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Abstract The intricate structural organization of the human nucleus is fundamental to cellular 
function and gene regulation. Recent advancements in experimental techniques, including high-
throughput sequencing and microscopy, have provided valuable insights into nuclear organization. 
Computational modeling has played significant roles in interpreting experimental observations 
by reconstructing high-resolution structural ensembles and uncovering organization principles. 
However, the absence of standardized modeling tools poses challenges for furthering nuclear 
investigations. We present OpenNucleome—an open-source software designed for conducting 
GPU-accelerated molecular dynamics simulations of the human nucleus. OpenNucleome offers 
particle-based representations of chromosomes at a resolution of 100 KB, encompassing nuclear 
lamina, nucleoli, and speckles. This software furnishes highly accurate structural models of nuclear 
architecture, affording the means for dynamic simulations of condensate formation, fusion, and 
exploration of non-equilibrium effects. We applied OpenNucleome to uncover the mechanisms 
driving the emergence of ‘fixed points’ within the nucleus—signifying genomic loci robustly 
anchored in proximity to specific nuclear bodies for functional purposes. This anchoring remains 
resilient even amidst significant fluctuations in chromosome radial positions and nuclear shapes 
within individual cells. Our findings lend support to a nuclear zoning model that elucidates genome 
functionality. We anticipate OpenNucleome to serve as a valuable tool for nuclear investiga-
tions, streamlining mechanistic explorations and enhancing the interpretation of experimental 
observations.

eLife assessment
This important work significantly advances the field of computational modeling of genome organi-
zation through the development of OpenNucleome. The evidence supporting the tool's effective-
ness is compelling as the authors compare their predictions with experimental data. It is anticipated 
that OpenNucleome will attract significant interest from the biophysics and genomics communities.

Introduction
The highly complex structural organization of the human nucleus plays a crucial role in the functioning 
and regulation of our cells (Dekker et al., 2017; Hübner et al., 2013; Bickmore, 2013; Gorkin et al., 
2014; Dekker and Mirny, 2016; Furlong and Levine, 2018; Finn and Misteli, 2019; Chen and 
Belmont, 2019; Lin et al., 2021; Liu et al., 2024). The complexity arises from the diverse range of 
nuclear landmarks, such as nucleoli (Lafontaine et al., 2021), nuclear speckles (Chen and Belmont, 
2019; Lamond and Spector, 2003), and the nuclear lamina (van Steensel and Belmont, 2017), each 
serving distinct functions. These landmarks provide specialized environments for various nuclear 
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processes, allowing for efficient coordination and regulation of gene expression. Moreover, the spatial 
arrangement of chromosomes within the nucleus, intertwined with the nuclear landmarks, is critical 
for proper gene regulation and communication between different genome regions. Disruptions or 
abnormalities in the nuclear organization can have profound consequences on cellular function and 
can contribute to the development of diseases, including cancer and genetic disorders (Seruga et al., 
2008; Schuster-Böckler and Lehner, 2012).

Recent advancements in experimental techniques have significantly enhanced our understanding 
of nuclear organization (Bickmore, 2013; Schmitt et al., 2016; McCord et al., 2020; Parmar et al., 
2019; Jerkovic and Cavalli, 2021; Chen et al., 2016). The advent of high-throughput sequencing-
based methods, such as genome-wide chromosome-conformation capture (Hi-C), has unveiled crucial 
structural elements of the genome (Dekker et al., 2002; Lieberman-Aiden et al., 2009), including 
chromatin loops (Rao et al., 2014), topologically associating domains (Dixon et al., 2016; Dekker 
and Heard, 2015), and compartments (Lieberman-Aiden et  al., 2009). Additionally, sequencing-
based techniques such as DamID (Greil et al., 2006), Chip-Seq (Park, 2009), and TSA-Seq (Chen 
et al., 2018) have revealed valuable information regarding interactions between chromosomes and 
nuclear landmarks. However, it is worth noting that these sequencing methods often offer averaged 
contacts, which can mask the heterogeneity present across populations, although single-cell tech-
niques are also emerging (Wen et al., 2020; Ramani et al., 2017; Nagano et al., 2013). Moreover, 
translating contact data into spatial positions can be challenging, adding complexity to interpreting 
experimental findings.

To complement these sequencing approaches, microscopic imaging techniques directly probe the 
spatial positions within individual nuclei (Bickmore, 2013; van Steensel and Belmont, 2017; Chen 
et al., 2015; Boettiger et al., 2016; Shachar et al., 2015). Recent advancements in DNA FISH (fluo-
rescence in situ hybridization) have enabled high-throughput imaging of thousands of loci simulta-
neously (Su et al., 2020; Takei et  al., 2021). These imaging studies have not only confirmed the 
structural features observed through sequencing techniques but have also provided valuable insights 
into the heterogeneity present at the single-cell level.

The abundance of available experimental data in the field of nuclear organization provides a fertile 
ground for structural modeling (Qi et  al., 2020; Qi and Zhang, 2019; Boninsegna et  al., 2022; 
Fujishiro and Sasai, 2022; Shi and Thirumalai, 2021; Dekker et al., 2013; Jost et al., 2014; Gior-
getti et al., 2014; Di Pierro et al., 2017; Buckle et al., 2018; Nuebler et al., 2018; Bianco et al., 
2018; Shi et al., 2018; MacPherson et al., 2018; Shin et al., 2023; Amiad-Pavlov et al., 2021; 
Brahmachari et al., 2022; Jiang et al., 2022; Ganai et al., 2014; Liu et al., 2018; Laghmach et al., 
2020; Chu and Wang, 2021; Lappala et al., 2021; Chu and Wang, 2022; Goychuk et al., 2023; Sun 
et al., 2021; Kadam et al., 2023). To make sense of this wealth of information, various computational 
approaches have been introduced, with polymer simulation approaches being extensively utilized. 
These simulation techniques aid in reconstructing structural ensembles that closely replicate experi-
mental data, offering valuable insights into the mechanisms underlying chromosome folding. In recent 
studies, these approaches have also been employed to investigate the interplay between the genome 
and the nuclear lamina (Bajpai et al., 2021; Kamat et al., 2023; Laghmach et al., 2021; Stephens 
et al., 2018), as well as nucleoli (Qi and Zhang, 2021), shedding light on their dynamic relationships.

Despite the progress made in computational modeling, the absence of well-documented software 
with easy-to-follow tutorials pose a challenge. Many research groups develop their own indepen-
dent software, which complicates cross-validation and hinders the establishment of best practices for 
genome modeling (Fujishiro and Sasai, 2022; Yildirim et al., 2023; Oliveira Junior et al., 2021). 
Moreover, comprehensive models of the entire nucleus, especially at high resolution, remain scarce. 
Addressing these limitations and fostering collaboration in the scientific community can be achieved 
through the development of open-source tools. By promoting transparency and accessibility, such 
tools have the potential to greatly facilitate nuclear modeling and contribute to a more unified and 
collaborative research environment.

We present OpenNucleome, an open-source software designed for conducting molecular 
dynamics (MD) simulations of the human nucleus. This software streamlines the process of setting 
up whole nucleus simulations through just a few lines of Python scripting. OpenNucleome can unveil 
intricate, high-resolution structural and dynamic chromosome arrangements at a 100KB resolution. It 
empowers researchers to track the kinetics of condensate formation and fusion while also exploring 
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the influence of chemical modifications on condensate stability. Furthermore, it facilitates the exam-
ination of nuclear envelope deformation’s impact on genome organization. The software’s modular 
architecture enhances its adaptability and extensibility. Leveraging the power of OpenMM (Eastman 
et al., 2017), a GPU-accelerated MD engine, OpenNucleome ensures efficient simulations.

Our work demonstrates the fidelity of the simulated nuclear organizations by faithfully reproducing 
Hi-C, Lamin B DamID, TSA-Seq, and DNA-MERFISH data. The dynamic insights extracted from this 
model are pivotal in advancing our understanding of nuclear organization mechanisms. Our find-
ings reveal that inherent heterogeneity in chromosome contacts naturally emerges within single cells. 
Interestingly, robust contacts between chromosomes and nuclear bodies can also be established due 
to a coupled self-assembly mechanism. Notably, the resilience of contacts involving nuclear bodies 
supports a nuclear zoning model for genome function. In the realm of nuclear investigations, we 
anticipate OpenNucleome to serve as an invaluable tool, seamlessly complementing experimental 
techniques.

Results
Non-equilibrium nucleus model at 100 KB resolution
We present an open-source implementation of a computational framework that facilitates the struc-
tural and dynamical characterization of the human nucleus. This framework builds upon a previous 
investigation but incorporates several significant modifications. Firstly, we enhance the model resolu-
tion by a factor of 10, enabling the precise determination of the spatial positioning of each chromatin 
segment measuring 100KB in length. Secondly, we present a kinetic scheme for speckles that accounts 
for the phosphorylation of protein molecules. This inclusion captures the influence of chemical reac-
tions on the stability and dynamics of nuclear bodies. Thirdly, we incorporate explicit nuclear enve-
lope dynamics to explore the impact of large-scale deformations on genome organization. Finally, 
our implementation into OpenMM offers the advantages of Python Scripting and GPU acceleration, 
facilitating easy extension and customization. These features will facilitate the broad applicability and 
adoption of the proposed model.

The nucleus model provides particle-based representations for chromosomes, nucleoli, speckles, 
and the nuclear envelope. As shown in Figure 1A and B, each of the 46 chromosomes is represented 
as a beads-on-a-string polymer, where each bead represents a 100-KB-long genomic segment. Based 
on Hi-C data, we further assign each bead as compartment A, B, or C to signify euchromatin, heter-
ochromatin, or pericentromeric regions. The lamina was modeled as a spherical enclosure with 10 
µm diameter, using discrete particles arranged to represent a mesh grid with covalent bonds linking 
together nearest neighbors (Strom et al., 2021). We modeled nucleoli and speckles as liquid droplets 
that emerge through the spontaneous phase separation of coarse-grained particles, representing 
protein and RNA molecule aggregates (Chen and Belmont, 2019; Lafontaine et al., 2021). These 
particles exhibited attractive interactions within the same type to promote condensation. More details 
about the various components of the system can be found in the Appendix 1, section ‘Components 
of the whole nucleus model’.

The energy function of the nucleus model includes three components that account for the self-
assembly of chromosomes, the assembly of nuclear bodies, and the coupling between chromosomes 
and nuclear landmarks. Therefore, the model approximates nuclear organization as a coupled self-
assembly process. The chromosome energy function (see Equation 7 in Appendix 1, section ‘Hi-C 
inspired interactions for the diploid human genome’) includes terms that account for the polymer 
connectivity and excluded volume effect, an ideal potential, compartment-specific interactions, and 
specific interchromosomal interactions. As shown in Figure 1C, the ideal potential is only applied for 
beads from the same chromosome to approximate the effect of loop extrusion by Cohesin molecules 
(Sanborn et al., 2015; Fudenberg et al., 2016) for chromosome compaction and territory formation 
(Di Pierro et al., 2016; Zhang and Wolynes, 2017). Compartment-specific interactions, on the other 
hand, promote microphase separation and compartmentalization of euchromatin and heterochro-
matin. Finally, interchromosomal interactions account for sequence-specific effects that compartment-
dependent potentials cannot capture.

Interactions among coarse-grained particles that form nuclear bodies were designed to promote 
and stabilize the formation of liquid droplets, as has been revealed by many experiments (Handwerger 
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et al., 2005; Caragine et al., 2018; Caragine et al., 2019). We adopted the Lennard–Jones potential 
for nucleolar particles to mimic the weak, multivalent interactions that arise from protein and RNA 
molecules that make up the nucleoli. As a first attempt to approximate their complex dynamics, we 
considered two types of particles that form speckles: phosphorylated (P) and de-phosphorylated (dP). 
The two types can interconvert via chemical reactions (Brackley et al., 2017; Söding et al., 2020; 
Carrero et al., 2006) and dP particles share attractive interactions modeled with the Lennard–Jones 
potential.

As shown in Figure  1C, to recognize specific interactions between chromosomes and nuclear 
landmarks, we introduced contact potentials between them. These potentials are inspired by the 
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Figure 1. Computer model of the human nucleus for structural and dynamical characterizations. (A) 3D rendering of the nucleus model with particle-
based representations for the 46 chromosomes shown as ribbons, the nuclear lamina (gray), nucleoli (cyan), and speckles (yellow). As shown on the 
right, chromosomes are modeled as beads-on-a-string polymers at a 100 KB resolution, with the beads further categorized into compartment A (red), 
compartment B (light blue), or centromeric regions (green). (B) Speckle particles undergo chemical modifications concurrent to their spatial dynamics, 
and the de-phosphorylated (dP) particles contribute to droplet formation. (C) Illustration of the ideal and compartment potential that promotes 
chromosome compaction and microphase separation. Specific interactions between chromosomes and nuclear landmarks are shown on the right.
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experimental techniques that probe the corresponding contacts. Appendix 1, sections ‘Chromo-
some–nuclear landmark interactions’ and ‘Nuclear landmark–nuclear landmark interactions’ contain 
more details about all the nuclear landmark-related energy functions.

Optimization of model parameters with experimental data
The nucleus model was designed to be interpretable such that energy terms represent physical 
processes. Furthermore, the expressions of the interaction potentials were also designed such that 
their parameters can be determined from experimental data via the maximum entropy optimization 
algorithm (Lin et al., 2021; Xie and Zhang, 2019; Schuette et al., 2023). Below, we briefly outline the 
procedure used for parameter optimization and further details can be found in Appendix 1, section 
‘Optimization of the whole nucleus model parameters.

As illustrated in Figure 2, starting from a given set of parameters, we first perform MD simulations 
to produce a collection of 3D structures for the diploid genome and various nuclear bodies. These 
structures are then transformed into a contact map or contact probabilities between chromatin beads 
and nuclear landmarks by averaging over homologous chromosomes. Constraints corresponding 
to different energy terms could be obtained from the simulated results and compared with those 
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Figure 2. Overview of the iterative algorithm for parameterizing the nucleus model with experimental data. Starting from an initial set of parameters, 
we perform molecular dynamics (MD) simulations to produce an ensemble of nuclear structures. These structures can be transformed into contacts 
between chromosomes or between chromosomes and nuclear landmarks for direct comparison with experimental data. Differences between simulated 
and experiment contacts are used to update parameters for additional rounds of optimization if needed.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The number of speckle clusters formed along a typical simulation trajectory.
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estimated from Hi-C, SON TSA-Seq, and Lamin B DamID profiles. Finally, the model parameters were 
updated based on the difference between simulated and experimental constraints using the adaptive 
moment estimation (Adam) optimization algorithm (Kingma and Ba, 2014). The three steps can be 
repeated with updated parameters to improve the simulation-experiment agreement further.

No quantitative experimental data exists for interactions among nuclear body particles to serve 
as constraints. We varied the strength of the interaction potential to produce 2–3 nucleoli and ∼30 
speckle clusters during the simulations (Figure 2—figure supplement 1) while ensuring the fluidity of 
the resulting droplets.

Molecular dynamics simulations with GPU acceleration
We implemented the nucleus model into the MD engine OpenMM (Eastman et al., 2017). OpenMM 
offers an excellent interface with Python scripting, significantly improving the readability and custom-
izability of the model. The code was designed into functional modules, with different components, 
such as chromosomes and nuclear landmarks, written as separate classes. This design further facili-
tates the introduction of additional nuclear components, if desired, with minimal changes to existing 
code. We provide examples of simulation set up, trajectory analysis, parameter optimization, and 
introducing new features in the GitHub repository.

Figure  3A illustrates the workflow for setting up and executing whole nucleus simulations. A 
configuration file that provides the position of individual particles in the PDB file format is needed to 
initialize the simulations. This file also contains topological information regarding whether a particle 
represents chromosomes or nuclear landmarks and the identity of specific chromosomes. The input 
file can be generated with provided Python scripts by randomly distributing the positions of chro-
mosomes, speckles, and nucleoli, though optimized configurations are also included in the GitHub 
repository. By default, the lamina particles will be uniformly placed on a sphere of 10 μm in diameter. 
Upon parsing the configuration file, interactions among various components can be set up with opti-
mized parameters. This step will produce an object that can be used for MD simulations. As shown in 
Figure 3B, the workflow only requires a few lines of code. The package also includes analysis scripts 
to compute contact maps, monitor conformational dynamics, and track nuclear bodies.
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Figure 3. OpenNucleome facilitates GPU-accelerated simulations of the human nucleus. (A) Illustration of workflow for setting up, performing, and 
analyzing molecular dynamics (MD) simulations. (B) Python scripts setting up whole nucleus simulations. (C) Performance of MD simulations on different 
number of CPU cores and a single GPU.
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A significant benefit of OpenMM is its native support of GPU acceleration. As shown in Figure 3C, 
the simulation speed with one Nvidia Volta V100 GPU is 150 times faster than that of the four Intel 
Xeon Platinum 8260 CPU cores. Notably, this performance enhancement cannot be achieved by 
simply increasing the CPU core numbers. For example, the simulation speed with 32 CPU cores is less 
than twice that of 4 CPU cores, potentially due to the system’s heterogeneous distribution of particles.

