CD8+ T cells with circulating 
cells identified CX3CR1high and CX3CR1int CD8+ T cells with effector and memory phenotype, respec-
tively, enriched in blood but absent in the TME. Tumor CD8+ T cells displayed a tissue-resident 
memory phenotype with dysfunctional features. Our analysis provides a regionally resolved mapping 
of transcriptional states in GBM-associated leukocytes, serving as an additional asset in the effort 
towards novel therapeutic strategies to combat this fatal disease.

eLife assessment
This study is valuable and contains results that are supported by convincing evidence. In the future, 
the observations could be further strengthened by independent validation, and by looking at larger 
numbers of patients, as well as by determining whether patient heterogeneity is either contributing 
to or obscuring certain patterns. The work will be of interest to a broad audience in the oncology 
and immunology fields as it is on a cancer type that does not respond well to immune checkpoint 
therapeutics.

Introduction
Glioblastoma (GBM) is a fatal disease without effective long-term treatment options. The current 
standard of care consists of tumor resection followed by adjuvant chemoradiotherapy resulting 
in a median overall survival of only 14 months (Stupp et al., 2005). One of the hallmarks in GBM 
progression is the high rate of neovascularization. The GBM-induced aberrant vessels not only 
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nourish glioma cells, but also provide a specialized niche for tumor-associated stromal and immune 
cells such as monocyte-derived macrophages (MdMs), yolk sac-derived microglia (MG; together 
termed glioma-associated macrophages/microglia, GAMs), and peripheral adaptive immune cells. 
This immune tumor microenvironment (iTME) paradoxically acts in an immunosuppressive manner 
and promotes tumor progression (Bowman et al., 2016). For example, clinical trials of systemic T 
cell checkpoint blockade showed only disappointing results (Reardon et al., 2017a; Reardon et al., 
2017b), which was attributed in part to the immunosuppressive components of the GBM iTME. 
The origin of GAMs, infiltration of peripherally derived macrophages across the blood-brain-barrier 
(BBB) or recruitment of tissue-resident MG to the tumor site, as well as their contribution to gliom-
agenesis are studied intensively (Bowman et al., 2016; Klemm et al., 2020; Friebel et al., 2020; 
Müller et al., 2017). Hence, major efforts have been undertaken to describe the GBM iTME on a 
single-cell level (Klemm et al., 2020; Friebel et al., 2020; Abdelfattah et al., 2022), or dissect 
the composition and changes upon disease stages, recurrence and immunotherapy specifically 
within the GAM compartment (Pombo Antunes et al., 2021; Goswami et al., 2020; Chen et al., 
2021). However, human data on the composition of the iTME in different tumor regions (contrast 
enhancing tumor center versus peripheral infiltration zone) remain scarce (Darmanis et al., 2017; 
Landry et al., 2020).

To study the region-dependent cellular diversity within individual GBMs, we performed single-cell 
RNA sequencing (scRNA-seq) on patient-matched biopsies from the tumor center and the periph-
eral infiltration zone of five primary GBM patients. Additionally, peripheral blood mononuclear cells 
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Figure 1. Single-cell RNA-seq of cells from tumor center, periphery and blood. (A) Experimental workflow for single-cell analysis of cells isolated from 
tumor center, periphery and peripheral blood mononuclear cells (PBMC), including fluorescent-activated cell sorting and 3’-scRNA-seq. (B) Axial T1 
with contrast (left) and T2 (right) MRI brain in a patient with a left temporal GBM. Fresh tumor biopsies were taken according to neuronavigation (green 
cross). The tumor center was defined as contrast enhancing, whereas the tumor periphery was defined as T2 hyperintense. (C) Nuclear DAPI staining of 
resected tissue specimens. ×40 magnification (scale bar = 20 μm). n=3 patients, 4 field of view (FOV) per patient. Statistics: ***p<0.001, two-tailed Mann 
Whitney U test (Figure 1—source data 1).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Related to Figure 1C.

Figure supplement 1. CD45+CD11b+immune cells gating strategy and quality control of scRNA-seq data.

Figure supplement 2. Patient representation among clusters.

https://doi.org/10.7554/eLife.92678
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(PBMC) of the same patients were included to explore the transcriptional changes occurring during 
tumor infiltration of circulating immune cells.

Our analysis revealed a regionally distinct transcription profile of MG and MdMs and an impaired 
activation signature in the tumor-peripheral cytotoxic-cell compartment. Comparing tumor-infiltrating 
CD8+ T cells with PBMC-derived, identified CX3CR1high and CX3CR1int CD8+ T cells with effector 
and memory phenotype, respectively, enriched in blood but absent in the iTME. Tumor CD8+ T cells 
displayed features of tissue-resident memory T cells and were characterized by an exhaustion pheno-
type. This work provides a regionally-resolved map of transcriptional states in glioma-associated cell 
types complemented by patient-matched PBMCs, dissecting the composition and molecular diversity 
of the iTME in GBM.

Results
scRNA-seq analysis of paired tumor center, periphery and PBMC 
samples
Fresh, neurosurgically resected tissue from five primary, treatment naïve GBM patients were harvested 
(Figure 1A, Supplementary file 1). According to the 2021 WHO Classification of Tumors of the Central 
Nervous System (Louis et al., 2021), in which the term glioblastoma designates only IDH-wildtype 
grade 4 tumors, we will hence use the term grade 4 glioma, as we included as well IDH-mutant grade 
4 tumors (Supplementary file 1). The tumor center was defined as contrast enhancing, whereas the 
tumor periphery was defined as T2 hyperintense by magnetic resonance imaging (MRI)-guided, navi-
gated surgical resection (Figure 1B). Increased cellular density of the center vs. periphery samples was 
confirmed by nuclear DAPI staining on matched histological micrographs of the resected tissue spec-
imens used for scRNA-seq (Figure 1C). As outlined in Figure 1A, we separately processed patient 
tumor and blood samples and enriched them for immune cells by fluorescence-activated cell sorting 
(FACS; Figure 1—figure supplement 1A and B). The three samples per patient (center, periphery and 
PBMC) were loaded on different wells of a 10 x Genomics Chromium system for a targeted recovery 
of 10,000 cells. Due to technical issues cells from the center sample of patient BTB 609 could not be 
collected.

In total, we analyzed 45,466  cells that passed initial quality control and filtering, comprising 
8254  cells from tumor center, 5954  cells from tumor periphery and 31,258 PBMCs, with 6354–
10,957 cells per patient (Supplementary file 2; Figure 1—figure supplement 1C–E, Supplementary 
file 3). All cells were projected onto a two dimensions t-distributed stochastic neighbor embedding 
(tSNE; Linderman et al., 2019). As we observed a good overlap of cells across patients for most of 
the dataset (see Methods; Figure 1—figure supplement 2B–F), we chose not to perform any correc-
tion for patient-specific effects. Using hierarchical clustering, the cells were partitioned into clusters 
(Figure 2—figure supplement 1A and B) which were then annotated into nine distinct cell types 
for the immune subset, including two transcriptionally distinct MG subsets (MG_1 and MG_2) and 
four cell types for the CD45-negative subset (Figure 2A; Figure 2—figure supplement 1C and D; 
Supplementary file 3).

