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GENETICS

A colourful duplication
A genetic duplication event during evolution allowed male wood tiger 
moths to have either yellow or white patterns on their wings.

VIOLAINE LLAURENS

The beautiful patterns found on the wings of 
moths and butterflies can provide important 
insights into adaptive evolution (Orteu 

and Jiggins, 2020). Natural selection exerted 
by predators, and sexual selection exerted by 
females, have led to the emergence of an incred-
ible diversity of new colours and patterns (Briolat 
et  al., 2019; Robertson and Monteiro, 2005). 
While some of the genes involved in this diver-
sification have recently been identified (Van’t 
Hof et al., 2016; Livraghi et al., 2021), it is still 
unclear whether the emergence of new colours 
and patterns is generally driven by similar sets of 
genes or by the evolution of new ones.

Within some species, individuals can have 
strikingly different colour patterns on their 
wings. For instance, male wood tiger moths 
can have either yellow or white hindwings, with 
both types of males usually occurring within the 
same geographical location (Figure 1A). Under-
standing the genetic mechanisms that allow 
different coloured individuals to co- exist within a 
population – a phenomenon called colour poly-
morphism – can help identify how new traits 
emerged over the course of evolution (Llau-
rens et al., 2017). Now, in eLife, Chris Jiggins, 
Johanna Mappes and co- workers – including 
Melanie Brien (University of Helsinki) and Anna 

Orteu (University of Cambridge) as joint first 
authors – report which genes determine whether 
a male wood tiger moth will develop white or 
yellow hindwings (Brien et al., 2023).

Like detectives working on a complex case, 
the team patiently gathered several lines of 
evidence to find the genetic variations respon-
sible for this colour polymorphism. By crossing 
yellow females with white males, they were able 
to identify a region of the genome that is asso-
ciated with colour differences in male offspring. 
This region contains 21 genes, including four 
from the yellow gene family, and is a different size 
in yellow and white males. In white males, this 
part of the genome consists of a large duplicated 
area which contains both a full- length copy and 
truncated copy of the yellow- e gene. Brien et al. 
hypothesized that the truncated gene is respon-
sible for the white phenotype in the wood tiger 
moth, and named the suspected gene valkea, the 
Finnish word for white.

Next, Brien et al. studied the genes expressed 
in the wings of caterpillars and pupae before they 
grow into adult wood tiger moths. Several genes 
were found to be differentially expressed in the 
white and yellow moths: as expected, valkea was 
only turned on in white males. Interestingly, the 
full- length copy of the yellow- e gene was also 
overexpressed in the wings of the white males 
during this phase of development.

To confirm that valkea controls wing colour, 
Brien et al. introduced a ‘guide’ that allowed the 
gene editing tool CRISPR- Cas9 to specifically 
modify the DNA sequence of the valkea gene. 
More than 1000 eggs from white moths were 
injected with the valkea- specific guide, but only 
six individuals reached adulthood, with four out 
of five male adults developing partially yellow 
hindwings (Figure 1B). Unfortunately, the guide 
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also targeted the full- length copy of the yellow- e 
gene in addition to valkea, making it difficult 
to determine the respective role each of these 
genes play in colour polymorphism.

The findings of Brien et al. suggest that the 
hindwing colour of male wood tiger moths is 
determined by genes from the yellow family, 
which are known to regulate wing colour in 
other insects (Wittkopp et al., 2002). This high-
lights how the diverse range of colour patterns 
seen in winged insects are determined by only a 
small number of genes (Zhang et al., 2017). The 
results also confirm the important role of gene 
duplication in driving the evolution of new traits 
(Martin and Reed, 2010).

The re- use and duplication of the yellow- e 
gene can be interpreted as evolutionary tinkering 
(Jacob, 1977). The tinkering of such a small set of 
genes demonstrates how a few genetic variations 
can generate such a striking diversity of pheno-
types. Nevertheless, the small set of genetic vari-
ations that can be targeted by selection also exert 
strong constraints on adaptive evolution, poten-
tially limiting the range of colours and patterns 
that can emerge over the course of evolution.

Distinguishing the respective roles of similar 
genes is challenging. The work of Brien et al. is a 
promising step in investigating the exact changes 
within and among gene copies that led to indi-
vidual members of a species developing one trait 

or another. This type of work on polymorphism 
could be combined with research investigating 
how gene duplications impact the evolution 
of phenotypes between different species. The 
results of these studies could highlight the 
different evolutionary paths responsible for the 
diverse colours and patterns seen on the wings 
of moths and butterflies.
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Figure 1. Finding the gene responsible for colour polymorphism in wood tiger moths. (A) The proportion of 
male wood tiger moths that have yellow or white hindwings varies between geographical locations. For instance, 
40–70% of males living in Finland and 97% of males living in Estonia have white hindwings, whereas all male 
moths in Scotland have yellow hindwings. (B) To investigate if the gene valkea was responsible for this colour 
polymorphism, Brien et al. used the genetic tool CRISPR- Cas9 to modify its sequence in wild- type (wt) moths with 
white hindwings (top left). This caused the mutant males to display yellow instead of white on the back (bottom 
left) and front (bottom right) of their hindwings, similarly to wild- type yellow moths (top right). The forewings of the 
genetically modified moths were also more yellow than wild- type white males, which is likely due to the CRISPR- 
Cas9 modification also introducing a mutation in to the full- length copy of the yellow- e gene.

Image credit: Adapted from Figure 1 and Figure 4 of Brien et al., 2023.
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