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The role of heterochronic gene 
expression and regulatory architecture in 
early developmental divergence
Nathan D Harry, Christina Zakas*

Department of Biological Sciences, North Carolina State University, Raleigh, United 
States

Abstract New developmental programs can evolve through adaptive changes to gene expres-
sion. The annelid Streblospio benedicti has a developmental dimorphism, which provides a unique 
intraspecific framework for understanding the earliest genetic changes that take place during 
developmental divergence. Using comparative RNAseq through ontogeny, we find that only a small 
proportion of genes are differentially expressed at any time, despite major differences in larval 
development and life history. These genes shift expression profiles across morphs by either turning 
off any expression in one morph or changing the timing or amount of gene expression. We directly 
connect the contributions of these mechanisms to differences in developmental processes. We 
examine F1 offspring – using reciprocal crosses – to determine maternal mRNA inheritance and the 
regulatory architecture of gene expression. These results highlight the importance of both novel 
gene expression and heterochronic shifts in developmental evolution, as well as the trans-acting 
regulatory factors in initiating divergence.

eLife assessment
This important study examines the extent to which distinct developmental pathways that result in 
alternative morphs correlate with transcriptome differences in a marine annelid, Streblospio bene-
dicti. The strengths of the study include the experimental design and dense temporal sampling, 
which together provide convincing evidence that the two morphs can be clearly distinguished at 
the transcriptome level, despite relatively modest overall differences. The work will be of particular 
interest to students of the evolution of development.

Introduction
Small changes in development can result in vast morphological differentiation and divergence. 
Through the history of evolutionary developmental biology, researchers have proposed that changes 
in the timing of traits during development can produce most morphological changes (deBeer, 1930; 
Gould, 1985; Dobreva et al., 2022). Though this theory has been further refined in the field since 
Haeckel first coined the term ‘heterochrony’ in development (1875), the timing of developmental 
changes remains a prominent mechanism of diversification (Wray and McClay, 1989; Wray and Raff, 
1991; Smith, 2002; Smith, 2003). At the molecular level, changes in gene expression timing (heter-
ochronic genes) or expression amount (heteromorphic genes) can underlie major morphological 
differences (Erwin and Davidson, 2002). However, these heterochronic shifts are usually investigated 
on a per-gene basis to reveal the extent that morphological change is achieved through gene expres-
sion perturbation (as reviewed in Dobreva et al., 2022). Overall, the extent that heterochronic gene 
expression contributes to developmental differences at the molecular level has not been quantified. 
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Therefore, the underlying regulatory changes that result in gene expression changes also remain 
elusive. In this study we quantify total gene expression over sequential developmental time to deter-
mine the extent that gene expression differences occur between divergent developmental and life-
history modes. Furthermore, we use genetic crosses between the developmental morphs to quantify 
the mode of regulatory change that is responsible for these differences.

Changes in gene expression (heterochrony and heteromorphy) are now well established drivers 
of both interspecific (King and Wilson, 1975; Carroll, 1995; Wray et al., 2003; Fay and Wittkopp, 
2008) and intraspecific (López-Maury et al., 2008; Hamann et al., 2021) differentiation. Knowing 
the extent that these biological processes are at play is fundamental to understanding developmental 
evolution (Gould, 1985; Raff and Wray, 1989; Smith, 2003; Vaglia and Smith, 2003; Carleton et al., 
2008; Gunter et al., 2014; Willink et al., 2020). While somewhat subtle differences in gene expres-
sion timing and amount can drive morphological changes, morph-specific genes – where genes are 
simply turned on or off, and possibly gained or lost in one lineage – are also possible (Hilgers et al., 
2018; Luna and Chain, 2021). Despite the importance of these mechanisms for developmental and 
evolutionary change, long-standing questions in the field remain: What are the extents to which modi-
fications of gene expression change developmental programs and morphological outcomes? What 
are the molecular factors that regulate these changes and how do they act?

One difficulty in determining the genetic basis of gene expression shifts is that it typically involves 
parsing developmental programs across divergent taxa, and therefore requires querying numerous 
genetic differences that could have arisen by either selection or drift over millions of years. Creating 
hybrids across divergent species presents its own difficulties. Here, we determine the extent that gene 
expression differences contribute to developmental divergence over small evolutionary timescales 
using a model with two developmental modes within a single species. We examine the prevailing 
prediction that heterochrony is the primary driver of morphological change and developmental evolu-
tion (Raff and Wray, 1989; McNamara, 2012; Dobreva et al., 2022). While numerous interspecific 
gene expression studies have assessed the occurrence of both heterochronic genes and morph-specific 
genes (Ruvkun and Giusto, 1989; Capra et al., 2010; Simola et al., 2010; Schmitz et al., 2020), no 
study has assessed the contributions of these mechanisms to producing differences in developmental 
processes. By using an intraspecific model of developmental divergence where genetic crosses are 
possible, we determine the architecture of regulatory differences that drive gene expression and ulti-
mately life-history differences.