Simulations reproduce and predict diverse experimental data
We extensively validated the parameterized nucleus model to examine its biological relevance. MD 
simulations initialized from 50 different initial configurations were performed to build an ensemble of 
structures. As mentioned in the following section, a diverse set of initial configurations is essential for 
reproducing interchromosomal contacts probed in Hi-C. From the simulated structures, we computed 
various quantities for direct comparison with experimental measurements. Given that the majority of 
experimental data were analyzed for the haploid genome, we adopted a similar approach by aver-
aging over paternal and maternal chromosomes to facilitate direct comparison. More details on data 
analysis can be found in Appendix 1, section ‘Details of simulation data analysis’.

We compared the simulated contact probabilities among chromosomes with Hi-C data. As shown 
in Figure 4A and Figure 4—figure supplement 1, the simulated and experimental contact maps 
are highly correlated. The squares along the diagonal support the formation of chromosome terri-
tories that promote intrachromosomal contacts, and the apparent checkboard patterns follow the 
compartmentalization of various chromatin types. We further examined the decay of intrachromo-
somal contacts as a function of the sequence separation, which is known to deviate from that of an 
equilibrium globule (Lieberman-Aiden et al., 2009). As shown in Figure 4B, the simulated results 
overlap well with the Hi-C data (orange curve). In addition, the simulated average contact proba-
bilities between various compartment types match values estimated from Hi-C data. Moreover, the 
simulated and experimental average contact probabilities between pairs of chromosomes agree well, 
and the Pearson correlation coefficient between the two datasets reaches 0.89.

We further examined the contacts between chromosomes and nuclear landmarks. As illustrated in 
Figure 4C, the simulated Lamin-B DamID signals for chromosome 7 match well with the experimental 
results, capturing the complex contact pattern that weaves chromatin toward and away from the 
nuclear envelope. Similarly, SON TSA-Seq data that quantify the contact between chromosomes and 
speckles are well captured by simulated structures. The anti-correlation between DamID and TSA-Seq 
is clearly visible. The observed agreement between simulation and experimental results is not limited 
to any particular chromosome. Good agreements are achieved for all chromosomes.

The simulations also provide 3D representations of the nucleus that can be compared with DNA-
MERFISH data (Su et al., 2020). We found that the simulated radius of gyration of individual chromo-
somes matches well with experimental values (Figure 4A). The simulated and experimental average 
normalized chromosome radial positions also correlate strongly, as shown in Figure  5B. We note 
that while the sequencing results presented in Figure 4 were used for model parameterization, the 
MERFISH data were not. Therefore, the simulation results here are de novo predictions, and their 
agreement with experimental data strongly supports the coupled assembly mechanism used for 
designing the energy function.

A significant advantage of MD simulation-based models is the dynamical information they natu-
rally produce. We measured the dynamics of telomeres by tracking the mean-square displacements 
(MSDs), ‍⟨r2(∆t)⟩‍, as a function of time. In Figure 5C, we plot representative MSD trajectories over 
a 1-hr timescale. In line with previous research (Di Pierro et  al., 2018; Bronstein et  al., 2009; 
Lee et  al., 2021), telomeres display anomalous subdiffusive motion. When fitted with the equa-
tion ‍⟨r

2 (∆t
)
⟩ = Dα∆tα‍, these trajectories yield a spectrum of α values, with a peak around 0.59. 

The exponent and the diffusion coefficient ‍Dα =
(
27 ± 11

)
× 10−4µm2 · s−α

‍ both match well with the 
experimental values (Bronshtein et al., 2015; Jack et al., 2022), upon setting the nucleoplasmic 
viscosity as ‍1Pa · s‍ (see Appendix 1, section ‘Mapping the reduced time unit to real time’ for more 
details).

The good agreement in the dynamics of individual loci further inspired us to examine the diffusion 
of whole chromosomes. In particular, we plotted the normalized chromosome radial positions as a 
function of time in Figure  6A. Remarkably, we found that chromosomes appear arrested and no 
significant changes in their positions are observed over timescales comparable to the cell cycle (see 

https://doi.org/10.7554/eLife.93223


 Research article﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Structural Biology and Molecular Biophysics

Lao et al. eLife 2024;13:RP93223. DOI: https://doi.org/10.7554/eLife.93223 � 8 of 39

A

Sim.

Expt.

Genome Contact Map, r = 0.89 B

r=
0.

86
r=

0.
89

10-1

10-2

10-3

10-4

101 103

10−3

10−2

10−1

100
Sim.
Hi-C

10−3 10−2 10−110−3

10−2

10−1

AA

AB
AC

BB

BC

CC

10−4

10−4

C

Chromosome

PC
 C

oe
ffi

ci
en

t
PC

 C
oe

ffi
ci

en
t

C
on

ta
ct

 P
ro

b.
Ex

pe
rim

en
t

Ex
pe

rim
en

t

Sequence Sep.

Simulation

Simulation

DamID

TSA-Seq

Figure 4. Simulated structures reproduce contact frequencies between chromosomes and between chromosomes and nuclear landmarks. 
(A) Comparison between simulated (top right) and experimental (bottom left) whole-genome contact probability maps with Pearson correlation 
coefficient r = 0.89. Zoom-ins of various regions are provided in Figure 4—figure supplement 1. (B) Comparison between simulated and experimental 
average contact frequencies, including average contacts between genomic loci from the same chromosomes at a given separation (top), average 

Figure 4 continued on next page
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also Figure 6—figure supplement 1). Therefore, our simulations predict that large-scale movements 
of chromosomes are unlikely during the G1 phase.

Heterogeneity and robustness of the simulated conformational 
ensemble
The lack of relaxation of chromosome radial positions suggests the importance of starting configura-
tions used to initialize the simulations. Statistical averages of the resulting ensemble of nuclear struc-
tures depend crucially on these starting configurations. Using an optimization procedure, we selected 
them from 1000 configurations to maximize the agreement with experimental lamin-B DamID and 
interchromosomal contact probabilities. Appendix 1, section ‘Initial configurations for simulations’ 
provides more details on preparing the 1000 initial configurations.

We selected a total of 50 starting configurations to initiate independent simulations. Smaller sets 
of starting configurations are not sufficient to reproduce the interchromosomal contact probabilities, 
as shown in Figure 6—figure supplement 2B. Notably, different sets of 50 configurations selected 
from independent trials show significant overlap (Figure 6—figure supplement 2D), supporting the 
robustness of the selection protocol in detecting conserved features of genome organization.

While the ensemble as a whole is relatively robust, individual configurations with the ensemble 
exhibit significant differences. For example, the Lamin B DamID profiles produced from different 
trajectories are only weakly correlated (Figure 6C), with an average correlation coefficient of 0.53. 
These weak correlations result from significant differences in the normalized radial positions of chro-
mosomes, as can be seen in representative configurations from two simulation trajectories (Figure 6B). 
The fluctuations of normalized radial positions cause changes in contacts between chromosomes as 
well, resulting in little correlation between interchromosomal contact matrices (Figure 6D).

We examined genome organizations reported by Su et al. and found a similar variation of inter-
chromosomal contact probabilities across individual cells (Figure 6—figure supplement 2A and D). 
Notably, the simulated configurations capture the fluctuations of interchromosomal contacts observed 
in DNA-MERFISH data, further supporting the biological relevance of the reported in silico structures.

Despite the differences in interchromosomal contacts across trajectories, high conservation of 
connections between chromosomes and speckles can be observed in individual simulations. For 
example, the average correlation coefficient between in silico SON TSA-Seq profiles produced from 
different trajectories is 0.72, much higher than the corresponding value for Lamin B DamID profiles. 
Conservation of contacts between chromosomes and nuclear bodies (zones) across individual cells has 
indeed been reported in a previous study that simultaneously images chromatin and various subnu-
clear structures (Takei et al., 2021).

Nuclear deformation preserves chromosome–nuclear body contacts
Numerous studies have highlighted the remarkable influence of nuclear shape on the positioning of 
chromosomes and the regulation of gene expression (Brahmachari et al., 2022; Contessoto et al., 
2023). The nucleus, once regarded as a mere compartment for DNA storage, is increasingly recog-
nized as a dynamic and intricately structured organelle. To better understand the interplay between 
nuclear shape and genome organization as a fundamental mechanism that shapes the transcriptional 
landscape, we performed additional simulations in which the nuclear lamina was altered from a sphere 
into more ellipsoidal shapes by applying a force along the z-axis (Figure 7A). More details about these 
simulations can be found in Appendix 1, section ‘Nuclear envelope deformation simulations’.

As illustrated in Figure 7B, the presence of external forces resulted in significant alterations in 
nuclear shape. We conducted two independent simulations with different force strengths, leading 

contacts between genomic loci classified into different compartment types (middle), and average contacts between various chromosome pairs (bottom). 
(C) Comparison between simulated and experimental Lamin-B DamID (top) and SON TSA-Seq signals (bottom), with Pearson correlation coefficients of 
haploid chromosomes shown on the right.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Zoom-in of various regions in the contact map presented in Figure 4 further supports the agreement between simulation and 
experiment.

Figure 4 continued

https://doi.org/10.7554/eLife.93223
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to varying degrees of deformation in the nuclear lamina. This deformation, in turn, caused a reor-
ganization of chromosomes, affecting their normalized radial positions and pairwise contacts (see 
Figure 7—figure supplement 1 and Figure 7C). We observed that more deformed nuclei exhibited 
lower correlation coefficients for interchromosomal contacts compared to results obtained from simu-
lations in a spherical nucleus. Similarly, the DamID profiles exhibited significant variations upon nucleus 

A B

DC

r = 0.76 r = 0.74 

Figure 5. Structural and dynamical predictions of the nucleus model match results from microscopy imaging. (A) Comparison between the simulated 
and experimental radius of gyration, ‍Rg‍, for haploid chromosomes. The Pearson correlation coefficient between the two, r, is shown in the legend. 
(B) Comparison between the simulated and experimental normalized radial positions for haploid chromosomes, with their Pearson correlation 
coefficient shown in the legend. Detailed definition of the normalized radial positions is provided in Appendix 1, section ‘Computing simulated 
normalized chromosome radial positions’. (C) Mean-squared displacements (MSDs) as a function of time are shown for selected telomeres. (D) The 
probability distribution of the anomalous exponent, α, obtained from fitting the MSDs curves for all telomeres with the expression, ‍⟨r

2 (∆t
)
⟩ = Dα∆tα‍.

https://doi.org/10.7554/eLife.93223
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Figure 6. Heterogeneity and conserved features of nuclear organizations. (A) Normalized chromosome radial positions as a function of simulation time. 
(B) Contacts between chromosomes 1 and 2 from two independent simulation trajectories show significant variations. (C) Genome-wide in silico Lamin B 
DamID (top) and SON TSA-Seq (bottom) profiles computed from two independent trajectories. Pearson correlation coefficients, r, are provided on each 
plot. (D) Pairwise Person correlation coefficients between interchromosomal contact matrices (left), genome-wide Lamin B DamID profiles (middle), and 
genome-wide SON TSA-Seq profiles (right) determined from independent trajectories. The averages excluding the diagonals of the three datasets are 
0.06, 0.53, and 0.72.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Arrested kinetics of chromosome positions over the timescale of cell cycles.

Figure supplement 2. Configurations used to initialize simulations capture the heterogeneity in interchromosomal contacts seen in DNA-MERFISH 
data.

https://doi.org/10.7554/eLife.93223
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deformation, whereas TSA-Seq signals were much less affected and remained highly correlated with 
the results from the spherical nucleus simulations.

Therefore, it appears that speckles, and potentially other nuclear condensates, can dynamically 
reorganize in response to changes in chromosome conformations to maintain contacts with genomic 
loci. This robustness in nuclear body contacts may be essential for ensuring the robust functioning of 
the genome in a population of cells with significant variability in nuclear shape.

Discussion
We introduced a computational model, OpenNucleome, to facilitate simulations for the human 
nucleus at high structural and temporal resolution. We conducted extensive cross-validation with 
experimental data to support the biological relevance of simulated 3D structures. Implementing the 
model into the MD package, OpenMM enables GPU acceleration for long-timescale simulations. 
Tutorials in the format of Python Scripts with extensive documentation are provided to facilitate the 
adoption of the model by the community.

Our software enhances the capabilities of existing genome simulation tools Fujishiro and Sasai, 
2022; Yildirim et al., 2023; Oliveira Junior et al., 2021. Specifically, OpenNucleome aligns with the 
design principles of Open-MiChroM (Oliveira Junior et al., 2021), prioritizing open-source accessi-
bility while expanding simulation capabilities to the entire nucleus. Similar to software from the Alber 
lab (Yildirim et al., 2023), OpenNucleome offers high-resolution genome organization that faithfully 
reproduces a diverse range of experimental data. Furthermore, beyond static structures, OpenNu-
cleome facilitates dynamic simulations with explicit representations of various nuclear condensates, 
akin to the model developed by Fujishiro and Sasai, 2022.

A significant advantage of OpenNucleome lies in its predictive power for dynamical information. 
For example, the model succeeded in reproducing the subdiffusive behavior of telomeres. We further 
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Figure 7. Nuclear deformations influence genome organization while preserving chromatin-speckle contacts. (A) Illustration of force-induced nuclear 
envelope deformation. The nuclear lamina is modeled as a particle mesh where neighboring lamina particles are covalently bonded together. 
(B) Example nucleus conformations at different strengths of applied force. (C) Pearson correlation coefficients between results from simulations of 
deformed nuclei and those from a spherical nucleus for interchromosomal contacts (left), DamID profiles (middle), and TSA-Seq (right). The values at 
zero force were computed from two independent simulations starting from the same initial configurations.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Impact of nuclear deformation on normalized chromosome radial positions.

https://doi.org/10.7554/eLife.93223
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showed that the dynamics of individual chromosomes are slow and their radial positions do not relax 
over the time course of a cell cycle. This is consistent with previous theoretical estimations on chro-
mosome dynamics (Rosa and Everaers, 2008) and recent observations of solid behavior of chromatin 
in vivo (Strickfaden et al., 2020). Live cell experiments that directly track the positions of multiple 
chromosomes could further validate/falsify this prediction. We anticipate the model will greatly facili-
tate the investigation of the dynamics of genomic loci and nuclear bodies and the interpreting of live 
cell imaging results.

Slow chromosome dynamics and a lack of conformational relaxation naturally result in the hetero-
geneity of chromosome radial positions across individual cells. This heterogeneity raises doubts 
about the notion that chromosome radial positions provide robust and reliable mechanisms for gene 
regulation (Hübner et  al., 2013; Maeshima et  al., 2010; Fraser and Bickmore, 2007; Takizawa 
et al., 2008). Instead, our results support the nuclear zoning model for gene regulation (Takei et al., 
2021), where specific loci function as ‘fixed points’ anchored to certain nuclear bodies in all cells. This 
anchoring mechanism robustly creates the desired molecular environment surrounding these genomic 
segments. Unlike chromosome radial positions, contacts between genomic loci and speckles can be 
robustly established in individual cells, as shown in our simulations. It was achieved through a nucle-
ation process that attracts speckle particles toward specific loci due to specific interactions. Nucle-
ation occurs much more rapidly than chromosome rearrangement due to the smaller size of speckle 
particles. The coupled self-assembly mechanism for chromosomes and nuclear bodies can similarly 
facilitate the formation of other nuclear zones for different kinds of fixed points.

Despite the heterogeneity in chromosome positions and interchromosomal contacts, the ensemble 
of nuclear structures as a whole is not random and exhibits conserved features. For example, on 
average, certain chromosomes remain closer to the nuclear envelope than others (see Figure 5B). 
Similarly, the average contact frequency between certain chromosome pairs is higher than others, 
though this trend can be frequently violated in individual cells. How such conserved features arise as 
cells exit from the mitotic phase remains unclear and would be interesting for further explorations.

Methods
Molecular dynamics simulation details
We used the software package OpenMM Eastman et al., 2017 to perform MD simulations in reduced 
units at constant temperature (T = 1.0). Unless otherwise specified, we froze the lamina particles and 
only propagated the dynamics of chromatin, nucleoli, and speckles.

Two integration schemes were used with a time step of dt = 0.005to efficiently generate structural 
ensembles and produce realistic dynamical information, respectively. For simulations used in param-
eter optimization and building structural ensembles, we employed the Langevin integrator with a 
damping coefficient of ‍γ

−1 = 10.0‍. In the case of MSD calculations shown in Figure 6, we utilized 
Brownian dynamics with a damping coefficient of ‍γ

−1 = 0.01‍. The higher damping coefficient provides 
a better approximation to the viscous nucleus environment, while the smaller value in the Langevin 
integrator facilitates conformational sampling with faster diffusion rates.