In more detail, our annotation strategy made use of the relative expression patterns of known 
marker genes (Figure 2B), and of cluster-specific genes (Figure 2—figure supplement 2). Addition-
ally, unbiased cell-type annotation using whole-transcriptome comparisons to reference bulk and 
single-cell datasets was performed with the SingleR package. We used as reference (i) a public bulk 
RNA-seq dataset of sorted immune cell types from human PBMC samples (Monaco et al., 2019), 
which helped in identifying the major immune cell lineages: B cells, CD4+ and CD8+ T cells, dendritic 
cells (DCs), monocytes and NK cells (Figure 2—figure supplement 1E). (ii) A bulk RNA-seq dataset 
of sorted immune cell types from the TME of human gliomas (Klemm et al., 2020) was helpful to 
separate GBM-associated CD4+ and CD8+ T cells, as well as microglia and MdMs (Figure 2—figure 
supplement 1F). (iii) A 10 X genomics scRNA-seq dataset of the innate immune TME of seven newly 
diagnosed GBM patients (Pombo Antunes et  al., 2021) confirmed the annotation of the innate 
immune subset (Figure 2—figure supplement 1I), which was also supported by a microglia and a 
macrophage signature scores defined using gene lists obtained from Müller et al., 2017; Figure 2—
figure supplement 1J and K. (v) Finally, a Smartseq2 scRNA-seq dataset of IDH1wt tumors (Neftel 
et al., 2019) was used to characterize the CD45neg population (Figure 2—figure supplement 1N).

https://doi.org/10.7554/eLife.92678
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Figure 2. Single-cell RNA-seq analysis identifies main immune cell populations. (A) Dimensionally reduced tSNE projection of the scRNAseq data 
showing the annotated cell types. (B) Heatmap displaying centered and scaled normalized average expression values of characteristic cell-type specific 
genes used to annotate clusters. Columns are ordered by site and cell type, and rows show centered and scaled expression values, hierarchically 
clustered. Heatmap displaying genes whose expression is most specific to each cell type is shown in Figure 2—figure supplement 2. (C) Principal 

Figure 2 continued on next page
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To perform a differential expression analysis between tumor sites, we stratified the analysis by cell 
type to decrease the influence of differential abundance patterns (analyzed separately, see below). A 
principal component analysis (PCA) on the pseudo-bulk aggregated samples (see Methods) confirmed 
that the major source of variation was due to differences between lymphoid, MG/myeloid cells, and 
CD45- cells (PCs 1 and 2; Figure 2C). There was no clear association to the IDH1 status of patients on 
these or deeper components. However, our study was neither designed nor powered to find regional 
signatures within the iTME depending on IDH1 status, but rather to identify common transcriptional 
differences within the iTME between tumor center, periphery and PBMC of IDH1wt and IDH1mut grade 
4 glioma.

Differential abundance analysis between tumor center and periphery did not reveal significant 
changes, but some populations displayed suggestive differences: the abundance of both CD4+ T 
cell and monocytic clusters increased in periphery compared to center, while the abundance of MdM 
clusters decreased (Figure 2D). This has been observed by others as well (Darmanis et al., 2017; 
Pinton et al., 2019). Testing the abundance at a finer scale with miloR provided us interesting insights. 
Indeed, within the innate immune population (Figure 2E) we confirmed the decreased abundance of 
MdMs in the tumor periphery and noticed an increased abundance of the MG_1 subset of MG in the 
tumor periphery. (Figure 2F and G).

MG display regionally resolved transcriptional profiles that differ from 
those of DCs and MdMs
Differential expression analysis between MG from tumor center and periphery revealed downreg-
ulation of inflammatory-related genes in the peripheral MG (FCGBP and CCL20), downregulation 
of genes associated with canonical interferon (IFN) responses (IFI6, IFI27, STAT1, ISG15), and cell 
proliferation (STMN1) as well as downregulation of scavenger receptor gene CD163 (Figure 3A and 
Supplementary file 4). The latter was shown to have a potential role in the phagocytic response of 
MG to beta-amyloid depositions identified in single-nucleus RNA-seq of postmortem human brain 
(Nguyen et al., 2020).

Among many upregulated genes whose function is not yet known, we found Inhibitor of DNA-
Binding 1, also known as Inhibitor of Differentiation 1 (ID1) to be increased in the peripheral MG 
(Figure 3A). ID1 is well described in GBM progression, treatment resistance and glioma stem cell 
biology (Soroceanu et al., 2013). However, new evidence has emerged, linking ID1 to suppression 
of the anti-tumor immune response in the myeloid compartment and promoting tumor progression 
(Papaspyridonos et al., 2015).

To further explore the underlying biological processes differing between MG in the two compart-
ments, we conducted a gene set enrichment analysis (GSEA) on the results of the differential expres-
sion analysis using Gene Ontology (GO) database (Biological Processes). This revealed overall a 
significant downregulation of GO categories involved in antigen processing and presentation via 
MHC-I and MHC-II in the peripheral MG relative to the center MG, as well as downregulation of 
amino acid metabolism and TNF-α signaling pathway (Figure 3B), which supported the conclusion of 
an impaired activation state of peripheral MG.

When comparing the transcriptional profiles of the other innate immune phagocytic populations, 
DCs and MdMs, we observed for both cell types upregulation of pro-inflammatory related gene sets 
in the tumor periphery compared to tumor center (Figure 3C and D, Figure 3—figure supplement 

component analysis of pseudo-bulk scRNAseq samples aggregated by patient and cell type. Symbols represent individual patients and cell lineage 
is displayed by different colors. (D) Relative frequencies of immune populations among leukocytes between tumor center and periphery, shown as 
boxplots. Symbols represent individual patients (n=5) and paired samples are indicated by connecting lines. p-Values were calculated using diffcyt-DA-
voom method (Figure 2—source data 1). (E–G) Differential abundance testing of the tumor innate immune compartment (E) using the miloR package 
which tests the abundance of each neighborhood of cells separately between tumor center und periphery (F, G).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Related to Figure 2D.

Figure supplement 1. Cross-referencing scRNA-seq data with published datasets.

Figure supplement 2. Cell type specific gene expression.

Figure 2 continued

https://doi.org/10.7554/eLife.92678
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Figure 3. MG display regionally resolved transcriptional profiles that differ from those of DCs and MdMs. (A) Microglia cluster highlighted on tSNE map 
and scatterplots showing differentially expressed genes (FDR <5%, indicated by blue and yellow) in Microglia (MG) cells from tumor periphery versus 
center. Volcano plot showing p value versus fold-change (left) and MA plot showing fold-change versus mean expression (right). For a complete list of 
differentially expressed genes per cell cluster between tumor periphery and center, please refer to Supplementary file 4. (B) Heatmap representation 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.92678
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1A and B and Supplementary file 4). Within DCs, the induced pro-inflammatory phenotype was 
also observed when comparing DCs from tumor periphery to PBMC-derived ones (Figure 3—figure 
supplement 1C and D and Supplementary file 6). Taken together, DCs and MdMs seem to have a 
proinflammatory phenotype in the glioma periphery as opposed to MG. However, they are less abun-
dant there, at least as far as MdMs are concerned (Figure 2E–G).