Results
Study system and embryology
We compare the gene expression over developmental time for two morphs of a marine annelid, 
Streblospio benedicti, which has an intraspecific developmental dimorphism. There are two distinct 
developmental morphs which differ in their egg size, embryological development time, larval ecology, 
and morphology. These are either obligately feeding planktotrophic (PP) larvae or non-feeding lecith-
otrophic (LL) larvae. Despite these developmental differences, as adults they are morphologically 
indistinguishable outside of some reproductive traits and occupy the same environmental niches. The 
larval traits are heritable, meaning the differences in development are genetic and not plastic (Levin 
and Creed, 1986). The two morphs have been characterized extensively in terms of life-history and 
genetic differences (Levin, 1984; Levin and Creed, 1986; Gibson et al., 2010; Zakas and Rockman, 
2014; Zakas et al., 2018; Zakas, 2022). Intriguingly, crosses between the morphs are viable with no 
obvious fitness effects, and these F1 offspring can have intermediate larval traits compared to the 
parentals (Levin and Creed, 1986; Zakas, 2022). Embryological differences between the two types 
(and thus egg sizes) have been briefly described (McCAIN, 2008) but here we detail the full time 
course of embryogenesis from the one-cell embryo through the larval phase in detail for both morphs, 
and present data from reciprocal F1 crosses (PL or LP) between the morphs in both directions across 
the same developmental period.

Spiralian animals have a famously conserved pattern of embryological cleavage (reviewed in Lyons 
et al., 2012), so unsurprisingly we find the two morphs proceed through the same developmental 
stages despite starting from eggs of different sizes (8× volume difference). Despite the similarity 
in embryo morphology, there are some notable differences between the two morphs: the absolute 

https://doi.org/10.7554/eLife.93062
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time between each stage is shifted such that the LL embryos take longer to reach an equivalent larval 
stage, which is expected as larger, more yolky cells can take longer to divide (McCAIN, 2008). At the 
swimming larval stage there are some notable morphological and behavioral differences (reviewed 
in Zakas, 2022, Figure 1), notably the PP larvae are obligately feeding and have feeding structures, 
while the LL are not. While the embryological stages may not be morphologically different other than 
size, it is reasonable to expect that they could be expressing different genes or changing the relative 
timing of expression to produce the morphological and behavioral differences seen in the larvae.

Total RNA expression analysis
We measured total gene expression from the six developmental stages using RNAseq (Figure 2) with 
at least four biological replicates per morph at each stage (Figure 2A). Using the full dataset, the first 
two principal component analysis (PCA) show most of the variance in total gene expression is due to 
developmental stage and morph (PC1; Figure 2B). As expected the LL individuals appear to tran-
scriptionally fall behind the PP offspring at each morphologically defined, equivalent developmental 
stage. We expect this pattern as LL offspring develop more slowly to reach these first developmental 
stages but reach the juvenile stage more quickly in absolute time than PP offspring, which develop in 
the water column for a longer period (Figure 1). Notably, pre-gastrulation development is distinctly 
separated from post-gastrulation by the second principal component.

As expected for an intraspecific comparison, most genes are conserved, having the same expres-
sion levels at all stages in both morphs. Only 36.2% of all expressed genes are significantly differen-
tially expressed (DE) between PP and LL at any stage in this dataset. We find that early in development 
over a third of these DE genes are significantly different between the morphs, but these differences 
tend to be quite small in magnitude. At gastrulation the number of significant genes decreases to 
less than 5% of the total DE genes, however these remaining expression differences are much larger 
in magnitude (Figure 2C). It appears that the two morphs are more functionally distinct during early 

Figure 1. Embryology and development of S. benedicti. (A) Timeline of early development of the two morphs. The ‘swimming’ stage is the onset of 
swimming ability in both morphs. The ‘1-week’ old stage (7 days post fertilization) occurs approximately 1–4 days following larval release from maternal 
brood pouches under natural conditions. Planktotrophic (PP) larvae at this stage were not fed. Stages used in this study are marked with a red dot. (B) 
Adult male. The adults of both morphs are indistinguishable outside of reproductive traits. (C) Table of larval traits. Lecithotrophic (LL) offspring are 
facultatively feeding, meaning that feeding is not obligatory, but they are capable of feeding (Pernet and McArthur, 2006). Gut formation from Pernet 
and McHugh, 2010, where the three-band stage is our swimming stage and the five-band stage is shortly before our 1-week stage.

https://doi.org/10.7554/eLife.93062
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Figure 2. Differentially expressed (DE) genes across six developmental stages in the two developmental morphs. (A) Sequenced libraries. Colors 
indicate morphs: green = PP (planktotrophic), orange = LL (lecithotrophic), purple = (F1) PL, pink = (F1) LP. Numbers in boxes are the sample’s 
sequencing depth in million reads. Total number of replicates for each time point are in bold. Samples for which all six stages were collected from 
the same cross are indicated as ‘complete’ with a check mark. (B) Principal component analysis of PP and LL samples. PC1 represents developmental 
time, whereas PC2 separates pre-gastrulation from post-gastrulation (C) DE between morphs over development. Black line is the percentage of total 
expressed genes that are DE at each stage, ribbon displays the relative mean and median log2 fold-change between morphs for those genes that are 
DE.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Read mapping rate between samples.

Figure supplement 2. Number of genes expressed at each stage in planktotrophic (PP) and lecithotrophic (LL) samples.

https://doi.org/10.7554/eLife.93062


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology | Genetics and Genomics

Harry and Zakas. eLife 2024;13:RP93062. DOI: https://​doi.​org/​10.​7554/​eLife.​93062 � 5 of 21

development, likely because of the different metabolic requirements imposed on them by the differ-
ences in maternal egg provisioning (Moran and McAlister, 2009; Zakas, 2022; Harry and Zakas, 
2023).