We employed the semi-grand Monte Carlo technique (Sadigh et al., 2012) to simulate chemical 
transitions between two types of speckle particles. At every 4000 simulation steps, we attempt a total 
of ‍NSp‍ chemical reactions that converts one type of speckle particles to the other type with a proba-
bility of 0.2. ‍NSp‍ corresponds to the total number of speckle particles, and the switching probability 
was chosen to be comparable to the experimental phosphorylation rate. More details on the speckle 
dynamics are provided in Appendix 1, section ‘Speckles as phase-separated droplets undergoing 
chemical modifications’.

When deforming the nuclear envelope, we unfroze the lamina particles and evolved them dynami-
cally as the rest of the nucleus. Bonded interactions among lamina particles held the nuclear envelope 
together as a particle mesh. A harmonic force along the z-axis was introduced to compress the particle 
mesh. More details are provided in Appendix 1, section ‘Nuclear envelope deformation simulations’.

For simulations used to optimize parameters, a total of 50 independent 3-million-step-long trajec-
tories were performed. Configurations were recorded at every 2000 simulation steps for analysis. 
The first 500,000 steps of each trajectory were discarded as equilibration. For production simula-
tions, we performed 50 independent 10-million-step long trajectories starting from different initial 

https://doi.org/10.7554/eLife.93223
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configurations. Nuclear structures were again recorded at every 2000 steps to determine statistical 
averages presented in the article. An additional eight simulations of 30million steps in length were 
performed to compute telomere MSDs.

We mapped the reduced units to real units with the conversion of length scale σ = 385nm and the 
timescale in Brownian dynamics simulations ‍τ = 0.65s‍. These conversions were determined as detailed 
in Appendix 1, section ‘Unit conversion’.

Experimental data processing and analysis
We obtained the in situ Hi-C data, SON TSA-seq data, and Lamin-B DamID data of HFF cell lines from 
the 4DN data portal. The intra and interchromosomal interactions were calculated at 100KB resolution 
with VC_SQRT normalization applied to the interaction matrices. Hi-C data extraction and normaliza-
tion were performed using Juicer tools (Durand et al., 2016). We followed the same processing and 
normalization method described in Zhang et al., 2021 to analyze TSA-seq data. Two biological repli-
cates of Lamin-B DamID data were merged and the normalized counts over Dam-only control were 
used for analysis. The SON TSA-Seq and Lamin-B DamID data were processed at the 25KB resolution 
and the average values at the 100KB resolution were used in Figure 4 for model validation.

Acknowledgements
This work was supported by the National Institutes of Health (grant R35GM133580).

Additional information

Competing interests
Bin Zhang: Reviewing editor, eLife. The other authors declare that no competing interests exist.

Funding

Funder Grant reference number Author

National Institute of 
General Medical Sciences

R35GM133580 Bin Zhang

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Zhuohan Lao, Software, Formal analysis, Investigation, Visualization, Methodology, Writing - original 
draft, Writing - review and editing; Kartik D Kamat, Formal analysis, Methodology; Zhongling Jiang, 
Software; Bin Zhang, Conceptualization, Formal analysis, Supervision, Funding acquisition, Investiga-
tion, Visualization, Methodology, Writing - original draft, Project administration, Writing - review and 
editing

Author ORCIDs
Zhuohan Lao ‍ ‍ http://orcid.org/0000-0001-5404-2183
Bin Zhang ‍ ‍ https://orcid.org/0000-0002-3685-7503

Peer review material
Reviewer #1 (Public Review): https://doi.org/10.7554/eLife.93223.3.sa1
Reviewer #2 (Public Review): https://doi.org/10.7554/eLife.93223.3.sa2
Reviewer #3 (Public Review): https://doi.org/10.7554/eLife.93223.3.sa3
Author response https://doi.org/10.7554/eLife.93223.3.sa4

Additional files
Supplementary files
•  MDAR checklist 

https://doi.org/10.7554/eLife.93223
http://orcid.org/0000-0001-5404-2183
https://orcid.org/0000-0002-3685-7503
https://doi.org/10.7554/eLife.93223.3.sa1
https://doi.org/10.7554/eLife.93223.3.sa2
https://doi.org/10.7554/eLife.93223.3.sa3
https://doi.org/10.7554/eLife.93223.3.sa4


 Research article﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Structural Biology and Molecular Biophysics

Lao et al. eLife 2024;13:RP93223. DOI: https://doi.org/10.7554/eLife.93223 � 15 of 39

Data availability
Hi-C data (https://data.4dnucleome.org, accession number: 4DNFIB59T7NN). SON TSA-seq data 
(https://data.4dnucleome.org, accession number: pulldown data 4DNEX6U8TS3Y, control data 
4DNEXI7XUWFK). LaminB DamID data (https://data.4dnucleome.org, accession number 4DNESX-
Z4FW4T). The software is available at https://github.com/ZhangGroup-MITChemistry/OpenNu-
cleome (copy archived at ZhangGroup-MITChemistry, 2024).

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

van Steensel B, NKI 2017 LaminB1 DamID of HFFc6 
Tier 1 cells – cells were 
transduced with virus 
expressing Dam-LaminB1, 
gDNA was harvested after 
4 days and processed for 
DamID-seq

https://​data.​
4dnucleome.​
org/​experiment-​
set-​replicates/​
4DNESXZ4FW4T/

4DN Data Portal, 
4DNESXZ4FW4T

Zhang L, Zhang 
Y, Chen Y, 
Gholamalamdari 
O, Wang Y, Ma J, 
Belmont AS

2020 Set of Input for SON Ab2 
TSA-seq version 2 Reaction 
Condition 2 (PBS 50% 
Sucrose) Enhancement 
Condition E (1:300 
tyramide-biotin, 30 minute 
reaction) on HFFc6 cells

https://​data.​
4dnucleome.​
org/​experiment-​
set-​replicates/​
4DNESB5I8TGR

4DN Data Portal, 
4DNEXI7XUWFK

Gholamalamdari O, 
van Schaik T, Wang 
Y, Kumar P, Zhang L, 
Zhang Y, Hernandez 
Gonzalez GA, Vouzas 
AE, Zhao PA, Gilbert 
DA, Ma J, van 
Steensel B, Belmont 
AS

2024 TSA-seq against SON 
protein on HFFc6 (Tier 1)

https://​data.​
4dnucleome.​org/​
experiments-​tsaseq/​
4DNEX6U8TS3Y

4DN Data Portal, 
4DNEX6U8TS3Y

Krietenstein N, 
Abraham S, Venev SV, 
Abdennur N, Gibcus 
J, Hsieh TS, Parsi 
KM, Yang L, Maehr R, 
Mirny LA, Dekker J, 
Rando OJ

2020 Ultrastructural Details of 
Mammalian Chromosome 
Architecture

https://​data.​
4dnucleome.​
org/​publications/​
a716e6b4-​9cfa-​4f8d-​
a2c7-​cabf21d42b95

4DN Data Portal, 
4DNFIB59T7NN

van Steensel B 2017 DamID-seq with DAM-
LMNB1 on HFFc6 (Tier 1)

https://​data.​
4dnucleome.​org/​
experiments-​damid/​
4DNEXFUGLVQA/

4DN Data Portal, 
4DNEXFUGLVQA

References
Amiad-Pavlov D, Lorber D, Bajpai G, Reuveny A, Roncato F, Alon R, Safran S, Volk T. 2021. Live imaging of 

chromatin distribution reveals novel principles of nuclear architecture and chromatin compartmentalization. 
Science Advances 7:eabf6251. DOI: https://doi.org/10.1126/sciadv.abf6251, PMID: 34078602

Bajpai G, Amiad Pavlov D, Lorber D, Volk T, Safran S. 2021. Mesoscale phase separation of chromatin in the 
nucleus. eLife 10:e63976. DOI: https://doi.org/10.7554/eLife.63976, PMID: 33942717

Bianco S, Lupiáñez DG, Chiariello AM, Annunziatella C, Kraft K, Schöpflin R, Wittler L, Andrey G, Vingron M, 
Pombo A, Mundlos S, Nicodemi M. 2018. Polymer physics predicts the effects of structural variants on 
chromatin architecture. Nature Genetics 50:662–667. DOI: https://doi.org/10.1038/s41588-018-0098-8, PMID: 
29662163

Bickmore WA. 2013. The spatial organization of the human genome. Annual Review of Genomics and Human 
Genetics 14:67–84. DOI: https://doi.org/10.1146/annurev-genom-091212-153515, PMID: 23875797

Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ, Fudenberg G, Imakaev M, Mirny LA, Wu CT, Zhuang X. 
2016. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 
529:418–422. DOI: https://doi.org/10.1038/nature16496, PMID: 26760202

Boninsegna L, Yildirim A, Polles G, Zhan Y, Quinodoz SA, Finn EH, Guttman M, Zhou XJ, Alber F. 2022. 
Integrative genome modeling platform reveals essentiality of rare contact events in 3D genome organizations. 
Nature Methods 19:938–949. DOI: https://doi.org/10.1038/s41592-022-01527-x, PMID: 35817938

https://doi.org/10.7554/eLife.93223
https://data.4dnucleome.org
https://data.4dnucleome.org
https://data.4dnucleome.org
https://github.com/ZhangGroup-MITChemistry/OpenNucleome
https://github.com/ZhangGroup-MITChemistry/OpenNucleome
https://data.4dnucleome.org/experiment-set-replicates/4DNESXZ4FW4T/
https://data.4dnucleome.org/experiment-set-replicates/4DNESXZ4FW4T/
https://data.4dnucleome.org/experiment-set-replicates/4DNESXZ4FW4T/
https://data.4dnucleome.org/experiment-set-replicates/4DNESXZ4FW4T/
https://data.4dnucleome.org/experiment-set-replicates/4DNESXZ4FW4T/
https://data.4dnucleome.org/experiment-set-replicates/4DNESB5I8TGR
https://data.4dnucleome.org/experiment-set-replicates/4DNESB5I8TGR
https://data.4dnucleome.org/experiment-set-replicates/4DNESB5I8TGR
https://data.4dnucleome.org/experiment-set-replicates/4DNESB5I8TGR
https://data.4dnucleome.org/experiment-set-replicates/4DNESB5I8TGR
https://data.4dnucleome.org/experiments-tsaseq/4DNEX6U8TS3Y
https://data.4dnucleome.org/experiments-tsaseq/4DNEX6U8TS3Y
https://data.4dnucleome.org/experiments-tsaseq/4DNEX6U8TS3Y
https://data.4dnucleome.org/experiments-tsaseq/4DNEX6U8TS3Y
https://data.4dnucleome.org/publications/a716e6b4-9cfa-4f8d-a2c7-cabf21d42b95
https://data.4dnucleome.org/publications/a716e6b4-9cfa-4f8d-a2c7-cabf21d42b95
https://data.4dnucleome.org/publications/a716e6b4-9cfa-4f8d-a2c7-cabf21d42b95
https://data.4dnucleome.org/publications/a716e6b4-9cfa-4f8d-a2c7-cabf21d42b95
https://data.4dnucleome.org/publications/a716e6b4-9cfa-4f8d-a2c7-cabf21d42b95
https://data.4dnucleome.org/experiments-damid/4DNEXFUGLVQA/
https://data.4dnucleome.org/experiments-damid/4DNEXFUGLVQA/
https://data.4dnucleome.org/experiments-damid/4DNEXFUGLVQA/
https://data.4dnucleome.org/experiments-damid/4DNEXFUGLVQA/
https://doi.org/10.1126/sciadv.abf6251
http://www.ncbi.nlm.nih.gov/pubmed/34078602
https://doi.org/10.7554/eLife.63976
http://www.ncbi.nlm.nih.gov/pubmed/33942717
https://doi.org/10.1038/s41588-018-0098-8
http://www.ncbi.nlm.nih.gov/pubmed/29662163
https://doi.org/10.1146/annurev-genom-091212-153515
http://www.ncbi.nlm.nih.gov/pubmed/23875797
https://doi.org/10.1038/nature16496
http://www.ncbi.nlm.nih.gov/pubmed/26760202
https://doi.org/10.1038/s41592-022-01527-x
http://www.ncbi.nlm.nih.gov/pubmed/35817938


 Research article﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Structural Biology and Molecular Biophysics

Lao et al. eLife 2024;13:RP93223. DOI: https://doi.org/10.7554/eLife.93223 � 16 of 39

Brackley CA, Liebchen B, Michieletto D, Mouvet F, Cook PR, Marenduzzo D. 2017. Ephemeral protein binding to 
DNA shapes stable nuclear bodies and chromatin domains. Biophysical Journal 112:1085–1093. DOI: https://​
doi.org/10.1016/j.bpj.2017.01.025, PMID: 28355537

Brahmachari S, Contessoto VG, Di Pierro M, Onuchic JN. 2022. Shaping the genome via lengthwise compaction, 
phase separation, and lamina adhesion. Nucleic Acids Research 50:4258–4271. DOI: https://doi.org/10.1093/​
nar/gkac231, PMID: 35420130

Bronshtein I, Kepten E, Kanter I, Berezin S, Lindner M, Redwood AB, Mai S, Gonzalo S, Foisner R, Shav-Tal Y, 
Garini Y. 2015. Loss of lamin A function increases chromatin dynamics in the nuclear interior. Nature 
Communications 6:8044. DOI: https://doi.org/10.1038/ncomms9044, PMID: 26299252

Bronstein I, Israel Y, Kepten E, Mai S, Shav-Tal Y, Barkai E, Garini Y. 2009. Transient anomalous diffusion of 
telomeres in the nucleus of mammalian cells. Physical Review Letters 103:018102. DOI: https://doi.org/10.​
1103/PhysRevLett.103.018102

Buckle A, Brackley CA, Boyle S, Marenduzzo D, Gilbert N. 2018. Polymer simulations of heteromorphic 
chromatin predict the 3D folding of Complex Genomic Loci. Molecular Cell 72:786–797. DOI: https://doi.org/​
10.1016/j.molcel.2018.09.016, PMID: 30344096

Caragine CM, Haley SC, Zidovska A. 2018. Surface fluctuations and coalescence of nucleolar droplets in the 
human cell nucleus. Physical Review Letters 121:148101. DOI: https://doi.org/10.1103/PhysRevLett.121.​
148101, PMID: 30339413

Caragine CM, Haley SC, Zidovska A. 2019. Nucleolar dynamics and interactions with nucleoplasm in living cells. 
eLife 8:e47533. DOI: https://doi.org/10.7554/eLife.47533, PMID: 31769409

Carrero G, Hendzel MJ, de Vries G. 2006. Modelling the compartmentalization of splicing factors. Journal of 
Theoretical Biology 239:298–312. DOI: https://doi.org/10.1016/j.jtbi.2005.07.019, PMID: 16162356

Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. 2015. RNA imaging: spatially resolved, highly 
multiplexed RNA profiling in single cells. Science 348:aaa6090. DOI: https://doi.org/10.1126/science.aaa6090, 
PMID: 25858977

Chen B, Guan J, Huang B. 2016. Imaging specific genomic DNA in living cells. Annual Review of Biophysics 
45:1–23. DOI: https://doi.org/10.1146/annurev-biophys-062215-010830

Chen Y, Zhang Y, Wang Y, Zhang L, Brinkman EK, Adam SA, Goldman R, van Steensel B, Ma J, Belmont AS. 
2018. Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. 
The Journal of Cell Biology 217:4025–4048. DOI: https://doi.org/10.1083/jcb.201807108, PMID: 30154186

Chen Y, Belmont AS. 2019. Genome organization around nuclear speckles. Current Opinion in Genetics & 
Development 55:91–99. DOI: https://doi.org/10.1016/j.gde.2019.06.008

Chu X, Wang J. 2021. Deciphering the molecular mechanism of the cancer formation by chromosome structural 
dynamics. PLOS Computational Biology 17:e1009596. DOI: https://doi.org/10.1371/journal.pcbi.1009596, 
PMID: 34752443

Chu X, Wang J. 2022. Quantifying chromosome structural reorganizations during differentiation, reprogramming, 
and transdifferentiation. Physical Review Letters 129:068102. DOI: https://doi.org/10.1103/PhysRevLett.129.​
068102, PMID: 36018639

Contessoto VG, Dudchenko O, Aiden EL, Wolynes PG, Onuchic JN, Di Pierro M. 2023. Interphase chromosomes 
of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues. Nature Communications 
14:326. DOI: https://doi.org/10.1038/s41467-023-35909-2, PMID: 36658127

Dekker J, Rippe K, Dekker M, Kleckner N. 2002. Capturing chromosome conformation. Science 295:1306–1311. 
DOI: https://doi.org/10.1126/science.1067799, PMID: 11847345

Dekker J, Marti-Renom MA, Mirny LA. 2013. Exploring the three-dimensional organization of genomes: 
interpreting chromatin interaction data. Nature Reviews. Genetics 14:390–403. DOI: https://doi.org/10.1038/​
nrg3454, PMID: 23657480