The iTME of grade 4 glioma harbors two transcriptionally distinct MG 
subpopulations
Unsupervised hierarchical sub-clustering of the MG population revealed two transcriptionally distinct 
iTME MG subsets, which we termed MG_1 and MG_2, respectively (Figure 3E, Figure 3—figure 
supplement 1E and Supplementary file 5). The MG_1 cluster was highly enriched for the activator 
protein-1 (AP-1) family of transcription factors including FOS, FOSB, JUN, JUNB, MAF, and MAFB 
(Figure 3F and Supplementary file 5), which convey a surveilling phenotype to adult MG, but are 
also involved in numerous processes including cell growth, differentiation, and immune activation 
(Holtman et al., 2017). Specifically, FOSB gene products were implicated in the excitotoxic MG acti-
vation by regulating complement C5a receptor expression (Nomaru et al., 2014). Yet, concomitant 
upregulation of anti-inflammatory Krüppel-like factor 2 (KLF2) (Sweet et al., 2020) and Dual Spec-
ificity Protein Phosphatase 1 (DUSP1), an inhibitor of innate inflammation by negatively regulating 
the mitogen-activated protein kinase (MAPK) pathway (Salojin et al., 2006), together with increased 
expression of anti-proliferative genes like RHOB, BTG1 and BTG2 paint a more complex picture of 
these cells. Particularly, BTG1 was identified as an activation-induced apoptotic sensitizer in MG after 
exposure to inflammatory stimuli (Lee et  al., 2003), serving as an autoregulatory mechanism and 
possibly hinting towards an exhausted state in these MG_1 cells. GSEA for differences between MG_1 
and MG_2 clusters using the MSigDB Hallmark collection of major biological pathways (Liberzon 
et  al., 2015) revealed downregulation of many MG effector functions in the MG_1 population 
including (1) inflammation (‘Complement’, ‘Allograft Rejection’, ‘Reactive Oxygen Species Pathway’), 
(2) immune cell activation (‘IFN-α Response’, ‘IFN-γ Response’, ‘IL6 JAK STAT3 Signaling’), and (3) 
immunometabolism (‘Fatty Acid Metabolism’, ‘Oxidative Phosphorylation’, ‘Glycolysis’; Figure 3G). 
As we examined the expression of previously described reactivity markers of MG including C1QA, 
FCGR1A, CD14, HLA-DRA, TREM2, and Ferritin (FTH1) (Walker and Lue, 2015; Hopperton et al., 
2018; Hammond et al., 2019; McQuade et al., 2020; Figure 3H and Figure 3—figure supplement 
1F), and established MG homeostatic genes like CX3CR1, HEXB and SPI1 (PU.1) (Supplementary 
file 5), we noted a reduced expression of these genes in the MG_1 cluster compared to MG_2 cells, 
while the anti-inflammatory transcription factors NR4A1 (Rothe et  al., 2017) NR4A2 (Saijo et  al., 
2009) were highly upregulated (Figure 3—figure supplement 1G). Additionally, when comparing 
the distribution of MG subsets between sites among total MG, we observed an increased abundance 
of MG_1 cells in the tumor periphery, which might at least partially explain the previously observed 
impaired activation state of total peripheral MG (Figure 3—figure supplement 1H). To rule out this 
explanation, we stratified the differential expression analysis between tumor periphery and center by 
MG subtype and observed similar genes downregulated in the tumor periphery in each subtype (e.g. 
CCL20, FCGBP; Supplementary file 5), arguing that the non-reactive phenotype is a common feature 

of Gene set enrichment analysis (GSEA) results between peripheral and center microglia using Gene Ontology (GO) collection (Biological Processes). 
The fraction of overlap between gene sets is calculated as Jaccard coefficient of overlap between the gene sets. (C, D) Heatmap representation 
of GSEA of DCs (C) and monocyte-derived macrophages (MdMs) (D) from tumor periphery versus tumor center using Hallmark collection of major 
biological categories. (E) Unsupervised hierarchical sub-clustering of the MG population revealed two transcriptionally distinct subsets of MG, termed 
MG_1 and MG_2, displayed on the tSNE map. (F) Heatmap displaying the cluster-specific genes identifying MG_1 subcluster. Columns are ordered by 
site and cell type, and rows show centered and scaled normalized average expression values, hierarchically clustered. A complete list of cluster specific 
genes for MG_1 and MG_2 subcluster is provided in Supplementary file 5. (G) Heatmap representation of GSEA between MG_1 and MG_2 subclusters 
using Hallmark collection of major biological categories. (H) Heatmap displaying previously described reactivity markers of MG. Columns are ordered by 
site and cell type, and rows show centered and scaled normalized average expression values, hierarchically clustered.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Regionally dependent transcriptional profiles of innate immune subsets and MG subclusters MG_1 and MG_2.

Figure 3 continued

https://doi.org/10.7554/eLife.92678
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for all peripheral MG and is not only driven by a differential abundance pattern of one MG subpopu-
lation relative to the other.

The tumor peripheral cytotoxic cell compartment exhibits an impaired 
activation signature
Next, we investigated the regional differences in the lymphoid compartment composed of CD4+ 
and CD8+ T cells and natural killer (NK) cells. We observed only very few significant changes in 
the transcriptomic profiles of CD4+ T cells between tumor center and periphery (Figure 4—figure 
supplement 1A and Supplementary file 4). Yet, comparing peripheral CD8+ T cells with CD8+ T cells 
from tumor center revealed 110 differentially expressed genes (43 genes upregulated and 67 genes 
downregulated; Figure 4A and Supplementary file 4). Many downregulated genes in the peripheral 
CD8+ T cells associated with canonical IFN responses (IFI6, IFI27, MX1, STAT1, EPSTI1 PARP9, ISG15; 
Szabo et  al., 2019), cell proliferation (STMN1, CENPF, HELLS, NUSAP1, and DNPH1) and T cell 
co-stimulation (CD28, TMIGD2 [CD28H], TNFRSF4 [OX40], CD27 and TNFRSF18 [GITR]; Figure 4A). 
Contrary to our expectations, we saw upregulation of CTLA4 in the center CD8+ T cells which acts 
as a negative costimulatory molecule. However, unlike other costimulatory receptors, such as CD27 
and CD28, CTLA-4 is not constitutively expressed on T lymphocytes (Alegre et al., 1996). but only 
induced following T cell activation, along with positive costimulatory molecules such as OX40 and 
GITR. In addition, upregulation of CTLA-4 requires entry into the cell cycle (Alegre et al., 1996). In 
line with that, we detected an upregulation of proliferative genes in center CD8+ T cells. In summary, 
CTLA-4 induction in center CD8+ T cells rather suggested T cell activation than exhaustion, especially 
since other inhibitory receptors like PDCD1 (PD-1), LAG3 and HAVCR2 (TIM-3) were not differentially 
expressed between sites. Moreover, we did not observe differential expression of genes involved in 
CD8+ T cell effector functions like cytotoxicity (e.g. GZMK, GZMB, KLRG1, PRF1) or cytokines (e.g. 
CCL5, XCL1, XCL2, IL10). Yet, we noted upregulation of inhibitory genes (TGFB1 and FCRL6 Johnson 
et al., 2018) in the peripheral CD8+ T cells, suggesting that a pool of activated, proliferating and IFN-
responsive CD8+ T cells is present in the tumor center, however, absent in the tumor periphery.

Similar trends were observed for the peripheral NK cell population with peripherally reduced IFN 
response (MX1 and IFI44L), and proliferative genes (STMN1, HELLS, CENPF, PTTG1, and DNPH1), 
downregulated stimulatory receptors (TMIGD2 [CD28H] and TNFRSF18 [GITR]), and reduced NF-κB 
signaling (NFKB1 and RELB; Figure 4B and Supplementary file 4). Although, we observed upregulation 
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The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Differential expression analysis between tumor center and peripheral CD4+T cells.
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of key genes associated with NK cell effector function in the periphery (e.g. FCGR3A [CD16], FGFBP2, 
ITGB2, GZMH, and KIR2DS4), increased expression of inhibitory receptors like LILRB1 and KLRG1, 
the latter especially in co-expression with chemokine receptor CX3CR1, identified the peripheral NK 
cells rather to be terminally differentiated with impaired cytotoxic capabilities (Sciumè et al., 2011). 
This was in line with the observed abrogated cytokine activity profile in the peripheral NK cells with 
reduced expression of key factors like XCL1, XCL2, LTB, and CKLF. In summary, our data revealed an 
impaired activation signature in the peripheral cytotoxic cell compartment.

CX3CR1 labels a specific CD8+ T cell population in the circulation of 
grade 4 glioma patients
Next, we investigated the relationships between circulating CD8+ T cells and those from the tumor 
milieu and, more specifically, the peripheral, infiltration zone characterized by an abrogated CD8+ 
T-cell IFN response and activation signature. Strikingly, there were large transcriptomic differences 
between PBMC and periphery CD8+ T cells (Figure 5A), with 1,417 differentially expressed genes 
(864 genes upregulated in the tumor periphery and 553 genes upregulated in PBMC; Figure 5B, 
Supplementary file 6).

Interestingly, one of the key genes upregulated in PBMC CD8+ T cells was the chemokine receptor 
CX3CR1 (Figure  5B). Flow cytometry of an additional matched glioma grade 4 patient cohort 
confirmed an increased abundance of CX3CR1+ CD8+ T cells in PBMC compared to almost absent 
CX3CR1+ CD8+ T cells in tumor periphery (Figure 5C, Figure 5—figure supplement 1A, Supplemen-
tary file 1). Unsupervised hierarchical sub-clustering of CD8+ T cells revealed that CX3CR1 expression 
labelled a specific subpopulation among PBMC CD8+ T cells (Figure 5D and E).