Differential expression analysis
We use our RNAseq time course dataset to quantify the extent that modifications to gene expression 
timing and amount contribute to developmental differences. We define heteromorphic genes as 
homologous genes whose expression differs significantly between larval morphs, but the pattern of 
expression (expression profile) does not change (Figure 3). The significant difference in heteromor-
phic genes could be at only one or a few discrete time points. Heterochronic genes are those whose 
overall expression pattern and timing change between the developmental morphs, as discussed in 
the clustering algorithm below. We categorize genes that are only expressed in one morph over the 

Figure 3. Classifications with examples of gene expression categories. Functional heterochrony is a change in the developmental stage at which a 
particular pattern of gene expression appears instead of a difference in absolute time.

https://doi.org/10.7554/eLife.93062
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full time course of development as morph-specific genes. These genes are specific to only one devel-
opmental type.

To differentiate heterochronic shifts in gene expression from heteromorphic ones, we clustered all 
gene expression patterns from PP into a representative set of expression profiles using Mfuzz (v2.60.0) 
(no additional clusters were found when using LL). We selected six clusters based on the criteria that 
the average correlation between cluster pairs increased with each additional cluster, such that the 
final clusters generated sufficiently represented the diversity of gene expression patterns (Figure 4, 
Figure 4—figure supplement 1). We then assigned each gene to a cluster in the PP and LL datasets 
independently. A gene’s expression is considered heterochronic when it appears in one cluster for PP 
and a different cluster for LL.

We identified 354 genes from our set of DE genes (45.9%) where both the PP and LL expression 
pattern matched the same cluster. (These are heteromorphic genes and are significantly DE in at 
least one developmental stage, but do not have different profiles of expression between PP and 
LL.) Approximately half of these are assigned to clusters 2 and 5. Cluster 2, which shows a pattern 
of maternal transcript degradation with no subsequent zygotic expression, is likely to contain genes 
associated with embryogenesis that are shared by both morphs. Cluster 5 shows a pattern of largely 
post-gastrulation zygotic gene expression. Based on this pattern, these genes are likely to be associ-
ated with shared larval features. Although there are some late-appearing heteromorphic genes that 
are associated with discrete larval differences: ‘chitin catabolic processes’, for example, are overex-
pressed in PP at the swimming stage (when they grow swimming chaetae) and are lowly expressed in 
LL which do not make swimming chaetae (see Supplementary file 1).

Figure 4. Six gene expression profiles representing the patterns of expression. The number of conserved genes and heteromorphic genes that match 
each cluster is listed to summarize overall trends in expression patterns that appear mostly similar in both morphs. Clusters 2 (early expression) and 5 
(late expression) represent the most genes.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Cluster number optimization.

Figure supplement 2. Clusters with all genes shown plotted on top of cluster core genes.

https://doi.org/10.7554/eLife.93062
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Next, we identified heterochronies, which we define as a gene that switches clusters – and there-
fore expression profiles – between PP and LL. There are 224 heterochronic genes, which is 29% of 
DE genes. As we reduced the complexity of the entire gene expression dataset into six clusters, 
some genes with similar profiles in both PP and LL were ultimately assigned to different clusters, 
generating a false positive. To ensure against these false positives, we filtered genes by Pearson 
correlation between sample means in PP and LL. Genes with a correlation r>0.85 were not counted 
as heterochronic.

Heterochronies are a change in the gene expression profile depending on developmental morph, 
but how different are the patterns of heterochronic changes? Parsimoniously, we would expect most 
heterochronies to have a similar overall shape that is simply shifted by a stage or two (like a switch 
from cluster 1 to cluster 2; Figure 4). Examining the six clusters above, it is obvious that some expres-
sion profiles have similar trajectories (clusters 5 and 6, for example, both show increasing expression 
post blastula), while others are essentially inverted expression patterns (clusters 1 and 4 for example). 
Clusters are ordered in a correlation heatmap (Figure 5A) from early gene expression to late gene 
expression. We find that most genes that switch expression profiles between PP and LL do so between 
the most similar clusters, and thus are near the diagonal. But where we see opposite profiles, the trend 
is early expression in PP genes compared to LL (top left corner). This is expected given the delay in 
embryogenesis for LL compared to PP. That said, many genes are expressed earlier in LL compared to 
PP (bottom right orange triangle in Figure 5A) but most of these are relatively small shifts.

We quantify the magnitude of change in gene expression between PP and LL independently of the 
cluster assignment by estimating the Pearson correlation directly. This shows that most heterochronies 
are minor changes in the timing of gene expression. There is a left-tailed distribution indicating that 
a few genes have a large difference in expression patterns (like a profile inversion) between PP and 
LL (Figure 5B).

Gene ontology (GO) enrichment tests show heterochronic genes that are expressed earlier in PP 
are functionally enriched for mesoderm specification, cell fate specification pathways, and several 
organogenesis pathways (others include BMP signaling, mesoderm specification, intestinal epithelial 
cell differentiation, and gene silencing (see Supplementary file 1)). Notably, heterochronic genes 
which are shifted earlier in LL are enriched for many metabolic functions. The shift in expression of 
metabolic genes is consistent with the life-history and feeding differences between the larvae, and it 

Figure 5. Magnitude of expression profile changes. (A) Number of switches between each cluster. Clusters are arranged on the axes in order from 
high early developmental expression (left/bottom) to high late developmental gene expression (right/top). The diagonal represents genes which 
are assigned to the same cluster in both planktotrophic (PP) and lecithotrophic (LL) samples, boxes near the diagonal are switches between similar 
cluster profiles, and boxes furthest from the diagonal are extreme cluster switches. Genes expressed earlier in PP are above diagonal and earlier 
in LL are below. (B) Density plot of genes correlations between PP and LL. Heterochronic genes are yellow and heteromorphic genes in blue. Most 
heterochronies are minor changes in gene expression timing but the left-tailed distribution shows that few genes have large differences in timing.

https://doi.org/10.7554/eLife.93062
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may be that most of what is differentiating a PP and LL larvae is the onset of feeding and gut-related 
developmental programs.