Dekker J, Heard E. 2015. Structural and functional diversity of Topologically Associating Domains. FEBS Letters 
589:2877–2884. DOI: https://doi.org/10.1016/j.febslet.2015.08.044, PMID: 26348399

Dekker J, Mirny L. 2016. The 3D genome as moderator of chromosomal communication. Cell 164:1110–1121. 
DOI: https://doi.org/10.1016/j.cell.2016.02.007, PMID: 26967279

Dekker Job, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, Mirny LA, O’Shea CC, Park PJ, Ren B, 
Politz JCR, Shendure J, Zhong S, 4D Nucleome Network. 2017. The 4D nucleome project. Nature 549:219–
226. DOI: https://doi.org/10.1038/nature23884, PMID: 28905911

Di Pierro M, Zhang B, Aiden EL, Wolynes PG, Onuchic JN. 2016. Transferable model for chromosome 
architecture. PNAS 113:12168–12173. DOI: https://doi.org/10.1073/pnas.1613607113, PMID: 27688758

Di Pierro M, Cheng RR, Lieberman Aiden E, Wolynes PG, Onuchic JN. 2017. De novo prediction of human 
chromosome structures: Epigenetic marking patterns encode genome architecture. PNAS 114:12126–12131. 
DOI: https://doi.org/10.1073/pnas.1714980114, PMID: 29087948

Di Pierro M, Potoyan DA, Wolynes PG, Onuchic JN. 2018. Anomalous diffusion, spatial coherence, and 
viscoelasticity from the energy landscape of human chromosomes. PNAS 115:7753–7758. DOI: https://doi.org/​
10.1073/pnas.1806297115, PMID: 29987017

Dixon JR, Gorkin DU, Ren B. 2016. Chromatin domains: The unit of chromosome organization. Molecular Cell 
62:668–680. DOI: https://doi.org/10.1016/j.molcel.2016.05.018

Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, Aiden EL. 2016. Juicer provides a one-click 
system for analyzing loop-resolution Hi-C experiments. Cell Systems 3:95–98. DOI: https://doi.org/10.1016/j.​
cels.2016.07.002, PMID: 27467249

https://doi.org/10.7554/eLife.93223
https://doi.org/10.1016/j.bpj.2017.01.025
https://doi.org/10.1016/j.bpj.2017.01.025
http://www.ncbi.nlm.nih.gov/pubmed/28355537
https://doi.org/10.1093/nar/gkac231
https://doi.org/10.1093/nar/gkac231
http://www.ncbi.nlm.nih.gov/pubmed/35420130
https://doi.org/10.1038/ncomms9044
http://www.ncbi.nlm.nih.gov/pubmed/26299252
https://doi.org/10.1103/PhysRevLett.103.018102
https://doi.org/10.1103/PhysRevLett.103.018102
https://doi.org/10.1016/j.molcel.2018.09.016
https://doi.org/10.1016/j.molcel.2018.09.016
http://www.ncbi.nlm.nih.gov/pubmed/30344096
https://doi.org/10.1103/PhysRevLett.121.148101
https://doi.org/10.1103/PhysRevLett.121.148101
http://www.ncbi.nlm.nih.gov/pubmed/30339413
https://doi.org/10.7554/eLife.47533
http://www.ncbi.nlm.nih.gov/pubmed/31769409
https://doi.org/10.1016/j.jtbi.2005.07.019
http://www.ncbi.nlm.nih.gov/pubmed/16162356
https://doi.org/10.1126/science.aaa6090
http://www.ncbi.nlm.nih.gov/pubmed/25858977
https://doi.org/10.1146/annurev-biophys-062215-010830
https://doi.org/10.1083/jcb.201807108
http://www.ncbi.nlm.nih.gov/pubmed/30154186
https://doi.org/10.1016/j.gde.2019.06.008
https://doi.org/10.1371/journal.pcbi.1009596
http://www.ncbi.nlm.nih.gov/pubmed/34752443
https://doi.org/10.1103/PhysRevLett.129.068102
https://doi.org/10.1103/PhysRevLett.129.068102
http://www.ncbi.nlm.nih.gov/pubmed/36018639
https://doi.org/10.1038/s41467-023-35909-2
http://www.ncbi.nlm.nih.gov/pubmed/36658127
https://doi.org/10.1126/science.1067799
http://www.ncbi.nlm.nih.gov/pubmed/11847345
https://doi.org/10.1038/nrg3454
https://doi.org/10.1038/nrg3454
http://www.ncbi.nlm.nih.gov/pubmed/23657480
https://doi.org/10.1016/j.febslet.2015.08.044
http://www.ncbi.nlm.nih.gov/pubmed/26348399
https://doi.org/10.1016/j.cell.2016.02.007
http://www.ncbi.nlm.nih.gov/pubmed/26967279
https://doi.org/10.1038/nature23884
http://www.ncbi.nlm.nih.gov/pubmed/28905911
https://doi.org/10.1073/pnas.1613607113
http://www.ncbi.nlm.nih.gov/pubmed/27688758
https://doi.org/10.1073/pnas.1714980114
http://www.ncbi.nlm.nih.gov/pubmed/29087948
https://doi.org/10.1073/pnas.1806297115
https://doi.org/10.1073/pnas.1806297115
http://www.ncbi.nlm.nih.gov/pubmed/29987017
https://doi.org/10.1016/j.molcel.2016.05.018
https://doi.org/10.1016/j.cels.2016.07.002
https://doi.org/10.1016/j.cels.2016.07.002
http://www.ncbi.nlm.nih.gov/pubmed/27467249


 Research article﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Structural Biology and Molecular Biophysics

Lao et al. eLife 2024;13:RP93223. DOI: https://doi.org/10.7554/eLife.93223 � 17 of 39

Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang LP, Simmonett AC, Harrigan MP, 
Stern CD, Wiewiora RP, Brooks BR, Pande VS. 2017. OpenMM 7: Rapid development of high performance 
algorithms for molecular dynamics. PLOS Computational Biology 13:e1005659. DOI: https://doi.org/10.1371/​
journal.pcbi.1005659, PMID: 28746339

Ester M, Kriegel HP, Sander J, Xu X. 1996. A density-based algorithm for discovering clusters in large spatial 
databases with noise. KDD-96 Proceedings. 226–231.

Finn EH, Misteli T. 2019. Molecular basis and biological function of variability in spatial genome organization. 
Science 365:eaaw9498. DOI: https://doi.org/10.1126/science.aaw9498, PMID: 31488662

Fraser P, Bickmore W. 2007. Nuclear organization of the genome and the potential for gene regulation. Nature 
447:413–417. DOI: https://doi.org/10.1038/nature05916, PMID: 17522674

Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. 2016. Formation of chromosomal 
domains by loop extrusion. Cell Reports 15:2038–2049. DOI: https://doi.org/10.1016/j.celrep.2016.04.085, 
PMID: 27210764

Fujishiro S, Sasai M. 2022. Generation of dynamic three-dimensional genome structure through phase 
separation of chromatin. PNAS 119:e2109838119. DOI: https://doi.org/10.1073/pnas.2109838119, PMID: 
35617433

Furlong EEM, Levine M. 2018. Developmental enhancers and chromosome topology. Science 361:1341–1345. 
DOI: https://doi.org/10.1126/science.aau0320, PMID: 30262496

Galganski L, Urbanek MO, Krzyzosiak WJ. 2017. Nuclear speckles: molecular organization, biological function 
and role in disease. Nucleic Acids Research 45:10350–10368. DOI: https://doi.org/10.1093/nar/gkx759, PMID: 
28977640

Ganai N, Sengupta S, Menon GI. 2014. Chromosome positioning from activity-based segregation. Nucleic Acids 
Research 42:4145–4159. DOI: https://doi.org/10.1093/nar/gkt1417, PMID: 24459132

Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F, Dekker J, Tiana G, Heard E. 2014. Predictive polymer modeling 
reveals coupled fluctuations in chromosome conformation and transcription. Cell 157:950–963. DOI: https://​
doi.org/10.1016/j.cell.2014.03.025, PMID: 24813616

Gorkin DU, Leung D, Ren B. 2014. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 
14:762–775. DOI: https://doi.org/10.1016/j.stem.2014.05.017, PMID: 24905166

Goychuk A, Kannan D, Chakraborty AK, Kardar M. 2023. Polymer folding through active processes recreates 
features of genome organization. PNAS 120:e2221726120. DOI: https://doi.org/10.1073/pnas.2221726120, 
PMID: 37155885

Greil F, Moorman C, Steensel B. 2006. DamID: mapping of in vivo protein–genome interactions using tethered 
DNA adenine methyltransferase. Methods in Enzymology 410:342–359. DOI: https://doi.org/10.1016/S0076-​
6879(06)10016-6

Handwerger KE, Cordero JA, Gall JG. 2005. Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus 
have a low-density, sponge-like structure. Molecular Biology of the Cell 16:202–211. DOI: https://doi.org/10.​
1091/mbc.e04-08-0742, PMID: 15509651

Hetzer MW. 2010. The nuclear envelope. Cold Spring Harbor Perspectives in Biology 2:a000539. DOI: https://​
doi.org/10.1101/cshperspect.a000539, PMID: 20300205

Hübner MR, Eckersley-Maslin MA, Spector DL. 2013. Chromatin organization and transcriptional regulation. 
Current Opinion in Genetics & Development 23:89–95. DOI: https://doi.org/10.1016/j.gde.2012.11.006

Jack A, Kim Y, Strom AR, Lee DSW, Williams B, Schaub JM, Kellogg EH, Finkelstein IJ, Ferro LS, Yildiz A, 
Brangwynne CP. 2022. Compartmentalization of telomeres through DNA-scaffolded phase separation. 
Developmental Cell 57:277–290.. DOI: https://doi.org/10.1016/j.devcel.2021.12.017, PMID: 35077681

Jerkovic I, Cavalli G. 2021. Understanding 3D genome organization by multidisciplinary methods. Nature 
Reviews. Molecular Cell Biology 22:511–528. DOI: https://doi.org/10.1038/s41580-021-00362-w, PMID: 
33953379

Jiang Z, Qi Y, Kamat K, Zhang B. 2022. Phase separation and correlated motions in motorized genome. The 
Journal of Physical Chemistry. B 126:5619–5628. DOI: https://doi.org/10.1021/acs.jpcb.2c03238, PMID: 
35858189

Jost D, Carrivain P, Cavalli G, Vaillant C. 2014. Modeling epigenome folding: formation and dynamics of 
topologically associated chromatin domains. Nucleic Acids Research 42:9553–9561. DOI: https://doi.org/10.​
1093/nar/gku698, PMID: 25092923

Kadam S, Kumari K, Manivannan V, Dutta S, Mitra MK, Padinhateeri R. 2023. Predicting scale-dependent 
chromatin polymer properties from systematic coarse-graining. Nature Communications 14:4108. DOI: https://​
doi.org/10.1038/s41467-023-39907-2, PMID: 37433821

Kamat K, Lao Z, Qi Y, Wang Y, Ma J, Zhang B. 2023. Compartmentalization with nuclear landmarks yields 
random, yet precise, genome organization. Biophysical Journal 122:1376–1389. DOI: https://doi.org/10.1016/j.​
bpj.2023.03.003, PMID: 36871158

Kingma DP, Ba J. 2014 Adam: A Method for Stochastic Optimization. arXiv. DOI: https://doi.org/10.48550/arXiv.​
1412.6980

Krietenstein N, Abraham S, Venev SV, Abdennur N, Gibcus J, Hsieh T-HS, Parsi KM, Yang L, Maehr R, Mirny LA, 
Dekker J, Rando OJ. 2020. Ultrastructural details of mammalian chromosome architecture. Molecular Cell 
78:554–565.. DOI: https://doi.org/10.1016/j.molcel.2020.03.003, PMID: 32213324

Kubo R. 1966. The fluctuation-dissipation theorem. Reports on Progress in Physics 29:255–284. DOI: https://doi.​
org/10.1088/0034-4885/29/1/306

https://doi.org/10.7554/eLife.93223
https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/10.1371/journal.pcbi.1005659
http://www.ncbi.nlm.nih.gov/pubmed/28746339
https://doi.org/10.1126/science.aaw9498
http://www.ncbi.nlm.nih.gov/pubmed/31488662
https://doi.org/10.1038/nature05916
http://www.ncbi.nlm.nih.gov/pubmed/17522674
https://doi.org/10.1016/j.celrep.2016.04.085
http://www.ncbi.nlm.nih.gov/pubmed/27210764
https://doi.org/10.1073/pnas.2109838119
http://www.ncbi.nlm.nih.gov/pubmed/35617433
https://doi.org/10.1126/science.aau0320
http://www.ncbi.nlm.nih.gov/pubmed/30262496
https://doi.org/10.1093/nar/gkx759
http://www.ncbi.nlm.nih.gov/pubmed/28977640
https://doi.org/10.1093/nar/gkt1417
http://www.ncbi.nlm.nih.gov/pubmed/24459132
https://doi.org/10.1016/j.cell.2014.03.025
https://doi.org/10.1016/j.cell.2014.03.025
http://www.ncbi.nlm.nih.gov/pubmed/24813616
https://doi.org/10.1016/j.stem.2014.05.017
http://www.ncbi.nlm.nih.gov/pubmed/24905166
https://doi.org/10.1073/pnas.2221726120
http://www.ncbi.nlm.nih.gov/pubmed/37155885
https://doi.org/10.1016/S0076-6879(06)10016-6
https://doi.org/10.1016/S0076-6879(06)10016-6
https://doi.org/10.1091/mbc.e04-08-0742
https://doi.org/10.1091/mbc.e04-08-0742
http://www.ncbi.nlm.nih.gov/pubmed/15509651
https://doi.org/10.1101/cshperspect.a000539
https://doi.org/10.1101/cshperspect.a000539
http://www.ncbi.nlm.nih.gov/pubmed/20300205
https://doi.org/10.1016/j.gde.2012.11.006
https://doi.org/10.1016/j.devcel.2021.12.017
http://www.ncbi.nlm.nih.gov/pubmed/35077681
https://doi.org/10.1038/s41580-021-00362-w
http://www.ncbi.nlm.nih.gov/pubmed/33953379
https://doi.org/10.1021/acs.jpcb.2c03238
http://www.ncbi.nlm.nih.gov/pubmed/35858189
https://doi.org/10.1093/nar/gku698
https://doi.org/10.1093/nar/gku698
http://www.ncbi.nlm.nih.gov/pubmed/25092923
https://doi.org/10.1038/s41467-023-39907-2
https://doi.org/10.1038/s41467-023-39907-2
http://www.ncbi.nlm.nih.gov/pubmed/37433821
https://doi.org/10.1016/j.bpj.2023.03.003
https://doi.org/10.1016/j.bpj.2023.03.003
http://www.ncbi.nlm.nih.gov/pubmed/36871158
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1016/j.molcel.2020.03.003
http://www.ncbi.nlm.nih.gov/pubmed/32213324
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1088/0034-4885/29/1/306


 Research article﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Structural Biology and Molecular Biophysics

Lao et al. eLife 2024;13:RP93223. DOI: https://doi.org/10.7554/eLife.93223 � 18 of 39

Lafontaine DLJ, Riback JA, Bascetin R, Brangwynne CP. 2021. The nucleolus as a multiphase liquid condensate. 
Nature Reviews. Molecular Cell Biology 22:165–182. DOI: https://doi.org/10.1038/s41580-020-0272-6, PMID: 
32873929

Laghmach R, Di Pierro M, Potoyan DA. 2020. Mesoscale liquid model of chromatin recapitulates nuclear order of 
eukaryotes. Biophysical Journal 118:2130–2140. DOI: https://doi.org/10.1016/j.bpj.2019.09.013, PMID: 
31623887

Laghmach R, Di Pierro M, Potoyan DA. 2021. The interplay of chromatin phase separation and lamina 
interactions in nuclear organization. Biophysical Journal 120:5005–5017. DOI: https://doi.org/10.1016/j.bpj.​
2021.10.012, PMID: 34653387

Lamond AI, Spector DL. 2003. Nuclear speckles: a model for nuclear organelles. Nature Reviews. Molecular Cell 
Biology 4:605–612. DOI: https://doi.org/10.1038/nrm1172, PMID: 12923522

Lappala A, Wang CY, Kriz A, Michalk H, Tan K, Lee JT, Sanbonmatsu KY. 2021. Four-dimensional chromosome 
reconstruction elucidates the spatiotemporal reorganization of the mammalian X chromosome. PNAS 118:118. 
DOI: https://doi.org/10.1073/pnas.2107092118, PMID: 34645712

Lee DSW, Wingreen NS, Brangwynne CP. 2021. Chromatin mechanics dictates subdiffusion and coarsening 
dynamics of embedded condensates. Biophysical Journal 120:318a. DOI: https://doi.org/10.1016/j.bpj.2020.​
11.2012