Recently, expression of CX3CR1 was demonstrated to distinguish memory CD8+ T cells with cyto-
toxic effector function in healthy donors and different inflammation related conditions (Böttcher 
et al., 2015; Gerlach et al., 2016; Yamauchi et al., 2021; Yan et al., 2018). Further characterization 
of classical central memory (Tcm) and effector memory (Tem) populations by varying surface expres-
sion levels of CX3CR1 identified a novel CX3CR1int subpopulation, termed peripheral memory (Tpm). 
Tpm cells underwent frequent homeostatic divisions, re-acquired CD62L, homed to lymph nodes, and 
predominantly surveyed peripheral tissues compared to Tcm and Tem (Gerlach et al., 2016). In our 
dataset, the circulating CX3CR1+ CD8+ T cells indeed displayed a core signature of memory CD8+ T 
cells with effector function, comprising expression of LFA-1 (IGAL- ITGB2), TBX2 (Tbet), SELL (CD62L), 
GZMB (Granzyme B), and PRF1 (Perforin 1; Figure 5F), separating them from circulating CX3CR1- 
CD28high, IL7Rhigh and CD27high naïve CD8+ T cells (Figure 5G and Figure 5—figure supplement 1B). 
Flow cytometric analysis confirmed Teff to be CX3CR1high, with negligible expression levels in the naïve 
CD8+ T cells, whereas the identified memory CD8+ T cells (Tem and Tpm) were CX3CR1int (Figure 5H 
and I). Collectively, surface expression analysis of CX3CR1 identified a subset of CX3CR1high Teff and 
CX3CR1int memory (Tem, Tpm) CD8+ T cells in the circulation of grade 4 glioma patients with potentially 
elevated tissue surveilling properties in the case of Tpm, which are, however, largely absent in the 
tumor microenvironment.

CD8+ T cells in the tumor periphery share features with tissue-resident 
memory T cells (Trm)
We next examined the differing transcriptional and surface-specific features between tumor infiltrating 
and circulating CD8+ T cells. Surface staining for CD45RA and CD45RO, discriminating naïve/effector 
from memory T cells, attributed a predominant CD45RO+ memory phenotype to the tumor infiltrating 
CD8+ T cells (Figure 6A and B). Interrogation of the transcriptomic profile of these cells revealed a 
key marker expression signature consistent with tissue-resident memory T cells (Trm): Expression of 
cellular adhesion molecules (integrins) ITGA1 (CD49a) and ITGAE (CD103), tissue retention marker 
CD69, chemokine receptors implicated in tissue-homing CXCR3, CXCR6, and CCR5 (Urban et al., 
2020) and transcription factors, ZNF683 (Hobit) and PRDM1 (Blimp1) as well as reduced expression of 
TBX21 (Tbet) and EOMES (Mackay et al., 2016), strongly suggested a Trm phenotype for these cells 
(Figure 6C and D and Figure 6—figure supplement 1A). Co-expression analysis of paired PBMC and 
tumor periphery samples using flow cytometry showed that CD69+ CD103- and CD69+ CD103+ cells 
are the dominant CD8+ T cell populations in the tumor periphery (Figure 6E and F). Combined, these 
data strongly suggest a Trm phenotype for the CD8+ T cells in the tumor periphery.

https://doi.org/10.7554/eLife.92678
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Figure 5 continued on next page
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Previous reports of Trm populating the brain in the aftermath of central or peripheral infections 
concluded that brain Trm cells surveil the brain tissue and mediate protection by rapid activation and 
enhanced cytokine production (Urban et  al., 2020). Indeed, CD8+ T cells in the tumor periphery 
showed increased expression of genes belonging to costimulatory pathways, including ICOS, 
TNFRSF4 (OX40) and TNFRSF9 (4-1BB) (Figure 6—figure supplement 1B, Supplementary file 6), 
albeit accompanied by high levels of inhibitory receptors PDCD1 (PD-1), LAG3, HAVCR2 (TIM-3), 
and CTLA4 (Figure 6G). Moreover, expression of genes coding for cytotoxic molecules, including 
Granzyme B and Perforin 1 were decreased in the peripheral CD8+ T cells, suggesting a compromised 
killing capacity of these cells. And lastly, CD8+ T cells in the tumor periphery exhibited a transcrip-
tion factor profile of exhausted T cells with high expression of NR4A1, MAF, and IRF4 (Figure 6G 
and Figure 6—figure supplement 1C), which were implicated in T cell dysfunction and exhaustion 
(Ma et al., 2019; Liu et al., 2019). Collectively, these data indicate that CD8+ T cells in the glioma 
periphery share features with Trm cells. However, inhibitory receptor expression, functional molecules 
and transcriptional signature ascribe an exhausted phenotype to these cells.

Noteworthy, we observed high upregulation of similar genes in the comparison tumor periphery 
vs. PBMC for CD4+ T cells as for CD8+ T cells (Figure 6—figure supplement 1D). These included tran-
scription factor family NRA41-3, identified as key mediator of T cell dysfunction (Liu et al., 2019), Dual 
Specificity Protein Phosphatase 2/4 (DUSP2, DUSP4) described as negative regulators of mitogen-
activated protein (MAP) kinase superfamily and associated with impaired T cell effector activity (Dan 
et al., 2020) and T cell senescence (Bignon et al., 2015), and transcription factor CREM which was 
implicated in IL-2 suppression (Maine et al., 2016). These genes could potentially identify pan T cell 
dysfunction markers within the GBM iTME (Li et al., 2019).

Interrogation of cell-cell interactions revealed critical role of SPP1-
mediated crosstalk between MG and lymphocytes in the tumor 
periphery
We finally investigated cell-cell interactions based on ligand-receptor expression levels using the Cell-
Chat platform (Jin et al., 2021). Considering that MG and lymphocytes displayed an impaired acti-
vation signature in the tumor periphery, we focused our analysis on the tumor-peripheral crosstalk 
between these cells (Figure 7A). This revealed SPP1 (Osteopontin) as a leading potential cell-cell 
interaction mediator between MG and lymphocytes (Figure 7A and B). MG SPP1-mediated signaling 
was as well among the most significant interactions, when investigating cell-cell communication 
across all cell types and both sites (Figure 7—figure supplement 1A and B). Further, we found that 
SPP1 is mainly expressed by MG rather than glioma cells, contrary to previous reports (Wei et al., 
2019; Figure 7C, Figure 7—figure supplement 1C and D). MG SPP1 conveys different interactions, 
depending on the recipient cell binding receptor expression profile. The predicted interactions of 
MG SPP1 with NK cells could be mediated via the integrin complex ITGA4-ITGB1 (CD49d-CD29) 
(Figure 7A and C), whereas CD4+ and CD8+ T cells exhibited strong interactions with MG via SPP1/
CD44 interaction (Figure 7A and B). The SPP1/CD44 axis was recently described to suppress T cell 

cytometry data (Figure 5—source data 1). (D) Unsupervised hierarchical sub-clustering of CD8+ T cells from PBMC and Periphery revealed two 
transcriptionally distinct subsets of PBMC CD8+ T cells, displayed on the tSNE map. (E) Expression of CX3CR1 overlaid on tSNE CD8+ T cell cluster. (F) 
Expression of genes associated with effector memory phenotype overlaid on tSNE CD8+ T cell cluster. Displayed genes are significantly, differentially 
expressed genes (DEGs) between tumor periphery and PBMC, as identified by differential gene expression analysis shown in panel (B). (G) Expression 
of selected genes associated with naive phenotype overlaid on tSNE CD8+ T cell cluster (H) Gating procedure applied to identify CD3+ CD8+ naive, T 
effector cells (Teff), effector memory (Tem), peripheral memory (Tpm) and central memory (Tcm), eluted from PBMCs. (I) Expression of CX3CR1 in PBMC CD8+ 
T cell subpopulations identified in (H) (Figure 5—source data 2). n=6 donors (C), n=11 donors (I). Statistics: Wilcoxon matched-pairs signed rank test 
(C); repeated measures one-way ANOVA with post-hoc Šidák’s correction for multiple comparisons (I). *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001, no 
brackets indicate no significant difference.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Related to Figure 5C.