Morph-specific genes, by definition, have no expression in one morph and cannot be assigned to 
a cluster. To quantify morph-specific genes we use a data-adaptive flag method (DAFS) to calculate 
expression thresholds for each sample, below which genes are not considered as expressed. Using 
this approach, we identify 195 genes (25.3% of DE genes) which are only expressed in one morph 
(Figure 6). We find considerably more P-specific genes (150 genes in PP vs 45 genes in LL), which tend 
to be expressed in later developmental stages. These include genes which code for proteins such as 
Fibropellin, Forkhead-box, Crumbs-like, Notch-2, and many zinc-finger proteins. While the function of 
these genes during development remains to be determined, it is possible that they maintain PP-spe-
cific larval traits.

Expression of functionally distinct categories of genes may evolve by different mechanisms. Morph-
specific genes may be involved in very different functional processes than heterochronic genes in this 
system. GO enrichment tests for morph-specific genes expressed in PP found a few functions related 
to cell fate specification and signaling pathways (GO enrichment tests for biological process, p<0.05; 
no significant functional enrichments for LL-specific genes), but a distinct lack of genes involved in 
metabolic processes. This is because metabolic pathways genes shifted earlier in the development of 
LL offspring are still required in both offspring morphs. But the morph-specific genes are not required 
for development and may be modified by different evolutionary mechanisms. These findings also 
imply that PP embryos require a few specific cell types to produce a PP larval form that are reduced 
or lost in LL.

Overall, we find that heteromorphic changes in expression accounts for most gene expression 
differences, which is expected as this is the smallest change in gene expression of the three catego-
ries. Gene expression need only be significantly different at one stage to fit this category, and such 
differences may not necessarily translate into biological differences in development. Morph-specific 
and heterochronic changes make up very similar proportions of the remaining differences (Figure 7). 

Figure 6. Morph-specific gene expression by stage. These genes are never expressed in the opposite morph, but may be expressed at one to six 
stages within a morph. Planktotrophic (PP) is green and lecithotrophic (LL) is orange.

https://doi.org/10.7554/eLife.93062
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This demonstrates that while true heterochronies are common, they are not the main driver of gene 
expression differences in development.

Gene expression of genetic crosses
Because we are using an intraspecific comparison, we can extend our analysis to understand the regu-
latory architecture behind these expression differences. We included RNAseq time course data for 
offspring from reciprocal crosses between the two morphs, meaning PP and LL parents were crossed 
in both directions alternating the role of the mother. Cross of the two developmental morphs to 
produce F1 offspring, which can have a range of intermediate traits, but typically closely resemble their 
mother’s phenotype (Zakas and Rockman, 2014). This is particularly useful to disentangle maternal 
effects, as both F1s (PL and LP; mother’s genotype is listed first) are heterozygotes, but they originate 
from different egg sizes and mothers with different genetic backgrounds. F1s allow us to identify the 
regulatory architecture underlying DE, and to assess the impact of maternal background on gene 
expression.

F1s have a general pattern of intermediate expression values but have more variability within repli-
cates and clear cases of outliers (Figure 8A, Figure 8—figure supplement 1). They have considerably 
more variability across replicates, and some genes are misexpressed – where the F1 expression value 
is outside the range of the parental difference (Figure 8A). Misexpression is reported in hybridization 
studies and is thought to be the result of epistatic interactions between divergent genomes that 
reduce the fitness of offspring contributing to sympatric speciation (Norrström et al., 2011; Moran 
et  al., 2021). Whether misexpression affects the fitness of the embryos in S. benedicti is unclear, 

Figure 7. Distribution of the 772 genes with differentiated expression between morphs. Heteromorphy makes up nearly half of all differentiated genes, 
while heterochrony and morph-specific genes split the remainder nearly equally.

https://doi.org/10.7554/eLife.93062
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Figure 8. Differential gene expression including F1 offspring. (A) Principal component analysis (PCA) of the top 500 most variable genes, including F1 
(PL or LP) offspring. F1s have more misexpression in early stages but converge after the swimming stage and become intermediate to planktotrophic 
(PP) and lecithotrophic (LL) samples. (B) Plot relating F1 expression back to parental types. Dots indicate the number of DEGs between PP and LL 
samples at each stage. Purple bars represent the number of those DEGs for which the F1 gene expression is more like its maternal parent, and gray bars 
represent the number of those DEGs for which the F1 gene expression is more similar to its paternal parent.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Principal component analysis (PCA) of all gene expression labeled by family (crossID).

Figure supplement 2. Genes with parental effects.

https://doi.org/10.7554/eLife.93062
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although F1s typically develop normally in the lab and no systematic reduction in viability has been 
observed. In previous studies of gene expression in eggs of the two morphs, we saw a similar pattern 
where F1 eggs typically have intermediate expression values compared to parental genotypes, but 
high levels of misexpression (Harry and Zakas, 2023). For genes that are DE between PP and LL 
samples, we find that F1 gene expression patterns are split between those matching the maternal 
and paternal gene expression pattern, with slightly more genes matching the paternal expression at 
each stage (Figure 8B). We expect most transcripts in the first and second stages of development 
to be maternally derived, so the high proportion of genes matching paternal expression patterns is 
somewhat unexpected.