Li C, Ji A, Cao Z. 2007. Stressed Fibonacci spiral patterns of definite chirality. Applied Physics Letters 90:164102. 
DOI: https://doi.org/10.1063/1.2728578

Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, 
Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, 
Mirny LA, Lander ES, Dekker J. 2009. Comprehensive mapping of long-range interactions reveals folding 
principles of the human genome. Science 326:289–293. DOI: https://doi.org/10.1126/science.1181369

Lin X, Qi Y, Latham AP, Zhang B. 2021. Multiscale modeling of genome organization with maximum entropy 
optimization. The Journal of Chemical Physics 155:010901. DOI: https://doi.org/10.1063/5.0044150, PMID: 
34241389

Liu S, Zhang L, Quan H, Tian H, Meng L, Yang L, Feng H, Gao YQ. 2018. From 1D sequence to 3D chromatin 
dynamics and cellular functions: a phase separation perspective. Nucleic Acids Research 46:9367–9383. DOI: 
https://doi.org/10.1093/nar/gky633, PMID: 30053116

Liu S, Athreya A, Lao Z, Zhang B. 2024. From nucleosomes to compartments: physicochemical interactions 
underlying chromatin organization. Annual Review of Biophysics 01:53. DOI: https://doi.org/10.1146/annurev-​
biophys-030822-032650, PMID: 38346246

MacPherson Q, Beltran B, Spakowitz AJ. 2018. Bottom–up modeling of chromatin segregation due to 
epigenetic modifications. PNAS 115:12739–12744. DOI: https://doi.org/10.1073/pnas.1812268115

Maeshima K, Hihara S, Eltsov M. 2010. Chromatin structure: does the 30-nm fibre exist in vivo? Current Opinion 
in Cell Biology 22:291–297. DOI: https://doi.org/10.1016/j.ceb.2010.03.001, PMID: 20346642

McCord RP, Kaplan N, Giorgetti L. 2020. Chromosome conformation capture and beyond: toward an integrative 
view of chromosome structure and function. Molecular Cell 77:688–708. DOI: https://doi.org/10.1016/j.molcel.​
2019.12.021, PMID: 32001106

McInnes L, Healy J, Saul N, Großberger L. 2018. UMAP: uniform manifold approximation and projection. Journal 
of Open Source Software 3:861. DOI: https://doi.org/10.21105/joss.00861

Moshtagh N. 2005. Minimum volume enclosing ellipsoid. Convex Optimization 111:1–9.
Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P. 2013. Single-cell 

Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64. DOI: https://doi.org/10.1038/​
nature12593, PMID: 24067610

Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny L. 2018. Chromatin organization by an interplay of 
loop extrusion and compartmental segregation. Biophysical Journal 114:30a. DOI: https://doi.org/10.1016/j.​
bpj.2017.11.211

Oliveira Junior AB, Contessoto VG, Mello MF, Onuchic JN. 2021. A scalable computational approach for 
simulating complexes of multiple chromosomes. Journal of Molecular Biology 433:166700. DOI: https://doi.​
org/10.1016/j.jmb.2020.10.034

Park PJ. 2009. ChIP-seq: advantages and challenges of a maturing technology. Nature Reviews. Genetics 
10:669–680. DOI: https://doi.org/10.1038/nrg2641, PMID: 19736561

Parmar JJ, Woringer M, Zimmer C. 2019. How the genome folds: the biophysics of four-dimensional chromatin 
organization. Annual Review of Biophysics 48:231–253. DOI: https://doi.org/10.1146/annurev-biophys-052118-​
115638, PMID: 30835504

Pederson T. 2011. The nucleolus. Cold Spring Harbor Perspectives in Biology 3:a000638. DOI: https://doi.org/​
10.1101/cshperspect.a000638, PMID: 21106648

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, 
Dubourg V. 2011. Scikit-learn: machine learning in python. The Journal of Machine Learning Research 12:2825–
2830.

Platani M, Goldberg I, Lamond AI, Swedlow JR. 2002. Cajal Body dynamics and association with chromatin are 
ATP-dependent. Nature Cell Biology 4:502–508. DOI: https://doi.org/10.1038/ncb809

Qi Y, Zhang B. 2019. Predicting three-dimensional genome organization with chromatin states. PLOS 
Computational Biology 15:e1007024. DOI: https://doi.org/10.1371/journal.pcbi.1007024, PMID: 31181064

https://doi.org/10.7554/eLife.93223
https://doi.org/10.1038/s41580-020-0272-6
http://www.ncbi.nlm.nih.gov/pubmed/32873929
https://doi.org/10.1016/j.bpj.2019.09.013
http://www.ncbi.nlm.nih.gov/pubmed/31623887
https://doi.org/10.1016/j.bpj.2021.10.012
https://doi.org/10.1016/j.bpj.2021.10.012
http://www.ncbi.nlm.nih.gov/pubmed/34653387
https://doi.org/10.1038/nrm1172
http://www.ncbi.nlm.nih.gov/pubmed/12923522
https://doi.org/10.1073/pnas.2107092118
http://www.ncbi.nlm.nih.gov/pubmed/34645712
https://doi.org/10.1016/j.bpj.2020.11.2012
https://doi.org/10.1016/j.bpj.2020.11.2012
https://doi.org/10.1063/1.2728578
https://doi.org/10.1126/science.1181369
https://doi.org/10.1063/5.0044150
http://www.ncbi.nlm.nih.gov/pubmed/34241389
https://doi.org/10.1093/nar/gky633
http://www.ncbi.nlm.nih.gov/pubmed/30053116
https://doi.org/10.1146/annurev-biophys-030822-032650
https://doi.org/10.1146/annurev-biophys-030822-032650
http://www.ncbi.nlm.nih.gov/pubmed/38346246
https://doi.org/10.1073/pnas.1812268115
https://doi.org/10.1016/j.ceb.2010.03.001
http://www.ncbi.nlm.nih.gov/pubmed/20346642
https://doi.org/10.1016/j.molcel.2019.12.021
https://doi.org/10.1016/j.molcel.2019.12.021
http://www.ncbi.nlm.nih.gov/pubmed/32001106
https://doi.org/10.21105/joss.00861
https://doi.org/10.1038/nature12593
https://doi.org/10.1038/nature12593
http://www.ncbi.nlm.nih.gov/pubmed/24067610
https://doi.org/10.1016/j.bpj.2017.11.211
https://doi.org/10.1016/j.bpj.2017.11.211
https://doi.org/10.1016/j.jmb.2020.10.034
https://doi.org/10.1016/j.jmb.2020.10.034
https://doi.org/10.1038/nrg2641
http://www.ncbi.nlm.nih.gov/pubmed/19736561
https://doi.org/10.1146/annurev-biophys-052118-115638
https://doi.org/10.1146/annurev-biophys-052118-115638
http://www.ncbi.nlm.nih.gov/pubmed/30835504
https://doi.org/10.1101/cshperspect.a000638
https://doi.org/10.1101/cshperspect.a000638
http://www.ncbi.nlm.nih.gov/pubmed/21106648
https://doi.org/10.1038/ncb809
https://doi.org/10.1371/journal.pcbi.1007024
http://www.ncbi.nlm.nih.gov/pubmed/31181064


 Research article﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Structural Biology and Molecular Biophysics

Lao et al. eLife 2024;13:RP93223. DOI: https://doi.org/10.7554/eLife.93223 � 19 of 39

Qi Y, Reyes A, Johnstone SE, Aryee MJ, Bernstein BE, Zhang B. 2020. Data-driven polymer model for 
mechanistic exploration of diploid genome organization. Biophysical Journal 119:1905–1916. DOI: https://doi.​
org/10.1016/j.bpj.2020.09.009, PMID: 33086041

Qi Y, Zhang B. 2021. Chromatin network retards nucleoli coalescence. Nature Communications 12:6824. DOI: 
https://doi.org/10.1038/s41467-021-27123-9, PMID: 34819511

Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ, Disteche CM, Noble WS, Duan Z, Shendure J. 2017. 
Massively multiplex single-cell Hi-C. Nature Methods 14:263–266. DOI: https://doi.org/10.1038/nmeth.4155, 
PMID: 28135255

Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, 
Lander ES, Aiden EL. 2014. A 3D map of the human genome at kilobase resolution reveals principles of 
chromatin looping. Cell 159:1665–1680. DOI: https://doi.org/10.1016/j.cell.2014.11.021

Rosa A, Everaers R. 2008. Structure and dynamics of interphase chromosomes. PLOS Computational Biology 
4:e1000153. DOI: https://doi.org/10.1371/journal.pcbi.1000153, PMID: 18725929

Roux B, Weare J. 2013. On the statistical equivalence of restrained-ensemble simulations with the maximum 
entropy method. The Journal of Chemical Physics 138:084107. DOI: https://doi.org/10.1063/1.4792208, PMID: 
23464140

Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E, Zepeda-Ruiz L. 2012. Scalable parallel Monte Carlo 
algorithm for atomistic simulations of precipitation in alloys. Physical Review B 85:184203. DOI: https://doi.org/​
10.1103/PhysRevB.85.184203

Sanborn AL, Rao SSP, Huang S-C, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, 
Li J, Geeting KP, Gnirke A, Melnikov A, McKenna D, Stamenova EK, Lander ES, Aiden EL. 2015. Chromatin 
extrusion explains key features of loop and domain formation in wild-type and engineered genomes. PNAS 
112:E6456–E6465. DOI: https://doi.org/10.1073/pnas.1518552112, PMID: 26499245

Schmitt AD, Hu M, Ren B. 2016. Genome-wide mapping and analysis of chromosome architecture. Nature 
Reviews. Molecular Cell Biology 17:743–755. DOI: https://doi.org/10.1038/nrm.2016.104, PMID: 27580841

Schuette G, Ding X, Zhang B. 2023. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery 
and structure prediction. Biophysical Journal 122:3425–3438. DOI: https://doi.org/10.1016/j.bpj.2023.07.017, 
PMID: 37496267

Schuster-Böckler B, Lehner B. 2012. Chromatin organization is a major influence on regional mutation rates in 
human cancer cells. Nature 488:504–507. DOI: https://doi.org/10.1038/nature11273, PMID: 22820252

Seruga B, Zhang H, Bernstein LJ, Tannock IF. 2008. Cytokines and their relationship to the symptoms and 
outcome of cancer. Nature Reviews. Cancer 8:887–899. DOI: https://doi.org/10.1038/nrc2507, PMID: 
18846100

Shachar S, Voss TC, Pegoraro G, Sciascia N, Misteli T. 2015. Identification of gene positioning factors using 
high-throughput imaging mapping. Cell 162:911–923. DOI: https://doi.org/10.1016/j.cell.2015.07.035, PMID: 
26276637

Shi G, Liu L, Hyeon C, Thirumalai D. 2018. Interphase human chromosome exhibits out of equilibrium glassy 
dynamics. Nature Communications 9:3161. DOI: https://doi.org/10.1038/s41467-018-05606-6, PMID: 
30089831

Shi G, Thirumalai D. 2021. From Hi-C contact map to three-dimensional organization of interphase human 
chromosomes. Physical Review X 11:011051. DOI: https://doi.org/10.1103/PhysRevX.11.011051

Shin Y, Brangwynne CP. 2017. Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382. 
DOI: https://doi.org/10.1126/science.aaf4382, PMID: 28935776

Shin S, Shi G, Thirumalai D. 2023. From effective interactions extracted using Hi-C data to chromosome 
structures in conventional and inverted nuclei. PRX Life 1:013010. DOI: https://doi.org/10.1103/PRXLife.1.​
013010

Söding J, Zwicker D, Sohrabi-Jahromi S, Boehning M, Kirschbaum J. 2020. Mechanisms for active regulation of 
biomolecular condensates. Trends in Cell Biology 30:4–14. DOI: https://doi.org/10.1016/j.tcb.2019.10.006, 
PMID: 31753533

Spector DL, Lamond AI. 2011. Nuclear speckles. Cold Spring Harbor Perspectives in Biology 3:a000646. DOI: 
https://doi.org/10.1101/cshperspect.a000646, PMID: 20926517

Stephens AD, Banigan EJ, Marko JF. 2018. Separate roles for chromatin and lamins in nuclear mechanics. 
Nucleus 9:119–124. DOI: https://doi.org/10.1080/19491034.2017.1414118, PMID: 29227210

Strickfaden H, Tolsma TO, Sharma A, Underhill DA, Hansen JC, Hendzel MJ. 2020. Condensed chromatin 
behaves like a solid on the mesoscale invitro and in living cells. Cell 183:1772–1784.. DOI: https://doi.org/10.​
1016/j.cell.2020.11.027, PMID: 33326747

Strom AR, Biggs RJ, Banigan EJ, Wang X, Chiu K, Herman C, Collado J, Yue F, Ritland Politz JC, Tait LJ, 
Scalzo D, Telling A, Groudine M, Brangwynne CP, Marko JF, Stephens AD. 2021. HP1α is a chromatin 
crosslinker that controls nuclear and mitotic chromosome mechanics. eLife 10:e63972. DOI: https://doi.org/10.​
7554/eLife.63972, PMID: 34106828

Su JH, Zheng P, Kinrot SS, Bintu B, Zhuang X. 2020. Genome-scale imaging of the 3D organization and 
transcriptional activity of chromatin. Cell 182:1641–1659.. DOI: https://doi.org/10.1016/j.cell.2020.07.032, 
PMID: 32822575

Sun Q, Perez-Rathke A, Czajkowsky DM, Shao Z, Liang J. 2021. High-resolution single-cell 3D-models of 
chromatin ensembles during Drosophila embryogenesis. Nature Communications 12:205. DOI: https://doi.org/​
10.1038/s41467-020-20490-9, PMID: 33420075

https://doi.org/10.7554/eLife.93223
https://doi.org/10.1016/j.bpj.2020.09.009
https://doi.org/10.1016/j.bpj.2020.09.009
http://www.ncbi.nlm.nih.gov/pubmed/33086041
https://doi.org/10.1038/s41467-021-27123-9
http://www.ncbi.nlm.nih.gov/pubmed/34819511
https://doi.org/10.1038/nmeth.4155
http://www.ncbi.nlm.nih.gov/pubmed/28135255
https://doi.org/10.1016/j.cell.2014.11.021
https://doi.org/10.1371/journal.pcbi.1000153
http://www.ncbi.nlm.nih.gov/pubmed/18725929
https://doi.org/10.1063/1.4792208
http://www.ncbi.nlm.nih.gov/pubmed/23464140
https://doi.org/10.1103/PhysRevB.85.184203
https://doi.org/10.1103/PhysRevB.85.184203
https://doi.org/10.1073/pnas.1518552112
http://www.ncbi.nlm.nih.gov/pubmed/26499245
https://doi.org/10.1038/nrm.2016.104
http://www.ncbi.nlm.nih.gov/pubmed/27580841
https://doi.org/10.1016/j.bpj.2023.07.017
http://www.ncbi.nlm.nih.gov/pubmed/37496267
https://doi.org/10.1038/nature11273
http://www.ncbi.nlm.nih.gov/pubmed/22820252
https://doi.org/10.1038/nrc2507
http://www.ncbi.nlm.nih.gov/pubmed/18846100
https://doi.org/10.1016/j.cell.2015.07.035
http://www.ncbi.nlm.nih.gov/pubmed/26276637
https://doi.org/10.1038/s41467-018-05606-6
http://www.ncbi.nlm.nih.gov/pubmed/30089831
https://doi.org/10.1103/PhysRevX.11.011051
https://doi.org/10.1126/science.aaf4382
http://www.ncbi.nlm.nih.gov/pubmed/28935776
https://doi.org/10.1103/PRXLife.1.013010
https://doi.org/10.1103/PRXLife.1.013010
https://doi.org/10.1016/j.tcb.2019.10.006
http://www.ncbi.nlm.nih.gov/pubmed/31753533
https://doi.org/10.1101/cshperspect.a000646
http://www.ncbi.nlm.nih.gov/pubmed/20926517
https://doi.org/10.1080/19491034.2017.1414118
http://www.ncbi.nlm.nih.gov/pubmed/29227210
https://doi.org/10.1016/j.cell.2020.11.027
https://doi.org/10.1016/j.cell.2020.11.027
http://www.ncbi.nlm.nih.gov/pubmed/33326747
https://doi.org/10.7554/eLife.63972
https://doi.org/10.7554/eLife.63972
http://www.ncbi.nlm.nih.gov/pubmed/34106828
https://doi.org/10.1016/j.cell.2020.07.032
http://www.ncbi.nlm.nih.gov/pubmed/32822575
https://doi.org/10.1038/s41467-020-20490-9
https://doi.org/10.1038/s41467-020-20490-9
http://www.ncbi.nlm.nih.gov/pubmed/33420075


 Research article﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Structural Biology and Molecular Biophysics

Lao et al. eLife 2024;13:RP93223. DOI: https://doi.org/10.7554/eLife.93223 � 20 of 39