Source data 2. Related to Figure 5I.

Figure supplement 1. Phenotypic characterization of PBMC CD8+ T cells.

Figure 5 continued
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Figure 6. CD8+ T cells in the tumor periphery share features with tissue-resident memory T cells (Trm). (A) Representative dot plot of tumor-periphery 
CD8+ T cells stained for CD45RA and CD45RO. (B) Quantification of tumor-periphery CD8+ T cells expressing CD45RA or CD45RO (Figure 6—source 
data 1). (C) Expression of genes associated with tissue-resident memory (Trm) phenotype overlaid on tSNE CD8+ T cell cluster. (D) Average expression 
levels of selected Trm markers between CD8+ T cells from PBMC versus tumor-periphery. Significance testing based on differential gene expression 

Figure 6 continued on next page
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activation and proliferation (Klement et al., 2018). The identified MG SPP1-mediated interactions 
might represent potential targets to modulate MG-lymphocyte crosstalk in the tumor periphery.

Discussion
In this study, we combined single-cell RNA sequencing and flow cytometry to interrogate the regional 
leukocyte activation signature in patient-matched biopsies from contrast-enhancing tumor center, 
infiltrative peripheral rim, and blood PBMCs of grade 4 glioma patients. Our analyses revealed a 
distinct, regionally dependent transcriptional profile for most of the investigated cell populations. 
While peripheral MG and cytotoxic cells predominantly displayed an impaired activation signature, 
MdMs showed pro-inflammatory traits in the tumor periphery, however, were less abundant there 
compared to the tumor center, which was reported by others as well (Darmanis et al., 2017; Landry 

analysis shown in panel (Figure 5B) (E) Representative dot plots of CD69 and CD103 co-expression in CD8+ T cells from PBMC and tumor-periphery. 
(F) Quantification of CD69 and CD103 co-expression revealed CD69- CD103- in PBMC and CD69+ CD103- and CD69+ CD103+ in tumor-periphery as 
the dominant phenotypes (Figure 6—source data 2). (G) Expression of selected markers associated with T cell exhaustion/dysfunction, shown as 
boxplots between CD8+ T cell from PBMC and tumor-periphery and overlaid on tSNE CD8+ T cell cluster. Significance testing based on differential gene 
expression analysis shown in panel (Figure 5B). n=6 donors (B, F). Statistics: Wilcoxon matched-pairs signed rank test (B); repeated measures one-way 
ANOVA with post-hoc Šidák’s correction for multiple comparisons (F). *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001, no brackets indicate no significant 
difference.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Related to Figure 6B.

Source data 2. Related to Figure 6F.

Figure supplement 1. Phenotypic characterization of Periphery CD8+ T cells.
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The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Cell-cell communication analysis using CellChat.
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et al., 2020). Supplemented with transcriptional analysis of paired PBMC samples, we provide an 
in-depth characterization of the three main immunological compartments of grade 4 glioma.

Previous studies focused on the description of the TME of grade 4 glioma, which also considered 
regional differences, yet they focused primarily at neoplastic cells rather than the immune compart-
ment (Darmanis et al., 2017). Others investigated the differences in the iTME composition between 
primary and metastatic brain tumors (Klemm et al., 2020; Friebel et al., 2020). Interestingly, the 
two latter ones reported differences in the iTME composition between IDH1wt and IDH1mut glioma. Of 
note, both authors included low-grade and even pre-treated recurrent glioma patients into the IDH1mut 
group, representing a quite heterogenous patient cohort. In this study, we aimed at providing a repre-
sentative selection of primary, treatment-naïve grade 4 glioma patients including IDH1wt and IDH1mut 
to identify common transcriptional differences within the iTME between tumor center, periphery and 
PBMC of grade 4 glioma. How far these regional differences vary between IDH1wt and IDH1mut grade 
4 glioma merits further investigation.

We identified a transcriptionally distinct MG subcluster, MG_1, which was enriched in the infiltrative 
tumor periphery and displayed an anti-inflammatory/non-reactive phenotype. A similar MG subpopu-
lation expressing a comparable gene signature was recently described to be enriched in Alzheimer’s 
disease patients (Olah et al., 2020).

Additionally, the peripheral cytotoxic cell compartment exhibited an impaired activation state, 
including a downregulated IFN response signature in CD8+ T cells. Induction of an IFN response state 
was described as a consequence of T cell receptor-mediated IFN-γ production, likely serving as an 
autocrine response and inducing the proliferative program (Szabo et al., 2019). Hence, the reduced 
autocrine IFN-responsive state in the tumor peripheral CD8+ T cells, together with downregulated 
proliferative and co-stimulatory genes emphasized their impaired activation in the peripheral infil-
tration zone. Recently, we showed that the response to immunotherapy in GBM is indeed region 
dependent. For this, we cultured GBM explants in perfusion bioreactors and treated with anti-CD47, 
anti-PD1, or their combination which induced an IFN-γ response only in the tumor center, but not 
periphery (Shekarian et  al., 2022). Adding experimental support to the here described impaired 
activation signature in the tumor periphery.

By exploring the transcriptional trajectory of CD8+ T cells from the blood circulation into the 
immunosuppressive TME of the tumor periphery, we uncovered CX3CR1high and CX3CR1int effector 
and memory CD8+ T cells, respectively, to be highly enriched in the PBMC, but absent in the iTME. 
Recently, adoptive transfer studies of CX3CR1+ CD8+ T cells in a melanoma mouse model significantly 
suppressed tumor growth (Yan et  al., 2018). Others identified increased frequencies of CX3CR1+ 
CD8+ T cells in non-small cell lung and melanoma patients who responded to anti-PD-1 therapy, where 
these cells exhibited migratory capabilities into the tumor site followed by potent tumor rejection 
(Yamauchi et al., 2021; Yan et al., 2018). Thus, the authors proposed T cell CX3CR1 expression as 
a predictor of response to ICI therapy. Even though CX3CR1+ CD8+ T cells might not be specific to 
GBM, as they are found in healthy donor and different inflammation related conditions (Böttcher 
et al., 2015; Gerlach et al., 2016; Yamauchi et al., 2021; Yan et al., 2018), the absence of these 
effector and potentially ICI therapy responsive CD8+ T cells in the glioma TME could serve as an addi-
tional explanation for the disappointing outcome of clinical trials using ICI in glioma patients.

The observed Trm exhaustion phenotype of the glioma residing CD8+ T cells was recently reported 
as well for tumor-infiltrating PD-1high CD8+ T cells in hepatocellular carcinoma (Ma et  al., 2019). 
Whether these glioma-associated CD8+ T cells really possess tumor-specificity requires further study. 
Particularly in the light of a recent study by Smolders and colleagues who reported a consistent brain-
resident CD8+ T cell population in a miscellaneous autopsy cohort of patients with neurological disor-
ders excluding brain malignancies (Alzheimer’s disease, Parkinson’s disease, dementia, depression, 
multiple sclerosis), as well as patients with no known brain disease. These brain-resident CD8+ T cells 
displayed a remarkably consistent Trm phenotype (Smolders et al., 2018). The authors further showed 
high expression of inhibitory receptors CTLA-4 and PD-1 on the brain-resident CD8+ Trm cells, which is 
in line with the core phenotypic signature of Trm cells from other tissues (Kumar et al., 2017; Mackay 
et al., 2013). Yet, the brain CD8+ Trm cells showed a preserved inflammatory potential with substan-
tial production of IFN-γ and TNF-α upon ex vivo stimulation. They concluded that extensive immune 
activation with release of highly neurotoxic lytic enzymes, such as perforin and granzyme B, harmfully 
impacts the brain parenchyma and should be tightly controlled, whilst maintaining the capability to 

https://doi.org/10.7554/eLife.92678


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology

Schmassmann et al. eLife 2023;12:RP92678. DOI: https://doi.org/10.7554/eLife.92678 � 15 of 26

elicit a fast inflammatory response when a neurotropic virus threatens the CNS (Smolders et  al., 
2018). Therefore, inhibitory receptors like PD-1 and CTLA-4 on brain CD8+ Trm cells may support CNS 
homeostasis by preventing uncontrolled T cell reactivity, and the availability of the receptor ligands 
may determine their inhibitory effect. While this may represent a well-balanced equilibrium under 
healthy conditions, the tumor setting leads to its disruption with upregulation of inhibitory ligands 
like PD-L1 on glioma cells and CD86 on GAMs, leading to the dysfunctional state seen in the glioma-
residing CD8+ Trm cells.