We find that most genes (>8000 genes on average, out of 14,327 genes expressed) have extremely 
conserved expression patterns among PP, LL, and F1 embryos at each developmental stage. The high 
variability and misexpression of F1s negatively impacts our statistical power by introducing variation 
and results in fewer genes being confidently assigned gene regulatory mechanisms. As a result, almost 
no genes can be identified as having a dominant or additive inheritance pattern, while 150 genes are 
identified as overdominant over the course of development. Notably, very few morph-specific genes 
are expressed at a significant level in either F1s (between 0 [PP] and 3 [LL] genes), strongly suggesting 
negative regulation of expression that acts in trans for these genes.

Regulatory architecture
We leverage the F1 offspring to dissect the regulatory architecture underlying developmental gene 
expression differences; we use allele-specific expression patterns in F1 offspring – tracking the expres-
sion of the maternal or paternal allele – to assign gene regulatory differences as either cis- or trans-
acting modifications (or both; Davidson and Peter, 2015). Typically this approach is used in hybrids 
(Wittkopp et al., 2004; Tirosh et al., 2009; McManus et al., 2010; Coolon et al., 2014; Wang et al., 
2020), but we have adapted it to intraspecific F1 offspring to test whether early divergence is consis-
tent with predictions in the literature (Harry and Zakas, 2023).

We determine the regulatory architecture underlying DE by calculating P and L allele-specific 
expression in reads from F1 samples and assigned primary regulatory modes according to established 

Figure 9. Distribution of regulatory mode over time. The majority of regulatory changes act in trans, and compensatory changes emerge after 
gastrulation.

https://doi.org/10.7554/eLife.93062
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criteria (Wittkopp et al., 2004; Graze et al., 2009; Coolon et al., 2014; Wang et al., 2020). As 
this is an intraspecific comparison with little fixed genomic differences between the morphs, not all 
genes have alleles that can be assigned parentage; however, a set of ~2000 DE genes have morph-
differentiating SNPs enabling the parental assignment of F1 transcript reads. The regulatory modes of 
these DE genes are assigned as ‘cis’, ‘trans’, ‘cis+trans’, ‘cis × trans’, or ‘compensatory’ (see Supple-
mentary file 2 for formal criteria). Of this set, misexpression in F1 offspring causes many genes to 
receive ambiguous assignments. As a result, only 143 genes have informative regulatory mode assign-
ments. While this is a small number, we expect that the genes we can classify are proportionally repre-
sentative of the remaining regulatory architecture.

The primary mode of regulatory change throughout development is trans-acting (Figure  9). 
No differences are caused by purely cis-acting regulatory modifications, though we did find some 
cis+trans and cis-×-trans interactions. We found that the number of genes with compensatory regula-
tory modifications increases sharply after gastrulation, indicating that gene expression may be more 
tightly controlled past that point. Studies across Drosophila species, for example, have indicated that 
maternal effects are regulated differently than zygotic effects, but in this case there are larger trans-
acting factors in early (maternally controlled) developmental stages (Cartwright and Lott, 2020). 
We do not see such a clear effect; trans-acting factors make up most of the regulatory architecture 
throughout development. Interestingly, this result is different from previous studies of egg mRNA 
expression of this species, where cis- and trans-regulatory modifications were found at similar rates 
for maternal gene expression (Harry and Zakas, 2023). Comparison across the egg (maternal) and 
embryo (maternal and zygotic) regulatory landscape shows greater cis-acting regulation in the mater-
nally expressed genes. These results demonstrate the possibility that maternal and zygotic gene regu-
latory architecture evolve through distinct mechanisms and on separate timescales.

We tested the possibility that the reciprocal F1s generated in the study (for the three stages that 
have both LP and PL samples) might have different regulatory mode changes due to parental effects. 
Splitting our analyses into separate PL and LP parental arrangements did not yield significantly 
different results, but treating them separately meant fewer genes could be assigned a mode.

Figure 10. Genes with parental effects. Early developmental stages have significantly more genes, likely due to maternal transcript differences. Maternal 
transcripts are likely degraded around the gastrula stage and any remaining parental effects observed are likely due to other mechanisms.

https://doi.org/10.7554/eLife.93062
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We also investigated parent-of-origin effects on gene expression using F1s. These occur when an 
allele’s expression is at least partially dependent on which parent contributed that allele. For instance, 
maternal effects may involve polymorphisms that affect the development of an offspring only when 
contributed as part of the maternal genome (and which impose no developmental variation when 
contributed by the paternal genome). These effects are a form of epigenetic inheritance which can 
allow for complex, adaptive maternal-zygote interactions such as certain metabolic genes being 
specifically activated in the offspring to match the nutrient content of its mother’s egg. Due to animal 
constraints where LL mothers produce far fewer offspring per clutch (10–40 on average), we were 
only able to collect samples for F1 offspring with L mothers (LP) for three developmental stages (16-
cell, gastrula, and swimming). All six time points were sampled for F1s with PP mothers (PL). To find 
parental effects (maternal or paternal), we conducted a differential expression analysis contrasting the 
PL samples to the LP samples. Tests for differential expression show that many significant differences 
in gene expression between the F1 morphs arise at early stages (ostensibly due to the presence of 
maternal transcripts inherited through the egg) and then drop sharply after gastrulation (Figure 10; 
Figure 8—figure supplement 2). This indicates that while a few parental effects on gene expression 
may persist throughout development, most parental effects are limited to early embryogenesis, which 
is consistent with expectations for maternal transcription degradation.