Swinbank R, James Purser R. 2006. Fibonacci grids: a novel approach to global modelling. Quarterly Journal of 
the Royal Meteorological Society 132:1769–1793. DOI: https://doi.org/10.1256/qj.05.227

Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N, White J, Shah S, Thomassie J, Suo S, Eng C-HL, Guttman M, 
Yuan G-C, Cai L. 2021. Integrated spatial genomics reveals global architecture of single nuclei. Nature 
590:344–350. DOI: https://doi.org/10.1038/s41586-020-03126-2, PMID: 33505024

Takizawa T, Meaburn KJ, Misteli T. 2008. The meaning of gene positioning. Cell 135:9–13. DOI: https://doi.org/​
10.1016/j.cell.2008.09.026, PMID: 18854147

Tseng Y, Lee JSH, Kole TP, Jiang I, Wirtz D. 2004. Micro-organization and visco-elasticity of the interphase 
nucleus revealed by particle nanotracking. Journal of Cell Science 117:2159–2167. DOI: https://doi.org/10.​
1242/jcs.01073, PMID: 15090601

van Steensel B, Belmont AS. 2017. Lamina-associated domains: links with chromosome architecture, 
heterochromatin, and gene repression. Cell 169:780–791. DOI: https://doi.org/10.1016/j.cell.2017.04.022, 
PMID: 28525751

Velazquez-Dones A, Hagopian JC, Ma CT, Zhong XY, Zhou H, Ghosh G, Fu XD, Adams JA. 2005. Mass 
spectrometric and kinetic analysis of ASF/SF2 phosphorylation by SRPK1 and Clk/Sty. The Journal of Biological 
Chemistry 280:41761–41768. DOI: https://doi.org/10.1074/jbc.M504156200, PMID: 16223727

Venev S, Abdennur N, Goloborodko A, Flyamer I, Fudenberg G, Nuebler J, Galitsyna A, Akgol B, Abraham S, 
Kerpedjiev P. 2020. Mirnylab/cooltools. 3.2. Zenodo. https://doi.org/10.5281/zenodo

Wang S, Su JH, Beliveau BJ, Bintu B, Moffitt JR, Wu CT, Zhuang X. 2017. Spatial organization of chromatin 
domains and compartments in single chromosomes. Biophysical Journal 112:217a. DOI: https://doi.org/10.​
1016/j.bpj.2016.11.1199

Wang Y, Zhang Y, Zhang R, van Schaik T, Zhang L, Sasaki T, Peric-Hupkes D, Chen Y, Gilbert DM, van Steensel B, 
Belmont AS, Ma J. 2021. SPIN reveals genome-wide landscape of nuclear compartmentalization. Genome 
Biology 22:36. DOI: https://doi.org/10.1186/s13059-020-02253-3, PMID: 33446254

Wen S, Ma D, Zhao M, Xie L, Wu Q, Gou L, Zhu C, Fan Y, Wang H, Yan J. 2020. Spatiotemporal single-cell 
analysis of gene expression in the mouse suprachiasmatic nucleus. Nature Neuroscience 23:456–467. DOI: 
https://doi.org/10.1038/s41593-020-0586-x, PMID: 32066983

Xie WJ, Zhang B. 2019. Learning the formation mechanism of domain-level chromatin states with epigenomics 
data. Biophysical Journal 116:2047–2056. DOI: https://doi.org/10.1016/j.bpj.2019.04.006, PMID: 31053260

Yildirim A, Hua N, Boninsegna L, Zhan Y, Polles G, Gong K, Hao S, Li W, Zhou XJ, Alber F. 2023. Evaluating the 
role of the nuclear microenvironment in gene function by population-based modeling. Nature Structural & 
Molecular Biology 30:1193–1206. DOI: https://doi.org/10.1038/s41594-023-01036-1

Zhang B, Wolynes PG. 2015. Topology, structures, and energy landscapes of human chromosomes. PNAS 
112:6062–6067. DOI: https://doi.org/10.1073/pnas.1506257112

Zhang B, Wolynes PG. 2017. Genomic energy landscapes. Biophysical Journal 112:427–433. DOI: https://doi.​
org/10.1016/j.bpj.2016.08.046, PMID: 27692923

Zhang L, Zhang Y, Chen Y, Gholamalamdari O, Wang Y, Ma J, Belmont AS. 2021. TSA-seq reveals a largely 
conserved genome organization relative to nuclear speckles with small position changes tightly correlated with 
gene expression changes. Genome Research 31:251–264. DOI: https://doi.org/10.1101/gr.266239.120, PMID: 
33355299

ZhangGroup-MITChemistry. 2024. OpenNucleome. 
swh:1:rev:380e3b5a65446081d6d4007362e121da18d8b1e9. Software Heritage. https://archive.​
softwareheritage.org/swh:1:dir:2649f9140bc6d3d080835ac19b0687b410296c63;origin=https://github.com/​
ZhangGroup-MITChemistry/OpenNucleome;visit=swh:1:snp:dd20433b273bbe7e5075650a434b447c050fb49a;​
anchor=swh:1:rev:380e3b5a65446081d6d4007362e121da18d8b1e9

Zhu L, Richardson TM, Wacheul L, Wei M-T, Feric M, Whitney G, Lafontaine DLJ, Brangwynne CP. 2019. 
Controlling the material properties and rRNA processing function of the nucleolus using light. PNAS 
116:17330–17335. DOI: https://doi.org/10.1073/pnas.1903870116

https://doi.org/10.7554/eLife.93223
https://doi.org/10.1256/qj.05.227
https://doi.org/10.1038/s41586-020-03126-2
http://www.ncbi.nlm.nih.gov/pubmed/33505024
https://doi.org/10.1016/j.cell.2008.09.026
https://doi.org/10.1016/j.cell.2008.09.026
http://www.ncbi.nlm.nih.gov/pubmed/18854147
https://doi.org/10.1242/jcs.01073
https://doi.org/10.1242/jcs.01073
http://www.ncbi.nlm.nih.gov/pubmed/15090601
https://doi.org/10.1016/j.cell.2017.04.022
http://www.ncbi.nlm.nih.gov/pubmed/28525751
https://doi.org/10.1074/jbc.M504156200
http://www.ncbi.nlm.nih.gov/pubmed/16223727
https://doi.org/10.5281/zenodo
https://doi.org/10.1016/j.bpj.2016.11.1199
https://doi.org/10.1016/j.bpj.2016.11.1199
https://doi.org/10.1186/s13059-020-02253-3
http://www.ncbi.nlm.nih.gov/pubmed/33446254
https://doi.org/10.1038/s41593-020-0586-x
http://www.ncbi.nlm.nih.gov/pubmed/32066983
https://doi.org/10.1016/j.bpj.2019.04.006
http://www.ncbi.nlm.nih.gov/pubmed/31053260
https://doi.org/10.1038/s41594-023-01036-1
https://doi.org/10.1073/pnas.1506257112
https://doi.org/10.1016/j.bpj.2016.08.046
https://doi.org/10.1016/j.bpj.2016.08.046
http://www.ncbi.nlm.nih.gov/pubmed/27692923
https://doi.org/10.1101/gr.266239.120
http://www.ncbi.nlm.nih.gov/pubmed/33355299
https://archive.softwareheritage.org/swh:1:dir:2649f9140bc6d3d080835ac19b0687b410296c63;origin=https://github.com/ZhangGroup-MITChemistry/OpenNucleome;visit=swh:1:snp:dd20433b273bbe7e5075650a434b447c050fb49a;anchor=swh:1:rev:380e3b5a65446081d6d4007362e121da18d8b1e9
https://archive.softwareheritage.org/swh:1:dir:2649f9140bc6d3d080835ac19b0687b410296c63;origin=https://github.com/ZhangGroup-MITChemistry/OpenNucleome;visit=swh:1:snp:dd20433b273bbe7e5075650a434b447c050fb49a;anchor=swh:1:rev:380e3b5a65446081d6d4007362e121da18d8b1e9
https://archive.softwareheritage.org/swh:1:dir:2649f9140bc6d3d080835ac19b0687b410296c63;origin=https://github.com/ZhangGroup-MITChemistry/OpenNucleome;visit=swh:1:snp:dd20433b273bbe7e5075650a434b447c050fb49a;anchor=swh:1:rev:380e3b5a65446081d6d4007362e121da18d8b1e9
https://archive.softwareheritage.org/swh:1:dir:2649f9140bc6d3d080835ac19b0687b410296c63;origin=https://github.com/ZhangGroup-MITChemistry/OpenNucleome;visit=swh:1:snp:dd20433b273bbe7e5075650a434b447c050fb49a;anchor=swh:1:rev:380e3b5a65446081d6d4007362e121da18d8b1e9
https://doi.org/10.1073/pnas.1903870116


 Research article﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Structural Biology and Molecular Biophysics

Lao et al. eLife 2024;13:RP93223. DOI: https://doi.org/10.7554/eLife.93223 � 21 of 39

Appendix 1
Components of the whole nucleus model
As outlined in the main text, the whole nucleus model consists of chromosomes, nucleoli, speckles, 
and the nuclear lamina. Below, we provide details on the particle-based representations of the 
various components, totaling 70542 coarse-grained beads. Abbreviations are frequently used for 
clarity in notation, with N for nucleus, La for lamina, No for nucleoli, and Sp for speckles.

Chromosomes as beads on the string polymers
We explicitly modeled the 46 human chromosomes as beads-on-a-string polymers. Each coarse-
grained bead represents a 100 KB genomic segment, totaling 60642 beads for the genome. We 
assigned each bead as either compartment type A, B, C, or N. The compartment assignments 
for types A and B were extracted from the Hi-C contact matrix for HFF cells (Krietenstein et al., 
2020) using the cooltools software (Venev et al., 2020), and compartment C were identified as 
centromeric regions based on the DNA sequence. Compartment N denotes genomic regions that 
cannot be assigned as A, B, or C due to a lack of Hi-C data.

The nuclear lamina as a particle-based mesh
The nuclear envelope provides an enclosure to confine DNA and a repressive environment to 
organize chromatin with specific interactions (Hetzer, 2010). To account for the role of the nuclear 
lamina while keeping our model simple, we approximate it with discrete particles uniformly placed 
on a sphere.

Following our previous work (Kamat et al., 2023), we used the Fibonacci grid to initialize the 
lamina particles, which form a uniform and almost equidistant network of lamina particles on 
the surface of the nucleus (Swinbank and James Purser, 2006; Li et  al., 2007). The Cartesian 
coordinates associated with the ith lamina particles are defined as

	﻿‍

xi = 2RN ×
(

1 − i
NLa − 1

)

yi =
√

R2
N − x2 × cos

[
iΦ
]

zi =
√

R2
N − x2 × sin

[
iΦ
]

‍�

(1)

where ‍NLa = 8000‍ represents the number of lamina particles, ‍i ∈
{

0, 1, . . . , NLa − 2, NLa − 1
}
‍, and 

‍
Φ = π ×

(
3 −

√
5
)
‍
 is the golden angle. We set ‍RN = 5µm‍ as the radius of the human foreskin 

fibroblasts (HFF) cell nucleus.

Nucleoli as phase-separated droplets
Nucleoli have been shown to behave as liquid droplets that form through phase separation 
(Lafontaine et al., 2021; Pederson, 2011; Shin and Brangwynne, 2017). We modeled the droplets 
with coarse-grained beads. While the composition of nucleoli is rather complex, we only used one 
type of particle for simplicity. In our simulations, we fixed the number of nucleolus particles, ‍NNo‍, 
based on the experimental concentration of nuclear protein NPM1, ‍c = 1µM‍ (Qi and Zhang, 2021; 
Kamat et al., 2023; Zhu et al., 2019). For example,

	﻿‍
NNo = 4π

3
· NA ·

(
RNo

)3 · c ≈ 300
‍�

(2)

where ‍NA‍ is the Avogadro constant and ‍RNo = 0.5µm‍ is the average nucleolous size (Caragine et al., 
2018; Caragine et al., 2019).

Speckles as phase-separated droplets undergoing chemical modifications
Similar to nucleoli, speckles have also been shown to behave as liquid droplets (Chen and Belmont, 
2019). However, one crucial unique feature of speckles is the constant chemical modifications of 
protein molecules comprising them, such as splicing factors (Spector and Lamond, 2011). The 
phosphorylation of these molecules has been argued to be essential for the dynamics and the 
number of speckles. Therefore, we implemented a kinetic scheme introduced by de Vries and 
coworkers to account for the chemical reactions. In this scheme, we consider two types of speckle 

https://doi.org/10.7554/eLife.93223
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molecules: phosphorylated (Sp-P) and de-phosphorylated (Sp-dP). Only Sp-dP particles share 
attractive interactions.

The two protein types can inter-convert via chemical reactions with a transition probability matrix 
T defined as

	﻿‍

T =

Sp − dP Sp−P Sp − dP Sp−P

Sp − dP

Sp − P

∥∥∥∥∥∥
p11 p12

p11 p12

∥∥∥∥∥∥
=

Sp − dP

Sp − P

∥∥∥∥∥∥
0.8 0.2

0.2 0.8

∥∥∥∥∥∥
‍�

(3)

For simplicity, we assume the forward transition rate from Sp-P to Sp-dP particles is identical to 
the reverse rate. Because of the symmetry in transition rates, the average number of dP particles 

‍
⟨
NSp-dP

⟩
= 0.5NSp‍, where ‍NSp‍ is the total number of speckle particles.

We chose the transition probability as 0.2 to be consistent with the phosphorylation rate. In 
particular, we estimate the rate as

	﻿‍
k12 = p12 × τ−1 = 0.2 × 1

4000 × 0.005 × 0.65s
= 0.0154 s−1

‍�
(4)

where τ is the time interval between consecutive attempts of chemical reactions. As detailed in 
section ‘Molecular dynamics simulation details’, the reactions were attempted every 4000 simulation 
steps, with a time step of 0.005. The time unit in our simulations is 0.65 s (see section ‘Mapping the 
reduced time unit to real time’). The estimated value for k12 is in the same order as the experimental 
phosphorylation rate (Velazquez-Dones et al., 2005).

We estimated the total number of speckle particles as follows. Assuming that there is a total 
of 30 speckles (Galganski et al., 2017), we have ‍NSp-dP = 30 × Ns‍, where ‍Ns‍ is the number of Sp-
dP particles in each cluster. This estimation assumes that only Sp-dP particles share attractive 
interactions and contribute to cluster formation. From the experimentally estimated relative mass 
densities of the protein concentrations in the speckle and nucleolus droplet as ‍

170
203‍ (Handwerger 

et al., 2005), we have

	﻿‍
Ns × m/0.33

100 × m/0.53 = 170
203

.
‍�

(5)

We assumed that speckle and nucleolus particles have identical mass and each nucleolus has 
100 particles. The radius for speckle and nucleolus was approximated as 0.3 and ‍0.5µm‍, yielding 
‍Ns ≈ 20‍ and ‍NSp-dP ≈ 600‍. Because of the kinetic scheme defined in Equation 3, only parts of Sp-
dP particles will participate in droplet formation during the simulations. Therefore, we increase the 
particle number and set ‍

⟨
NSp-dP

⟩
= 800‍, which yields ‍NSp = 1600‍.

Energy function of the whole nucleus model
As detailed below, the energy function of the whole nucleus, ‍UNucleus‍, consists of interactions among 
chromosomes, among nuclear landmarks, and cross interactions between the two. Therefore,

	﻿‍ UNucleus = UGenome + UNL + UGN‍� (6)

Hi-C inspired interactions for the diploid human genome
The energy function of the genome model is defined as

	﻿‍ UGenome = Uhomo
(
r
)

+ Uideal
(
r
)

+ Ucompt
(
r
)

+ Uinter
(
r
)

.‍� (7)

‍Uhomo
(
r
)
‍ determines a generic polymeric topology of chromosomes with excluded volume effect:

	﻿‍
Uhomo

(
r
)

=
∑

i

[
ubond

(
ri,i+1

)
+ uangle

(→r i,i+1, →r i+1,i+2

)]
+ Usc

(
r
)
‍�

(8)

where the subscripts ‍i, i + 1‍, and i+2 represent the index of ‍i
th,

(
i + 1

)th
‍, and ‍

(
i + 2

)th
‍ beads, 

respectively, and ‍ubond
(
ri,i+1

)
‍ and ‍uangle

(
ri,i+1, ri+1,i+2

)
‍ denote the bonding and angular potential 

applied for neighboring beads to ensure the connectivity of the chromatin chain and follow:
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	﻿‍

ubond
(
ri,i+1

)
= K2

(
r − r0

)2 + K3
(
r − r0

)3 + K4
(
r − r0

)4 , K2 = K3 = K4 = 20ϵ

uangle

(→r i,i+1, →r i+1,i+2

)
= Ka

[
1 − cos

(
θ − π

)]
, Ka = 2ϵ, cos θ =

→r i,i+1 ·
→r i+1,i+2

|→r i,i+1| · |→r i+1,i+2|‍�

(9)

where, as discussed in Equation 32, ‍r0 = 0.5σ‍ represents the size of the chromatin bead. The soft-
core potential provides excluded volume effects for pairs of beads from the same or different 
chromosomes and follows:

	﻿‍
Usc

(
r
)

=
∑
j>i

usc
(
rij
)
‍�

(10)

where ‍usc
(
rij
)
‍ denotes a soft-core potential added to each pair formed by beads index i and j to 

account for the excluded volume effect while allowing the finite probability of cross-over of polymer 
chains.