Another study comprehensively showed, that peripheral infections generate antigen-specific CD8+ 
Trm cells in the brain, mediating protection against CNS infections (Urban et al., 2020). These data 
could implicate that the glioma-associated CD8+ T cells are devoid of tumor-specific reactivity, but 
rather represent a pre-existing T cell population generated after peripheral infections, which acquired 
a dysfunctional state upon glioma formation. To test this hypothesis, further characterization of these 
cells is required, including analysis of T cell receptor clonality and tumor-specificity by patient-matched 
T cell/glioma-sphere co-culture assays.

Lastly, our cell-cell interaction analysis revealed signaling pathways between peripheral MG and 
lymphocytes potentially inducing the observed impaired activation signature. The predicted interac-
tion between MG SPP1 and NK cells integrin complex ITGA4-ITGB1 (CD49d-CD29), might mediate 
NK cell adhesion and migration (Gandoglia et al., 2017). This may facilitate interaction of inhibitory 
NK receptors KLRB1 and CD94/NKG2A with MG C-type lectin-related ligands and HLA-E, respec-
tively, which could explain the observed impaired activation state of peripheral NK cells. Moreover, 
SPP1/CD44 interaction in T lymphocytes was described to suppress cell activation and proliferation 
(Klement et al., 2018). In a comprehensive approach where transcriptional states of human MG were 
mapped during aging and disease, SPP1 was found to be differentially expressed in aging-microglia. 
This was associated to a doubling of the abundance of SPP1+ GAMs in GBM samples compared to 
MG from age-matched controls (Sankowski et al., 2019). These observations support a possible role 
of MG SPP1 in glioma progression. More recently, myeloid-derived osteopontin (encoded by SPP1) 
was shown to trigger a chronic activation of NFAT2 in tumor-reactive CD8+ T cells, leading to T cell 
dysfunction and exhaustion in an experimental mouse model of GBM (Kilian et al., 2023). This adds 
an additional layer of mechanistic evidence for the SPP1/Osteopontin-mediated signaling axis leading 
to CD8+ T cell dysfunction in GBM.

Limitations of our study include the limited patient number, thereby our study was neither designed 
nor powered to explore differences in neoplastic cells, given the high inter- and intra-patient vari-
ability in glioma cells (Darmanis et al., 2017). Importantly, our dataset establishes a starting point for 
further interrogation and provides a first analysis of the transcriptional landscape of the major immune 
populations in grade 4 glioma within three important regional compartments. Further, we confirmed 
the observed phenotype of CD8+ T cells in the blood and tumor periphery by flow cytometry in a 
cohort of ten additional patients, addressing possible generalization concerns. Together, we provide a 
regionally resolved map of leukocyte activation in the TME and blood circulation from grade 4 glioma 
patients, helping the research community to uncover novel therapeutic strategies to combat this fatal 
disease.

Methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Biological sample (Human 
adult GBM tissue samples) Tumor Center; Tumor Periphery

Neurosurgical Clinic of the 
University Hospital of Basel, 
Switzerland

Biological sample (Human 
Peripheral Blood Buffy Coat) PBMC

Neurosurgical Clinic of the 
University Hospital of Basel, 
Switzerland

Antibody
Rat monoclonal anti-human/mouse 
CD11b (clone M1/70), FITC BioLegend Cat# 101206 FACS: 1:50

https://doi.org/10.7554/eLife.92678
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Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Antibody
Mouse monoclonal anti-human 
CD45 (clone 2D1), FITC BioLegend Cat# 368508 FACS: 1:50

Antibody
Fc-Block anti-human CD16/CD32, 
TruStain FcX BioLegend Cat# 422302 FACS: 1:50

Antibody
Mouse monoclonal anti-human 
CD45RO (clone UCHL1), APC BioLegend Cat# 304210 FACS: 1:25

Antibody
Mouse monoclonal anti-human 
CD45RA (clone HI100), PE BioLegend Cat# 304108 FACS: 1:25

Antibody
Mouse monoclonal anti-human 
CD3e (clone UCHT1), BV650 BioLegend Cat# 300468 FACS: 1:25

Antibody
Mouse monoclonal anti-human 
CD8a (clone RPA-T8), BV421 BioLegend Cat# 301036 FACS: 1:25

Antibody
Mouse monoclonal anti-human 
CCR7 (clone G043H7), FITC BioLegend Cat# 353216 FACS: 1:25

Antibody
Mouse monoclonal anti-human 
CD62L (clone DREG-56), AF700 BioLegend Cat# 304820 FACS: 1:50

Antibody
Mouse monoclonal anti-human 
CD69 (clone FN50), APC/Cy7 BioLegend Cat# 310914 FACS: 1:25

Antibody

Mouse monoclonal anti-human 
CD103 (clone Ber-ACT8), PerCP/
Cy5.5 BioLegend Cat# 350226 FACS: 1:25

Antibody
Rat monoclonal anti-human CX3CR1 
(clone 2A9-1), PE-Cy7 BioLegend Cat# 341612 FACS: 1:25

Commercial assay or kit
Chromium Single Cell 3’ Reagent 
Kits v3 10 x Genomics Cat# CG000183

Commercial assay or kit
BioAnalyzer High Sensitivity DNA 
Analysis kit Agilent Cat# 5067–4626

Commercial assay or kit
Qubit dsDNA High Sensitiivity assay 
kit ThermoFisher Cat# Q33230

Chemical compound, drug Collagenase-4
Worthington Biochemical 
Cooperation Cat# LS004188

Chemical compound, drug DNAse1 Roche Cat# 10104159001

Chemical compound, drug ACK lysis buffer Gibco Cat# A1049201

Chemical compound, drug Bambanker Nippon Genetics Cat# BB01

Chemical compound, drug Sucorse Sigma Aldrich Cat# 84100

Chemical compound, drug Ficoll-Paque PLUS Cytiva Cat# 17144002

Chemical compound, drug
Live/Dead Fixable Near IR Dead 
Stain Kit, APC-Cy7 ThermoFisher Cat# L34976

Chemical compound, drug Zombie Aqua Fixable Viability Kit BioLegend Cat# 423102

Software, algorithm R environment, version 4.1 R Core Team
https://www.r-project.​
org/

Software, algorithm GraphPad Prism 9 GraphPad Software Inc. N/A

Software, algorithm Flow Jo, version 10.8.1 Tree Star N/A

 Continued

Glioma tissue dissociation
Resected glioma tissue samples were immediately placed on ice and transferred to the laboratory 
for single cell dissociation within 2–3 hr after resection. Human brain tissue was manually minced 
using razor blades and enzymatically dissociated at 37  °C for 30 min with 1 mg/ml collagenase-4 
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(#LS004188, Worthington Biochemical Corporation, USA) and 250  U/ml DNAse1 (#10104159001, 
Roche, Switzerland) in a buffer containing Hank’s Balanced Salt Solution (HBSS) with Ca2+/Mg2+, 1% 
MEM non-essential amino acids (Gibco, USA), 1 mM sodium pyruvate (Gibco), 44 mM sodium bi-car-
bonate (Gibco), 25 mM HEPES (Gibco), 1% GlutaMAX (Gibco) and 1% antibiotic-antimycotic (Sigma-
Aldrich, USA). Cells were filtered and separated from dead cells, debris and myelin by a 0.9 M sucrose 
(#84100, Sigma-Aldrich) density gradient centrifugation. Upon ACK-lysis for removal of erythrocytes 
(#A1049201, Gibco) the now generated single-cell suspension (SCS) was washed, counted and frozen 
in Bambanker (#BB01, Nippon Genetics, Germany) in liquid nitrogen until use.