Discussion
By comparing gene expression at the relative embryological stages of the two morphs, we determine 
the extent that expression changes contribute to life-history differences. LL offspring take longer to 
reach the same embryonic developmental stages as PP in absolute time, although the stages are 
similar, and morphological differences are not observed until later development. Numerous morpho-
logical and life-history differences occur between the morphs at the swimming larval stage (reviewed 
in Zakas, 2022), but here we detail differences in the embryology as well. Evolutionarily, we expect 
that LL is the more derived developmental mode, which likely arose from a maternal increase in egg 
size followed by adaptive changes in the genome that increased LL fitness (reviewed in Zakas, 2022). 
This generates predictions about the types of genes that we expect to change in patterns and magni-
tude. For example, we may expect that genes associated with feeding processes, growth, and cell 
cycle and specification initiate faster in the smaller, PP embryo (Wray and Lowe, 2000; Strathmann, 
2000; Lowe et al., 2002; Segers et al., 2012; Figueroa et al., 2021). The non-obligatory-feeding 
LL larvae have a delay in mesoderm formation and through-gut development (Pernet, 2003; Gibson 
et al., 2010) so we would expect a delay in LL for mesoderm and gut specification, which we do see 
in the GO terms for the genes expressed earlier in PP.

The pattern of differential expression we observe over development – where numerous but 
small expression differences occur early followed by a few genes with large expression differences 
(Figure 2C) – is consistent with the importance of gastrulation to canalize development. Gastrulation 
is the ‘phylotypic stage’ at which different phyla are the most morphologically and molecularly similar 
to each other during their development (Slack et al., 1993; Duboule, 1994; Richardson, 1995; Irie 
and Kuratani, 2011; Irie and Kuratani, 2014; Macchietto et al., 2017). Furthermore, adults of both 
types are extremely similar, so we would not expect persistent, large-scale gene expression differ-
ences at these late stages. The few genes that remain significantly DE post gastrulation are candidates 
for maintaining morphological and life-history differences between the morphs. (Chitin biosynthesis 
genes, for example, remain significantly different at later stages, and upregulated in PP.) However, 
these genes’ expression levels might converge much later in development as both morphs reach 
adulthood.

We see similar amounts of heterochronic and morph-specific genes. Heterochronic genes, and 
their pathways, are ideal candidates for modifying larval and life-history traits. Morph-specific genes 
are of particular interest in S. benedicti as previous genetic and transcriptomic work suggests there 
is very little differentiation of the two morphs at the genomic level (Zakas et al., 2018; Zakas et al., 
2022). While it is possible that genomic rearrangements (Janssen et al., 2001), gene duplications 
(Long et al., 2003), or co-options (Linksvayer and Wade, 2005) underlie the expression of morph-
specific genes, given previous findings of limited total sequence differentiation between morphs 
(Zakas et al., 2018; Zakas et al., 2022), we find these possibilities unlikely. The morph-specific genes 
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are more likely driven by regulatory differences in enhancing or silencing elements (as in Zhao et al., 
2017; Matlosz et al., 2022).

We expect that incipient species that are early in their divergence have more genetic regulatory 
changes due to trans-acting factors; this is because trans-acting factors may be more pleiotropic 
and initiate numerous developmental changes parsimoniously. Essentially a few trans-acting regula-
tory modifications, such as changes to transcription factors, could account for most of the develop-
mental and phenotypic differences between morphs. As species divergence time increases, cis-acting 
elements can arise and refine gene expression of individual genes (Wittkopp et al., 2004; Coolon 
et al., 2014; Cartwright and Lott, 2020). These regulatory architecture trends have been reported 
in other species, such as the urchin Heliocidaris spp. where a PP and LL species have diverged in the 
same genus (Israel et al., 2016; Wang et al., 2020). However, no studies to date have examined this 
regulatory architecture in the context of the short evolutionary window of divergent morphs within the 
same species. This suggests the life-history differences we see in this early evolutionary divergence are 
driven by a few developmentally upstream trans-acting factors with pleiotropic effects.

We quantify the relative contribution of heteromorphic, heterochronic, and morph-specific gene 
expression pattern modifications in the evolution of a developmental dimorphism. We find that heter-
ochronic and morph-specific genes contribute similarly to gene expression differentiation. Addition-
ally, we find that the regulatory architecture of differential expression is predominantly trans-acting 
modifications, supporting the hypothesis that early gene expression evolution occurs by few, highly 
pleiotropic trans-acting regulatory modifications.

Methods
Animal rearing and sample collection
We use lab-reared male and female S. benedicti originally sampled from Newark Bay Bayonne, New 
Jersey (PP), and Long Beach, California (LL). All experimental procedures and growth incubations 
are carried out at 20°C unless otherwise noted. To produce offspring for sampling, we crossed virgin 
females with one male for each test cross (Cross ID in Figure 2A). PP offspring were fed small quan-
tities of our lab’s standard feeding algae after the swimming stage had been reached to avoid star-
vation. As clutch sizes can be quite small, we took advantage of the multiple broods that can be 
produced by a single mating event. We used three to five consecutive broods per female where all 
offspring were full sibs. This is necessary as embryo number is limited (10–40 embryos per clutch for 
LL and 100–400 for PP) and 10–40 pooled embryos are required to produce sufficient input mRNA. In 
this study brood number and developmental stage are confounded within sample groups (Cross IDs).