	﻿‍

usc
(
rij
)

=





0.5Ecut

(
1 + tanh

[
2ULJ

(
rij
)

Ecut
− 1

])
, rij ≤ rcut

ULJ
(
rij
)

, rcut < rij ≤ 0.5 × 21/6σ

0, rij > 0.5 × 21/6σ ‍�

(11)

which corresponds to the Lennard–Jones potential capped off at a finite volume within a repulsive 
core to allow for chain crossing at a finite energy cost. ‍Ecut = 4ϵ‍ and ‍rcut‍ is chosen as the distance at 
which ‍ULJ

(
r
)

= 0.5Ecut‍.

‍Uideal
(
r
)
‍ is the intra-chromosomal potential applied to genomic loci within the same chromosome, 

while ‍Ucompt
(
r
)
‍ is the compartment-specific interaction potential. The ideal potential, which can be 

rigorously derived following the maximum entropy principle (Roux and Weare, 2013; Zhang and 
Wolynes, 2015), adopts the following form:

	﻿‍
Uideal

(
r
)

=
∑

I

∑
i,j∈I

αideal(|i − j|) f
(
rij
)
‍�

(12)

where I indexes over each chromosome and i and j index over pair of beads on that chromosome. 
‍αideal(|i − j|)‍ depends only on the sequence separation between two beads i and j. ‍f(rij)‍ measures the 
probability of contact formation for two loci separated by a distance of rij, and its ensemble average 
corresponds to the contact probability measured in Hi-C experiments. ‍f(rij)‍ adopts the form

	﻿‍

f(rij) = 1
2

(1 + tanh[(rc − ri,j)−5 + 5(rc − ri,j)])

+ 1
2

(1 + tanh[(rc − ri,j)−5 + 5(rc − ri,j)]) ×
(

rc
ri,j

4
) .

‍�

(13)

The numerical value of rc was determined from the Hi-C contact map, as detailed in the next 
section. This contact probability function depicts that when ‍r < rc, f ≈ 1‍ but when ‍r > rc, f ≈

(
rc/r

)4
‍. 

The power-law decay with an exponent of 4 is consistent with the relationship between contact 
probability and spatial distances revealed in imaging studies (Qi and Zhang, 2019; Wang et al., 2017). 
The tanh function ensures the continuity of the function and its derivative around rc (Appendix 1—
figure 1). Additionally, we truncated the ideal potential to be applicable for a sequence separation 
less than or equal to 100 MB and set the parameters for larger sequence separations to be zero. As 
shown in Figure 4 of the main text, our parameterized ideal potential produced chromosomes with 
sizes comparable to imaging results. Incorporating longer-range interactions to improve the model 
further is straightforward but would also significantly increase the number of parameters.

Similar to the ideal potential discussed above, we have

	﻿‍
Ucompt

(
r
)

=
∑

i,j
αcompt

(
Ti, Tj

)
f
(
rij
)

,
‍�

(14)

https://doi.org/10.7554/eLife.93223
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where Ti and Tj denote the compartment types of beads i and j which can be A, B, or C. Therefore, 
CG beads of the same compartment types will share the same interaction parameter ‍αcompt

(
Ti, Tj

)
‍, 

which will be derived from average Hi-C contact frequencies as detailed in the following sections.
To account for specific interactions between chromosomes, we introduced the interchromosomal 

potential as

	﻿‍
Uinter

(
r
)

=
∑
I,J>I

∑
i∈I,j∈J

αinter
(
I, J

)
f
(
rij
)

.
‍�

(15)

‍I, J ∈
{

1, 2, . . . , 23
}
‍ index the haploid chromosomes, and parental and maternal chromosomes 

share identical parameters. This potential allows the model to capture interactions beyond those 
arising purely from compartmentalization as defined in Equation 14.

All parameters in the energy function are summarized in Appendix 1—table 1. The procedure 
used for parameter optimization is detailed in the following sections.

Appendix 1—table 1. Summary of the various terms of the chromosome energy function and the 
algorithms used for parameter optimization.
See also Appendix 1, section ‘Hi-C inspired interactions for the diploid human genome’ for detailed 
expression of the energy function and ‘Adam optimizer for chromosome interaction parameters’ for 
details on the optimization algorithm.

Potentials Functional forms Parameter values

Bonding potential ‍ubond(ri,i+1)‍ in Equation 9
Standard values in coarse-grained 
 polymer models

Angular Potential ‍uangle
(⃗
ri,i+1, r⃗i+1,i+2

)
‍ in Equation 9

Standard values in coarse-grained  
polymer models

Soft-core potential ‍usc
(
rij
)
‍ in Equation 11

Standard values in coarse-grained  
polymer models

Ideal potential ‍Uideal
(
r
)
‍ in Equation 12

Values for ‍αideal‍ were obtained from optimizations against Hi-C 
data 
 (see Appendix 1—figure 3).

Compartment 
potential ‍Ucompt

(
r
)
‍ in Equation 14

Values for ‍αcompt‍ were obtained from 
 optimizations against Hi-C data (see Appendix 1—table 2)

Inter potential ‍Uinter
(
r
)
‍ in Equation 15

Values for ‍αinter‍ were obtained from 
 optimizations against Hi-C data (see Appendix 1—figure 4)

Appendix 1—table 2. Summary of interaction parameters between various compartment types, 
that is, ‍αcompt‍ defined in Equation 14.

αAA –0.074185

αAB 0.112285

αAC 0.009947

αBB 0.059981

αBC 0.072481

αCC 0.088825

Nuclear landmark–nuclear landmark interactions
The general energy function for interactions among nuclear landmark particles is defined as

	﻿‍ UNL = ULa
(
r
)

+ UNo
(
r
)

+ USp−dP
(
r
)

+ UEV
(
r
)

.‍� (16)

The nuclear lamina was modeled as a particle mesh, and bonded potentials were introduced for 
nearest neighbor particles defined as

	﻿‍
ULa

(
r
)

=
∑

i

∑
j∈n.n.,j>i

K2
(
r − ro

)2 + K3
(
r − ro

)3 + K4
(
r − ro

)4 , K2 = K3 = K4 = 20ϵ
‍� (17)

https://doi.org/10.7554/eLife.93223
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with ‍ro = 0.5σ‍. i indices all the lamina particles, and j represents the nearest four neighbors around i 
determined from the initial configuration for which the particles were placed on a Fibonacci grid. To 
avoid pairs (i, j) being counted twice or more, we set j always larger than i.

Short-ranged, non-bonded interactions were introduced among nuclear landmark particles to 
account for attractions that promote phase separation and the excluded volume effect. These 
interactions were modeled with a cut and shifted Lennard–Jones (LJ) potential defined as

	﻿‍

ULJ
(
rij
)

=





4ϵLJ

((
σLJ
rij

)12
−

(
σLJ
rij

)6
− Ecut

)
, forr <= rcut

0, forr > rcut ‍�

(18)

with 
‍
Ecut = 4ϵ

((
σ

rcut

)12
−

(
σ

rcut

)6
)

‍
. We note that when ‍rcut‍ was set as ‍σLJ × 21/6

‍, the potential has 

no attractive regime and only serves to prevent the overlap among particles, that is, the excluded 
volume effect.

For attractive interactions between nucleolus particles, and between type dP speckle particles, 
we set the parameters as ‍ϵLJ = 3.0,σLJ = 0.5‍, and ‍rcut = 1.5‍. Therefore,

	﻿‍

UNo
(
r
)

=
∑

j>i∈No
ULJ

(
rij, ϵLJ = 3.0,σLJ = 0.5, rcut = 1.5

)

USp-dP
(
r
)

=
∑

j>i∈Sp-dP
ULJ

(
rij, ϵLJ = 3.0,σLJ = 0.5, rcut = 1.5

)
,
‍�

(19)

where the sums iterate over pairs of nucleolus particles and speckle dP particles.
For the excluded volume effect between nucleolus and speckle particles, between dP and P 

particles, and between P particles, we set the parameters as ‍ϵLJ = 1.0,σLJ = 0.5‍, and ‍rcut = 0.5 × 21/6‍. 
These potentials are consistent with the estimated size of 0.5 σ for speckle and nucleolus particles.

The excluded volume effect was also introduced between lamina and nucleolus particles and 
between the lamina and speckle particles to confine the nuclear bodies inside the nuclear envelope. 
We set the parameters as ‍ϵLJ = 1.0,σLJ = 0.75‍, and ‍rcut = 0.75 × 21/6‍. The value for ‍σLJ‍ was chosen 
based on a linear combination of the lamina particle size (1.0 σ) and the speckle/nucleolus particle 
size (0.5 σ).

Therefore, the excluded volume potential can be written as

	﻿‍

UEV
(
r
)

=
∑

i∈La

∑
j∈No

ULJ
(
rij, ϵLJ = 1.0,σLJ = 0.75, rcut = 0.75 × 21/6)

+
∑

i∈La

∑
j∈Sp

ULJ
(
rij, ϵLJ = 1.0,σLJ = 0.75, rcut = 0.75 × 21/6)

+
∑

i∈No

∑
j∈Sp

ULJ
(
rij, ϵLJ = 1.0,σLJ = 0.5, rcut = 0.5 × 21/6)

+
∑

i∈Sp-P

∑
j∈Sp-dP

ULJ
(
rij, ϵLJ = 1.0,σLJ = 0.5, rcut = 0.5 × 21/6)

+
∑

j>i∈Sp-dP
ULJ

(
rij, ϵLJ = 1.0,σLJ = 0.5, rcut = 0.5 × 21/6)

+
∑

j>i∈La
ULJ

(
rij, ϵLJ = 1.0,σLJ = 0.5, rcut = 0.5 × 21/6) .

‍�

(20)

We used abbreviations to denote various nuclear landmarks, with La for the nuclear lamina, Sp-
P for P-type speckle particles, Sp-dP for dP-type speckle particles, and No for nucleolus particles. 
All the interaction parameters for the nuclear landmarks are listed in Appendix  1—table 3 for 
convenient reference.

Appendix 1—table 3. Summary of the interaction potentials among particles that make up the 
nuclear landmarks and their corresponding parameter values.
See also Appendix 1, section ‘Nuclear landmark–nuclear landmark interactions’ for further discussion 
and ‘Unit conversion’ for choosing the size of various particles, from which the ‍σLJ‍ were derived with 
a linear combination rule.

https://doi.org/10.7554/eLife.93223
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Potentials Function forms Parameter values

Nucleolus/nucleolus
‍ULJ

(
rij
)
‍ in 

Equation 18

‍ϵLJ = 3.0‍ and ‍rcut = 1.5‍ were chosen to mimic short-range 
attractions that produce 
 an average of two nucleoli per cell. ‍σLJ = σNo = 0.5‍.

Sp-dP/Sp-dP 
(speckles)

‍ULJ
(
rij
)
‍ in 

Equation 18

‍ϵLJ = 3.0‍ and ‍rcut = 1.5‍ were chosen to mimic short-range 
attractions that produce around 
 30 speckle droplets. ‍σLJ = σSp-dP = 0.5‍.

Sp-dP/Sp-P (speckles)
‍ULJ

(
rij
)
‍ in 

Equation 18

‍ϵLJ = 1.0‍ and ‍rcut = 0.5 × 21/6
‍ were chosen  

as standard values to provide the excluded volume effect. 

‍σLJ = σSp-dP+σSp-P
2 = 0.5‍.

Sp-P/Sp-P (speckles)
‍ULJ

(
rij
)
‍ in 

Equation 18

‍ϵLJ = 1.0‍ and ‍rcut = 0.5 × 21/6
‍ were chosen 

 as standard values to provide the excluded volume effect. 

‍σLJ = σSp-P = 0.5‍.

Nucleolus/speckle
‍ULJ

(
rij
)
‍ in 

Equation 18

‍ϵLJ = 1.0‍ and ‍rcut = 0.5 × 21/6
‍ were chosen 

 as standard values to provide the excluded volume effect. 

‍σLJ = σNo+σSp
2 = 0.5‍.

Nucleolus/lamina
‍ULJ

(
rij
)
‍ in 

Equation 18

‍ϵLJ = 1.0‍ and ‍rcut = 0.75 × 21/6
‍ were chosen as 

 standard values to provide the excluded volume effect. 

‍σLJ = σNo+σ∗
La

2 = 0.75‍.

Speckle/lamina
‍ULJ

(
rij
)
‍ in 

Equation 18

‍ϵLJ = 1.0‍ and ‍rcut = 0.75 × 21/6
‍ were chosen as 

 standard values to provide the excluded volume effect. 

‍σLJ = σSp+σ∗
La

2 = 0.75‍.

Lamina/lamina
‍ULJ

(
rij
)
‍ in 

Equation 18

‍ϵLJ = 1.0‍ and ‍rcut = 0.5 × 21/6
‍ were chosen 

 as standard values to provide the excluded volume effect. 
‍σLJ = σLa = 0.5‍.

* As mentioned in Appendix 1, section ‘Mapping lamina bead size to real unit’, a larger value for ‍σLa‍ was used 
here to provide a stronger excluded volume effect that prevents these particles from crossing the nucleus 
boundary or getting stuck in the space of the lamina particle mesh grid.

Chromosome–nuclear landmark interactions
The energy function for interactions between chromosome and nuclear landmark particles is defined 
as

	﻿‍ UGN = UC-La
(
r
)

+ UC-Sp
(
r
)

+ UC-No
(
r
)

.‍� (21)

The functional form of the potential used to describe interactions between chromosomes and 
nuclear landmarks is inspired by experimental techniques that probe their contacts, such as Lamin B 
DamID and SON TSA-Seq. For example, the average contact probability between a chromatin bead 
i and the nuclear lamina can be estimated as

	﻿‍
pL

i =

⟨∑
j∈La

c
(
rij
)⟩

,
‍�

(22)

where j indexes over the lamina particles. ‍c
(
rij
)
‍ is defined as

	﻿‍
c
(
rij
)

= 1
2
(
1 + tanh

[
η
(
rc − rij

)])
.
‍�

(23)

It is a switching function that approaches one for ‍rij < rc‍, a threshold distance at which we set 
chromatin and the lamina as in contact. We chose ‍η = 4.0‍ to obtain a reasonable decay of contact 
probability between chromosomes and nuclear landmarks. ‍rc = 0.75‍ was selected as the average size 
of the lamina (1.0 σ) and chromatin (0.5 σ) particles.

For the computational model to reproduce the experimental contact probability, following the 
maximum entropy argument (Roux and Weare, 2013; Zhang and Wolynes, 2015), the interaction 
potential between chromosomes and the nuclear lamina adopts the following form:

https://doi.org/10.7554/eLife.93223
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	﻿‍

UC-La
(
r
)

=
∑

i∈Chr

∑
j∈La

{
1
2
αC-La

i
(
1 + tanh

[
η
(
rc − rij

)])

+ ULJ
(

rij, ϵLJ = 1.0,σLJ = 0.75, rcut = 0.75 × 21/6
)

.
‍�

(24)

A similar argument to the one outlined above was used to derive the interactions among 
chromosomes from Hi-C data, that is, Equations 12, 14, and 15 (Hetzer, 2010). The individual 
parameters ‍α

C-La
i ‍ were optimized to ensure a match between simulated and experimental Lamin B 

DamID data. The second term was included to account for the excluded volume effect and prevent 
chromatin from moving outside the envelope.

The interaction potential between chromosomes and the speckles adopts a similar form defined 
as

	﻿‍
UC-Sp

(
r
)

=
∑

i∈Chr

∑
j∈SP-dP

1
2
α

C-Sp
i

(
1 + tanh

[
η
(
rc − rij

)])
.
‍�

(25)

The second sum for j only includes dP-type speckle particles. The individual parameters ‍α
C-Sp
i ‍ 

were optimized to ensure a match between simulated and experimental SON TSA-seq data.
Finally, the interaction potential between chromosomes and nucleoli is defined as

	﻿‍
UC-No

(
r
)

=
∑

i∈Chr

∑
j∈No

1
2
αC-No

i
(
1 + tanh

[
η
(
rc − rij

)])
.
‍�

(26)

Because of the low data quality for the ChIP-Seq experiments for detecting chromatin-nucleoli 
contacts, we did not perform systematic optimizations for ‍α

C-No
i ‍. Instead, we simply set them as 

‍α
C-No
i = PN

i ϵ‍, with ‍ϵ = 1.0‍. ‍P
N
i ‍ is the probability for the chromatin bead i to contact nucleoli as 

quantified by the software SPIN (Wang et al., 2021).
We list all the interaction parameters between chromosomes and the nuclear landmarks in 

Appendix 1—table 4.