PBMCs (peripheral blood mononuclear cells) preparation
Patient blood samples were directly placed on ice and transferred to the laboratory for PBMC isola-
tion. Blood samples were centrifuged to separate buffy coat from plasma and erythrocytes, followed 
by standard density gradient centrifugation protocol (#17144002, Ficoll-Paque PLUS, Cytiva, USA) 
to isolate PBMCs. PBMCs were frozen in Bambanker (#BB01, Nippon Genetics, Germany) in liquid 
nitrogen until use.

FACS sorting for single-cell RNA sequencing (scRNA-seq)
Cryopreserved tumor digests from glioma samples (center and periphery), as well as autologous PBMCs 
were thawed and washed with excess ice-cold 1xPBS and spun down at 350 x g for 5 min. Subse-
quently, the cells were stained with Live/Dead (APC-Cy7 (Near IR), # L34976, Thermo Fischer) and a 
cocktail of fluorescently conjugated antibodies CD11b (FITC, clone M1/70, #101206, BioLegend) and 
CD45 (FITC, clone 2D1, #368508, BioLegend), and large debris were removed with a 40 μm strainer. 
All samples were acquired on the BD FACS ARIA Fusion III (Becton Dickinson GmbH, Germany). For 
single-cell RNA-seq experiments, live and single gated cells were sorted into non-immune cell (CD45-

CD11b-) and immune cell (CD45+CD11b+) populations. Both populations were directly sorted into 
Eppendorf tubes with 1xPBS supplemented with 1% BSA for single cell RNA sequencing.

Single-cell RNA sequencing (scRNA-seq) – Library preparation and 
sequencing
Single-cell RNA-seq was performed using Chromium Single Cell 3’ GEM, Library & Gel Bead Kit v3 
(#CG000183, 10 x Genomics, Pleasanton, CA, USA) following the manufacturer’s protocol. Briefly, 
non-immune cells and immune cells were mixed at a defined ratio of 1:4. Roughly 8000–10,000 cells 
per sample, diluted at a density of 100–800 cells/μL in PBS plus 1% BSA determined by Cellometer 
Auto 2000 Cell Viability Counter (Nexelom Bioscience, Lawrence, MA), and were loaded onto the 
chip. The quality and concentration of both cDNA and libraries were assessed using an Agilent BioAn-
alyzer with High Sensitivity kit (#5067–4626, Agilent, Santa Clara, CA USA) and Qubit Fluorometer 
with dsDNA HS assay kit (#Q33230, Thermo Fischer Scientific, Waltham, MA) according to the manu-
facturer’s recommendation. For sequencing, samples were mixed in equimolar fashion and sequenced 
on an Illumina HiSeq 4000 with a targeted read depth of 50,000 reads/cell and sequencing parame-
ters were set for Read1 (28 cycles), Index1 (8 cycles), and Read2 (91 cycles).

Single-cell RNA sequencing (scRNA-seq) - Computational analysis
The dataset was analyzed by the Bioinformatics Core Facility, Department of Biomedicine, University 
of Basel. Read quality was controlled with the FastQC tool (version 0.11.5). Sequencing files were 
processed using the Salmon Alevin tool (v 1.3.0) (Srivastava et al., 2019) to perform quality control, 
sample demultiplexing, cell barcode processing, pseudo-alignment of cDNA reads to the human 
Gencode v35 reference and counting of UMIs. Parameters --keepCBFraction 1 and --maxNumBar-
codes 100000 were used.

Processing of the UMI counts matrix was performed using the Bioconductor packages DropletUtils 
(version 1.8.0) (Griffiths et al., 2018; Lun et al., 2019), scran (version 1.16.0) (Vallejos et al., 2017; Lun 
et al., 2016) and scater (version 1.16.2) (McCarthy et al., 2017), following mostly the steps illustrated 
in the OSCA book (http://bioconductor.org/books/release/OSCA/) (Lun et  al., 2016; Amezquita 
et al., 2020). Filtering for high-quality cells was done based on library size (at least 2000 UMI counts 
per cell), the number of detected genes (at least 700 genes detected) and the percentage of reads 
mapping to mitochondrial genes (larger than 0% and lower than 15%), based on the distribution 
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observed across cells. Low-abundance genes with average counts per cell lower than 0.006 were 
filtered out. The presence of doublet cells was investigated with the scDblFinder package (version 
1.2.0), and suspicious cells were filtered out (score >0.6). After quality filtering, the resulting dataset 
consisted of UMI counts for 15,523 genes and 45,466 cells, ranging from 803 to 9,121 per sample.

UMI counts were normalized with size factors estimated from pools of cells created with the scran 
package quickCluster() function (Vallejos et  al., 2017; Lun et  al., 2016). To distinguish between 
genuine biological variability and technical noise we modeled the variance of the log-expression 
across genes using a Poisson-based mean-variance trend. The scran package denoisePCA() function 
was used to denoise log-expression data by removing principal components corresponding to tech-
nical noise. Consistent to the findElbowPoint() function from the PCAtools Bioconductor package, this 
led us to retain the top 5 principal components (PCs), explaining 48.3% of the total variance in the 
dataset, for the clustering and dimensionality reduction steps.

Since the excluded deeper PCs (PC8 and 10) were associated to patient-specific effects (which 
in our experimental setup are also confounded with batch effects), this choice dispensed us from 
performing an additional correction for patient-specific effects. A quantitative test of overlap of cells 
across patients was made using the CellMixS package (Lütge et al., 2021) (version 1.12.0) developed 
to quantify the effectiveness of batch correction methods. We used the cell-specific mixing (CMS) 
score, which highlighted a very good overlap across cells from different patients in the lymphoid 
compartment and for the monocytes. The myeloid compartment displayed a slightly elevated patient-
specific structure, while it was most pronounced for the CD45 negative subset.

A t-stochastic neighbor embedding (t-SNE) was built with a perplexity of 50 using the top most 
variable genes (141 genes with estimated biological variance >0.3, excluding genes with highest 
proportion of reads in the ambient RNA pool estimated from empty droplets), and the denoised 
principal components as input. Clustering of cells was performed with hierarchical clustering on 
the Euclidean distances between cells (with Ward’s criterion to minimize the total variance within 
each cluster Murtagh and Legendre, 2014; package cluster version 2.1.0). The number of clus-
ters used for following analyses was identified by applying a dynamic tree cut (package dynam-
icTreeCut, version 1.63–1) (Langfelder et al., 2008), resulting in 10 with argument deepSplit set 
to 1, or 22 clusters with argument deepSplit set to 2. This clustering was validated with an alter-
native clustering approach using a graph-based approach and Louvain algorithm for community 
detection (using the FindNeighbors() and FindClusters() functions from the Seurat package (Hao 
et al., 2021) (version 4.3.0), with a resolution of 0.7) which showed a good correspondence to our 
hierarchical clustering.

The findMarkers function of the scran package was used to find the best markers across annotated 
cell types (parameters direction=“up” and ​pval.​type=“any”). The top 10 markers for each cell type 
were extracted and pooled to from a list of 68 markers.