Embryo timeline construction
To build a timeline of development, we removed embryos from the maternal brood pouch and 
observed development in a Petri dish in artificial seawater in an incubator at 20°C (previous work indi-
cates development is normal outside the brood pouch). We selected six distinct time points that we 
confirmed with cell counts (nuclei) using Hoechst: 16 cells, blastula (64 cells), and gastrula (124 cells). 
Time to each development stage was averaged over at least four clutch observations. Later embryo 
and larval stages were identified by morphological differences (appearance of ciliated band trocho-
phores and eye development). Six stages capture a broad scope of developmentally critical periods 
while having enough timing separation to be distinct (each embryonic time point was ~12 hr apart). 
Images were captured using a ×40 objective on a Zeiss Axio inverted microscope with an indicator for 
scale which was subsequently used to scale images to the same relative size in Figure 1.

RNAseq
Embryos were collected from a single female, and 10–40 were processed for total mRNA extraction 
at each time point. If the number of embryos was insufficient for all time points, we used multiple 
broods. We used a minimum of 20 LL embryos for stages 16-cell, blastula, gastrula, and 10 LL embryos 
for stages trochophore, swimming, 1 week. PP females have large clutches, so embryos were divided 
equally (~40 embryos/clutch) among the six stages. With this approach we could not collect all time 
points for the same females, but there are at least two complete sets and at least four replicates per 
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stage for each morph. The same sampling stages were used when collecting F1 samples in this exper-
iment (Figure 2A).

Embryo RNA extraction used the Arcturus PicoPure kit including the DNAse step. We used a 
Qubit RNA kit to measure RNA yields for pilot data, but once established we bypassed this step to 
maximize RNA yields. Libraries were constructed with the NEB UltraII Stranded RNA library prep kit 
(cat# E7760S) for Illumina. Libraries were sequenced on two lanes of 150 bp on the Illumina NovaSeq.

Sequencing read quality trimming and mapping
We used TrimGalore (cutadapt) (Martin, 2011) and FastP (Chen et al., 2018) for quality assessment 
and trimming. Reads were mapped to a reference of all transcript sequences (transcripts extracted 
with GFFread, Pertea and Pertea, 2020) that are annotated in the S. benedicti reference genome 
(Zakas et al., 2022) using Salmon 1.10 (Patro et al., 2017) using the default scoring parameters. The 
reference genome for S. benedicti is a chromosome-level assembly with >99% of genes occurring 
in the first 11 chromosomal scaffolds (Zakas et al., 2022). Individual sample transcript expression 
quantification estimates were summarized to the gene-level using the Tximport R package (Soneson 
et al., 2015).

Library diagnostics
As the S. benedicti genome is from P individuals (Zakas et al., 2022), we checked the mapping rate 
of P and L samples (as well as both F1s) at each developmental stage to ensure similar mapping rates 
(Figure 2—figure supplement 1). We calculated mapping by dividing the sum of expression estimates 
for all genes by the sequencing depth for each sample individually, and then averaging samples from 
each developmental stage by morph to produce an average mapping rate (Figure 2—figure supple-
ment 1). We find LL and PP mapping rates do not differ significantly (two-sided t-test; p=0.1118), nor 
do the F1 samples’ mapping rates differ from any other group (Figure 2—figure supplement 2). While 
this does not eliminate the possibility of mapping bias, these results indicate that missing data would 
not substantially change our results.

Samples which received fewer than 2 million total reads were excluded from further analyses since 
our expected sequencing depth was between 20 and 40 million reads (six samples total). Samples 
were normalized using the DESeq2 R package (Love et al., 2014) and expression estimates were 
transformed using the variance stabilizing transformation function to perform PCA using the function 
prcomp (R Development Core Team, 2020), which is plotted for the first two principal components 
with ggplot2 (Wickham, 2016; Figure 2B).

Differential expression
We used DESeq2 to determine significance in expression differences (Love et al., 2014) using the 
variable grouping method recommended by the DESeq2 manual. We used two factors for character-
ization: developmental stage and genotype (P, L, PL, LP) which generate a factor level for each stage-
Head2/genotype combination (i.e. ‘16-cell_Lecithotroph’) which we called ‘multiFactor’ for DESeq2 as 
‘design = ~multiFactor’. The Benjamini-Hochberg false discovery rate (FDR) algorithm was used with 
p-values between factor levels of ‘multiFactor’ to reduce the incidence of false positives for differen-
tial expression. Throughout this study, the threshold for significant gene expression differences is an 
FDR-adjusted p-value of 0.05 or less, and an expression fold-change greater than twofold.

Expression profile clustering
To summarize expression clusters we used the Mfuzz 2.58 R package (Futschik and Carlisle, 2005; 
Kumar and E Futschik, 2007). Clusters are based on mean expression estimates from P samples. 
Normalization was (DESeq2, Love et al., 2014), log2-transformed, and then filtered for genes with 
low variability/expression and standardized using the Mfuzz functions ‘​filter.​std’ and ‘standardize’, 
respectively. Mfuzz requires a priori cluster numbers. To capture the representative sample of expres-
sion patterns, we found the highest number of clusters for which Pearson correlations of pairs of 
cluster centroids (the single most cluster-representative gene for each cluster) did not exceed 0.85 
(r<0.85) for any pair of clusters. This resulted in six clusters. The fuzzifier coefficient (m) required by 
Mfuzz was estimated to be 1.71 by the function ‘mestimate’ (Futschik and Carlisle, 2005; Kumar and 
E Futschik, 2007). Following cluster generation with the P expression data, the L expression data was 
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mapped onto the clusters using the Mfuzz function ‘membership’ so both morphs could be compared. 
Clusters were plotted using the function ‘mfuzz.plot2’ (Figure 4, Figure 4—figure supplement 2).

Expression classification
To identify genes as heterochronic we first identify genes that have different expression patterns 
between the morphs and then filter those genes based on their Pearson correlation coefficients. 
Genes for which the PP and LL expression are on different clusters are categorized as heterochronic. 
Some of these genes fall onto different clusters but still have relatively similar expression profiles. 
Therefore, we also filter by a measure of the Pearson correlation coefficient. The threshold is based on 
the distribution of correlation coefficients of all PP to LL genes’ expression in the dataset (Figure 5B). 
Based on the distribution, a threshold of r<0.85 was selected to filter genes which would be classi-
fied as switching clusters but are similar enough in their expression between the two morphs to be 
removed. This filter disqualified 38 genes.

Morph-specific expression
To categorize morph-specific expression we use a gene expression thresholding approach. Spurious 
gene expression resulting in low levels of estimated expression (few RNAseq reads) is categorically 
and functionally distinct from robust gene expression (Hebenstreit et al., 2011). We establish mean-
ingful expression thresholds based on the assumption that genes with robust expression will have 
values which are normally distributed. Individual sample thresholds were calculated using a DAFS 
(George and Chang, 2014). Thresholds were used to identify genes which are expressed at signifi-
cant levels in only PP or only LL offspring. For example, if a gene is expressed above its threshold in 
three or more (out of five) P samples at one or more developmental stages and in no more than one 
LL sample at any developmental stage, then that gene was categorized as morph-specific (Table 1).

F1 expression time-series collection
We concurrently sequenced RNA libraries from F1 offspring (Figure 2A). We generated F1 offspring 
from reciprocal crosses P×L and L×P (both mother-father directions) using the same sample collection 
method as stated above. However, we only sequenced samples from three of the developmental 
stages for the F1s in the LP direction. All analyses were performed as above.

Mode of inheritance and F1 misexpression
Using F1 data, we classified the mode of inheritance for each gene according to established criteria 
and differential expression tests from DESeq2 (Coolon et al., 2014; Harry and Zakas, 2023; Wang 
et al., 2020). Genes which were significantly DE between reciprocal F1 offspring (PL vs LP) at any devel-
opmental stage were not considered for this analysis. The remaining genes were classified as either (1) 
conserved, (2) additive, (3) dominant for one genotype, or (4) misexpressed (over/under-dominant).

Parent of origin effects
DE genes between PL and LP offspring are different due to parental effects. DE was detected with 
DESeq2 with the contrasts ‘c(“multiFactor”, “PL_sixteencell”, “LP_sixteencell”)’, ‘c(“multiFactor”, 
“PL_gastrula”, “LP_gastrula”)’, and ‘c(“multiFactor”, “PL_swimming”, “LP_swimming”)’ similar to PP 

Table 1. Logical table showing criterion for morph-specific expression classification of genes based 
on number of samples in each group that have gene expression greater than their expression level 
threshold as assessed by data-adaptive flag method (DAFS).
An allowance for a single mismatched replicate is made in this criterion. This is because we do not 
believe that a single incidence within a morph (across all developmental stages) is a functionally 
significant and biologically relevant level of gene expression in this case.

PP samples above expression 
threshold

LL samples above expression 
threshold Classification

≤1 ≥3 Lecithotrophic-specific expression

≥3 ≤1 Planktotrophic-specific expression

https://doi.org/10.7554/eLife.93062
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and LL samples. We evaluate these at three of the six developmental stages. The direction of the 
parental effect was determined by matching the expression change with the direction of each identi-
fied gene’s expression in PP and LL samples (where those genes were DE in PP and LL samples).

Mode of regulatory change
To measure allele-specific expression, we assigned sequencing reads from F1 samples to either P or L 
parentage by identifying fixed SNPs within the transcript sequences of the parental types. We used 
HyLiTE (Duchemin et al., 2015) to identify SNPs and assign reads as a P or L allele. We then catego-
rized genes’ regulatory mode according to established empirical methods (Wittkopp et al., 2004; 
Graze et al., 2009; Coolon et al., 2014; Harry and Zakas, 2023; Wang et al., 2020) for each devel-
opmental stage independently. This required three comparisons of each gene’s expression which we 
performed using DESeq2: (1) the contrast of PP to LL samples, (2) the contrast of P alleles to L alleles 
within F1 samples, and (3) a ratio of the differential expression of PP:LL to the differential expression of 
P:L alleles. For (3) we use a special contrast in DESeq2, applying the design (~Geno × Ori) where Geno 
identifies reads as either a P or L allele and Ori identifies the reads as originating from the parentals or 
F1 samples. DE genes were categorized as either in ‘cis’, ‘trans’, ‘cis+trans’, or ‘cis × trans’ (Wittkopp 
et al., 2004; Graze et al., 2009; Coolon et al., 2014; Harry and Zakas, 2023; Wang et al., 2020).
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