The Bioconductor package SingleR (version 1.2.4) was used for cell-type annotation of the cells 
(Aran et al., 2019) using as references (i) a public bulk RNA-seq dataset of sorted immune cell types 
from human PBMC samples (Monaco et  al., 2019), available through the celldex Bioconductor 
package; (ii) a bulk RNA-seq dataset of sorted immune cell types from the tumor microenvironment 
of human gliomas (Klemm et al., 2020) (UMI count matrix and annotation downloaded from https://​
joycelab.shinyapps.io/braintime/); (iii) a 10 X genomics scRNA-seq dataset of TAMs from the tumor 
micro-environment of glioblastoma tumors from seven newly diagnosed human patients Pombo 
Antunes et  al., 2021; (iv) a microglia and a macrophage signature scores were defined by aver-
aging the center and scaled expression levels of gene lists obtained in Müller et al., 2017 and (v) 
a Smartseq2 scRNA-seq dataset of IDH-wild-type glioblastoma tumors (Neftel et al., 2019) (down-
loaded from GEO accession GSE131928). An endothelial score was defined by averaging the center 
and scaled expression levels of the genes CDH5, VWF, CD34, and PECAM1.

The SingleR high-quality assignments (pruned scores) from the comparisons to the multiple refer-
ences (some being better at enlightening some immune subsets than others) were used to manually 
derive a consensus cell type annotation for each cluster. This manual annotation was done jointly with 
the input from the signature scores and relative expression patterns of known marker genes and of 
cluster-specific genes.

When we judged that the resolution was not sufficient to discriminate well the subtypes of cells 
within a subset (in particular for the CD45neg and myeloid cells subsets), we isolated these cells 
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and re-performed selection of hyper-variable genes, dimensionality reduction and clustering on the 
isolated subset.

Differential abundance analysis of the identified cell types between tumor sites was performed 
using limma-voom (Law et al., 2014). This method, implemented in the diffcyt package, was shown 
to be able to handle well the overdispersion in the cell type proportions estimates typically observed 
with single cell technologies (Weber et al., 2019). Differential abundance of cell types was consid-
ered to be significant at a false discovery rate (FDR) lower than 5%. To provide increased resolution 
into local trends within the tumor innate immune subset we used the miloR bioconductor package 
(Dann et al., 2022; version 1.4.0) to test for differential abundance on neighborhoods of a k-nearest 
neighbor graph. Testing was done with limma-voom similarly to above. Cell type labels were assigned 
to each neighborhood by finding the most abundant cell type across cells and requiring that at least 
70% of the cells come from one cell type.

Differential expression between tumor sites, or between PBMC cells and tumor periphery cells, 
stratified by annotated cell type, was performed using a pseudo-bulk approach, which was shown 
to be the best-performing approach for differential expression testing in recent benchmarks (Junt-
tila et al., 2022). UMI counts were summed across cells from each cell type in each sample when 
at least 20 cells could be aggregated. The aggregated samples were then treated as bulk RNA-seq 
samples (Lun and Marioni, 2017) and for each pairwise comparison genes were filtered to keep genes 
detected in at least 5% of the cells aggregated. The package edgeR (version 3.30.3; Robinson et al., 
2010) was used to perform TMM normalization (Robinson and Oshlack, 2010) and to test for differ-
ential expression with the Generalized Linear Model (GLM) framework, using a model accounting for 
patient-specific effects. Genes with a FDR lower than 5% were considered differentially expressed. To 
validate our differential expression analysis, we rerun a pseudo-bulk expression analysis using DESeq2 
(version 1.38.3; Love et al., 2014) for the main immune populations in the periphery versus center and 
periphery versus PBMC comparison. Although the results were not identical, they overall agreed with 
edgeR (Supplementary file 7). Gene set enrichment analysis was performed with the function camera 
(Wu and Smyth, 2012) on gene sets from the Molecular Signature Database (MSigDB, version 7.4; 
Liberzon et al., 2015; Subramanian et al., 2005). We retained only sets containing more than five 
genes, and gene sets with a FDR lower than 5% were considered as significant.

Cell chat analysis
The R package CellChat (1.1.3) (Jin et  al., 2021) was used to analyze cell-cell interactions in our 
dataset (with previously annotated nine cell types). We followed the recommended workflow to infer 
the cell state-specific communications (using identifyOverExpressedGenes, identifyOverExpressedIn-
teractions and projectData with the default parameters). We performed three separate analyses, on 
the center and the periphery subsets and a comparison analysis as described in the official workflow. 
We visualized the significant interactions for the microglia cluster using netVisual_chord_gene and 
used plotGeneExpression to display of the expression of all genes involved SPP1 signaling pathway 
in the cell populations. Finally, netAnalysis_signalingRole_scatter was used to calculate and visualize 
incoming and outgoing signaling strength.

Flow cytometry analysis of paired PBMC and periphery samples
Cryopreserved samples were thawed and washed with excess ice-cold 1xPBS and spun down at 350 
x g for 5 min. Cells were resuspended in FACS buffer (PBS plus 2% FBS) and blocked with mono-
clonal antibody to CD16/32 (Human TruStain FcX, #422302, Biolegend) for 10 min at 4  °C before 
staining with surface antibodies: CD45RA (PE, clone HI100, #304108), CD45RO (APC, clone UCHL1, 
#304210), CD3e (BV650, clone UCHT1, #300468), CD8a (BV421, clone RPA-T8, #301036), CCR7 
(FITC, clone G043H7, #353216), CD62L (AF700, clone DREG-56, #304820), CD69 (APC-Cy7, clone 
FN50, #310914), CD103 (PerCP/Cy5.5, clone Ber-ACT8, #350226) and CX3CR1 (PE/Cy7, clone 2A9-1, 
#341612). All antibodies were purchased from BioLegend, USA. Cells were stained for 30 min at 4 °C, 
and subsequently washed with FACS buffer. To exclude dead cells Zombie Aqua Fixable Viability Kit 
(#423102, 1:100, BioLegend) was added. Acquisition was performed on a CytoFLEX (Beckman). Data 
was analyzed using FlowJo software, version 10.8.1 (TreeStar). Gates were drawn by using Fluorescent 
Minus One (FMO) controls.
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Statistical analysis of flow cytometry data
Data analysis and graph generation was performed using GraphPad Prism 9 (GraphPad Prism Software 
Inc). Paired comparisons between two groups were performed using Wilcoxon matched-pairs signed 
rank test. Differences of more than two paired groups were assessed using repeated measures one-
way ANOVA test, followed by post-hoc Šidák’s multiple comparisons correction. A p-value <0.05 was 
considered statistically significant. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001.

Graphical illustrations
All graphical illustrations were created with BioRender.com.
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in tumor-infiltrating 
leukocyte activation

https://www.​ncbi.​
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GSE197543

NCBI Gene Expression 
Omnibus, GSE197543

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier
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Poidinger M, de 
Magalhães J, Larbi A

2019 RNA-Seq profiling of 
29 immune cell types 
and peripheral blood 
mononuclear cells

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE107011

NCBI Gene Expression 
Omnibus, GSE107011
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Author(s) Year Dataset title Dataset URL Database and Identifier

Klemm F, Maas RR, 
Bowman RL, Kornete 
M, Soukup K, Nassiri 
S, Brouland J-P, 
Iacobuzio-Donahu 
CA, Brennan C, Tabar 
V, Gutin PH, Daniel 
RT, Hegi ME, Joyce 
JA

2020 Interrogation of the 
Microenvironmental 
Landscape in Brain Tumors 
Reveals Disease-Specific 
Alterations of Immune Cells

https://​joycelab.​
shinyapps.​io/​
braintime/

Joyce Lab Brain 
Tumor Immune Micro 
Environment, Klemm et al., 
Cell2020

Antunes AR 2020 Single-cell profiling 
of myeloid cells in 
glioblastoma across species 
and disease stage reveals 
macrophage competition 
and specialization

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE163120

NCBI Gene Expression 
Omnibus, GSE163120

Müller et al. 2017 Single-cell profiling maps 
the spectrum of crosstalk 
between glioma cells 
and tumour associated 
macrophages

https://www.​omicsdi.​
org/​dataset/​ega/​
EGAS00001002185

OmicsDI, 
EGAS00001002185

Neftel et al. 2019 Single cell RNA-seq 
analysis of adult and 
paediatric IDH-wildtype 
Glioblastomas

https://www.​ncbi.​nlm.​
nih.​gov/​geo/​query/​
acc.​cgi=​GSE131928

NCBI Gene Expression 
Omnibus, GSE131928
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