Appendix 1—table 4. Summary of the interaction potentials between chromatin particles and 
nuclear landmarks and their corresponding parameter values.
See also Appendix 1, section ‘Chromosome–nuclear landmark interactions’ for further discussion 
and ‘Adam optimizer for chromosome–nuclear body interaction parameters’ for details on the 
optimization algorithm.

Potentials
Functional 
forms Parameter values

Chromatin-
nucleolus

‍UC-No
(
rij
)
‍ in 

Equation 26

‍η = 4.0‍ provides a smooth transition in the tanh function for contacts. ‍rc = 0.75‍ 
reflects the minimal distances 
 between chromatin and nucleolus beads as reflected in the excluded volume 
potential defined in Appendix 1—table 3. The interaction strength of the ith 
chromatin bead ‍α

C-No
i = PN

i ‍, where ‍P
N
i ‍ is the probability for the chromatin bead i 

to contact nucleoli as quantified by the software SPIN (Wang et al., 2021).

Chromatin-
speckle

‍UC-Sp
(
rij
)
‍ in 

Equation 25

‍η = 4.0‍ and ‍rc = 0.75‍ were similarly determined as in ‍UC-No
(
rij
)
‍. Value for the 

interaction strength of the ith chromatin 
 bead ‍α

C-No
i ‍ was obtained from optimizations against SON TSA-Seq data.

Chromatin-
lamina

‍UC-La
(
rij
)
‍ in 

Equation 24

‍η = 4.0‍ and ‍rc = 0.75‍ were similarly determined as in ‍UC-No
(
rij
)
‍. Value for 

the interaction strength of the ith chromatin bead ‍α
C-No
i ‍ was obtained from 

optimizations against Lamin B DamID data. The extra Lennard 
 Jones potential was included to provide the excluded volume effect, with 

‍ϵLJ = 1.0‍ and ‍rcut = 0.75 × 21/6
‍ as standard values. ‍σLJ = σC+σ∗

La
2 = 0.75‍.

* As mentioned in Appendix 1, section ‘Mapping lamina bead size to real unit’, a larger value for ‍σLa‍ was used 
here to provide a stronger excluded volume effect that prevents these particles from crossing the nucleus 
boundary or getting stuck in the space of the lamina particle mesh grid.

https://doi.org/10.7554/eLife.93223
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Optimization of the whole nucleus model parameters
Below, we describe the procedures used to derive model parameters.

Connecting imaging and Hi-C data with the contact function
The function f(r) defined in Equation 13 was used to determine the chromatin contact probabilities. 
The availability of spatial positions and Hi-C data makes possible the definition of a contact function, 
f(r), that converts distances into contact probabilities. In particular, we determined rc as the value 
at which the simulated average interchromosomal contact probability ‍

⟨
f
(
rc
)⟩sim

inter‍ matches the 
experimental value, that is,

	﻿‍ ⟨f
(
r
)
⟩sim

inter = fexp
inter.‍� (27)

The angular brackets represent ensemble averaging, performed using the structures at 100 KB 
resolution reported in our previous work (Kamat et al., 2023). Matching simulation and experimental 
values produced ‍rc = 0.54σ ≈ 208‍ nm. We note that this estimation for rc is comparable to the average 
bond length (0.5 σ), thus ensuring that nearest neighbor genomic regions with contact probability 
close to 1, that is, ‍⟨f

(
ri,i+1

)
⟩ ≈ 1‍.

Adam optimizer for chromosome interaction parameters
Mathematical expressions for the various energy terms in ‍UGenome‍ were designed such that their 
ensemble averages can be mapped onto combinations of contact frequencies measured in Hi-
C. The correspondence between the energy functions and Hi-C measurements allows model 
parameterization with an efficient adaptive moment (Adam) algorithm (Kingma and Ba, 2014). 
Specifically, ‍αideal

(
|i − j|

)
,αcompt

(
Ti, Tj

)
‍, and ‍αinter

(
I, J

)
‍ were tuned to satisfy the following constraints:

	﻿‍

⟨
∑

I

∑
i,j∈I

f
(
rij
)
δ|i−j|,s

⟩
=
∑

I

∑
i,j∈I

fexp
ij δ|i−j|,s, fors = 1, · · · , n − 1

⟨
∑
i,j

f
(
rij
)
δTi,T1δTj,T2

⟩
=
∑
i,j

fexp
ij δTi,T1δTj,T2 , forT1, T2 ∈

{
A, B, C

}
⟨

∑
i∈I,j∈J

f
(
rij
)
δI,K1δJ,K2

⟩
∑

i∈I,j∈J
fexp
ij δI,K1δJ,K2 ,

for K1, K2 ∈
{

1, . . . , 23
}

‍�

(28)

where ‍δTi,T1‍ is the Kronecker delta function with the following definition:

	﻿‍

δTi,T1 =




1, if Ti = T1

0, otherwise‍�
(29)

The angular bracket represents the ensemble average, and ‍f
exp
ij ‍ is the corresponding experimental 

contact frequency.
During the optimization process, our aim was to minimize the disparity between experimental 

findings and simulated data. To achieve this, we defined the cost function as follows:

	﻿‍
L =

∑
i

(
⟨fi⟩ − fexp

i
)2 ,

‍�
(30)

where the index i iterates over all the constraints defined in Equation 28.
The details of the algorithm for parameter optimization are as follows:

1.	 Starting with a set of values for ‍αideal
(
|i − j|

)
, αcompt

(
Ti, Tj

)
‍, and ‍αinter

(
I, J

)
‍, we performed 50 

independent 3-million-step long MD simulations to obtain an ensemble of nuclear configura-
tions. The 500K steps of each trajectory are discarded as equilibration. We collected the config-
urations at every 2000 simulation steps from the rest of the simulation trajectories to compute 
the ensemble averages defined on the left-hand side of Equationi 13.

https://doi.org/10.7554/eLife.93223
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2.	 Check the convergence of the optimization by calculating the percentage of error defined 
as 

‍

∑
i

(
⟨fi⟩ − fexp

i
)

/
∑

i
fexp
i

‍
. The summation over i includes all the average contact probabilities 

defined in Equation 28.
3.	 If the error is less than a tolerance value ‍etol‍, the optimization has converged, and we stop the 

simulations. Otherwise, we update the parameters, α, using the Adam optimizer (Kingma and 
Ba, 2014). With the new parameter values, we return to step one and restart the iteration.

Adam optimizer for chromosome–nuclear body interaction parameters
Similar to those among chromatin particles, the interaction parameters between chromatin and 
nuclear landmarks were optimized with Adam’s algorithm to reproduce experimental constraints.

The constraints that we aimed to reproduce were defined as follows:

	﻿‍

⟨
CLa

i

⟩
= LAFexp

i , fori = 1, · · · , N⟨
CSp

i

⟩
= SAFexp

i , fori = 1, · · · , N,
‍�

(31)

where ‍C
La
i ‍ and ‍C

Sp
i ‍ measure the contacts between chromatin bead i and nuclear lamina and speckles, 

respectively, as defined in Equations 42 and 45. ‍LAFi‍ and ‍LAFi‍ denote the lamina and speckle 
association frequency for chromatin bead i as measured in Lamin B DamID and SON TSA-Seq 
experiments. N denotes the number of chromatin beads. We combined the constraints defined 
in Equation 31 with those in Equation 28 to simultaneously optimize the parameters using the 
iterative algorithm outlined in the previous section. We note that the interaction potential between 
chromatin and speckles defined in Equation 25 did not use precisely the same function as in ‍C

Sp
i ‍. 

We chose to sum over all speckle dP particles, rather than identifying the droplets, which is difficult 
to do during the simulations.

Parameter optimization for nuclear body–nuclear body interactions
As much remains to be known about the organization of nuclear bodies, we designed the interaction 
potentials and parameters based on qualitative observations without extensive fine-tuning. For 
example, we used the standard Lennard–Jones potential (Equation 18) to mimic short-range 
interactions. The lengthscales, ‍σLJ‍, in these potentials, were chosen based on a linear combination 
of the size of interacting particles, as discussed in section ‘Unit conversion’.

The interaction strength, ‍ϵLJ‍, was set as 1.0 to be on the same order as thermal energy (‍kBT ‍), 
when the potential was used to account for the excluded volume effect.

For attractive interactions that promote phase separation and nuclear body formation, we set 

‍ϵLJ = 3.0‍. Smaller values failed to produce clustered nucleoli, while much larger values significantly 
decreased the fluidity of the resulting droplets. The same value was used for speckle dP particles and 
produced droplet numbers comparable to experimental observations (Figure 2—figure supplement 
1).

Unit conversion
The reduced unit for length scale is noted as σ. We set the nucleus radii as 13σ. Assuming a nucleus 
with an average size of 5 μm, we have σ = 385 nm.

Mapping chromatin bead size to real unit
We estimated the size of the chromosome bead as 192.5 nm based on super-resolution imaging data 
as follows. The median radius of gyration has been shown to follow a power-law scaling as a function 
of domain length with an exponent of 0.3 (Boettiger et al., 2016). Assuming that the radius of a 
domain is proportional to the radius of gyration, we have

	﻿‍
R ∝ Rg ∝ L0.3 ⇒ R1MB

R100KB
=
(

1MB
100KB

)0.3
.
‍�

(32)

We previously estimated the size of 1 MB bead as ‍R1MB = σ = 385‍ nm, and Equation 32 yields 
the size of 100 KB as ‍R100KB = 0.5σ‍.

https://doi.org/10.7554/eLife.93223
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Mapping lamina bead size to real unit
We chose the number and the diameter of lamina beads ‍NLa,σLa‍ by estimating the distance between 
nearest neighbor lamina beads. We found that at ‍NLa = 8000‍, when the lamina particles were placed 
on the Fibonacci grid over the spherical surface, the average nearest neighbor distance was 0.52. 
Therefore, we set ‍σLa = 0.5σ‍ when considering the excluded volume effect between lamina particles. 
However, when modeling the excluded volume effect between lamina and chromatin, nucleolus, or 
speckle particles, we used ‍σLa = 1.0‍ (see Equation 20). A larger value provides a stronger excluded 
volume effect that prevents these particles from crossing the nucleus boundary or getting stuck in 
the space of the lamina particle mesh grid.

Mapping nucleoli bead size to real unit
The size of nucleolus particles (‍σNo‍) was estimated as follows. Since the average number of nucleoli 
inside a cell nucleus ranges from 2 to 5, we approximate the number of particles comprising 
individual droplets as ‍NNo/3‍, assuming a total of three nucleoli. ‍NNo‍ corresponds to the total number 
of nucleolus particles. With a space-filling model, the ratio of the volume between one nucleolus and 
the cell nucleus can be estimated as

	﻿‍

(
4π/3

) (
21/6σn/2

)3 (
NNo/3

)
(
4π/3

)
R3

N
=
(

RNo
RN

)3

‍�
(33)

where ‍21/6σn/2‍ denotes the effective radius of a nucleolus particle, and ‍RN‍ is the nucleus size. Using 
experimental values for the nucleolus and nucleus size (Caragine et al., 2018; Caragine et al., 2019) 
as ‍RNo = 0.5µm‍ and ‍RN = 5µm‍, we have ‍σNo = 0.5‍.

Mapping speckle bead size to real unit
A similar procedure as in the previous section was used to estimate the size of speckle particles 

‍σSp‍. Since approximately 600 dP-type speckle particles form speckle clusters, each speckle cluster 
consists of around 20 particles. This estimation assumes a total of 30 speckle droplets in the system, 
consistent with the experimentally reported range of 20–50 speckles.

With a space-filling model, the ratio of the volume between one speckle and the cell nucleus can 
be estimated as

	﻿‍

(
4π/3

) (
21/6σSp/2

)3 (
NSp

)
(
4π/3

)
R3

N
=
(

RSp
RN

)3

‍�
(34)

where ‍NSp = 20‍. Using experimental values for the speckle and nucleus size
(Handwerger et al., 2005) as ‍RSp = 0.3µm‍ and ‍RN = 5µm‍, we have ‍σSp = 0.5‍.

Mapping the reduced time unit to real time
We determined the timescale mapping by matching the simulated diffusion coefficient of chromatin 
particles with experimental values. The diffusion coefficient in our simulations can be estimated from 
the fluctuation-dissipation theorem (Kubo, 1966) as ‍D = kBT

ζ ‍, where the friction coefficient ‍ζ = mγ‍. 
Using the conversion from 

‍
kBT
m = σ2

τ 2
B ‍
, we have

	﻿‍
D = kBT

ζ
= kBT

mγ
= σ2

τ2
Bγ

= 10−2σ2

τB
.
‍�

(35)

We used the simulation setup ‍γ
−1 = 10−2τB‍ when deriving the last equation.

In the meantime, from the Stokes–Einstein (SE) equation, we have ‍D = kBT
6πηr‍, where η is the 

viscosity and ‍r = 0.25σ‍ is the radius of chromatin beads. Therefore,

	﻿‍

kBT
6πηr

= 10−2σ2

τB
,
‍�

(36)

and

https://doi.org/10.7554/eLife.93223
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	﻿‍
τB = 10−2σ2 · 6πηr

kBT
= 1.5 × 10−2πησ3

kBT
.
‍�

(37)

Setting the nucleoplasmic viscosity as ‍1Pa · s‍ produces ‍τB ≈ 0.65s‍. This mapping produced 
diffusion coefficients and MSD curves that match well with experimental measurements presented 
in Bronshtein et al., 2015, as discussed in the main text. We note that the chosen value for the 
nucleoplasmic viscosity indeed falls into the range of reported experimental values from ‍10−1Pa · s‍ 
to ‍102Pa · s‍ (Platani et al., 2002; Tseng et al., 2004).

Molecular dynamics simulation details
Initial configurations for simulations
Due to the slow relaxation dynamics of whole chromosomes relative to the simulation timescale, 
the reported results are sensitive to the configurations used to initialize the simulations. Therefore, 
we designed the following protocol to prepare the initial configurations and ensure the biological 
relevance of simulation results.

We first created a total of 1000 configurations for the genome by sequentially generating the 
conformation of each one of the 46 chromosomes as follows. For a given chromosome, we start by 
placing the first bead at the center (origin) of the nucleus. The positions of the following beads, i, 
were determined from the ‍

(
i − 1

)
‍-th bead as ‍ri = ri−1 + 0.5v‍. v is a normalized random vector, and 

0.5 was selected as the bond length between neighboring beads. To produce globular chromosome 
conformations, we rejected vectors, v, that led to bead positions with distance from the center larger 
than ‍4σ‍. Upon creating the conformation of a chromosome i, we shift its center of mass to a value 

‍ri
com‍ determined as follows. We first compute a mean radial distance, ‍ri

o‍ with the following equation:

	﻿‍

6σ − ri
o

ri
o − 2σ

= Dhi − D
D − Dlo

,
‍�

(38)

where Di is the average value of Lamin B DamID profile for chromosome i. ‍Dhi‍ and ‍Dlo‍ represent the 
highest and lowest average DamID values of all chromosomes, and ‍6σ‍ and ‍2σ‍ represent the upper 
and lower bound in radial positions for chromosomes. As shown in Appendix  1—figure 2, the 
average Lamin B DamID profiles are highly correlated with normalized chromosome radial positions 
as reported by DNA MERFISH (Su et  al., 2020), supporting their use as a proxy for estimating 
normalized chromosome radial positions. We then select ‍ri

com‍ as a uniformly distributed random 

variable within the range 
‍

[
ri

o − 2σ, ri
o + 2σ

]
‍
. Without loss of generality, we randomly chose the 

directions for shifting all 46 chromosomes.
We further relaxed the 1000 configurations to build more realistic genome structures. Following 

an energy minimization process, 1-million-step MD simulations were performed starting from each 
configuration. Simulations were performed with the following energy function:

	﻿‍ URelax = UGenome + UEV
C-La,‍� (39)

where ‍UGenome‍ is defined as in Equation 7. ‍UG-La‍ is the excluded volume potential between 
chromosomes and lamina, that is, only the second term in Equation 24. Parameters in ‍UGenome‍ were 
from a preliminary optimization. The end configurations of the MD simulations were collected to 
build the final configuration ensemble (FCE).

We further computed the Pearson correlation coefficient of pairwise interchromosomal contacts 
between different structures in FCE (see section ‘Computing pairwise interchromosomal contact 
probabilities’). As shown in Figure  6—figure supplement 2A, the probability distribution of 
these correlation coefficients is comparable with that determined from DNA-MERFISH structures, 
supporting the biological relevance of the structural diversity in the constructed ensemble.

From 1000 relaxed configurations, we selected a subset of structures to initialize simulations 
presented in the main text. An optimization procedure was introduced for structure selection. We 
start this procedure by randomly select N structures to build the initial configuration ensemble (ICE). 
We then iteratively go through every configuration in ICE and replace with a structure from FCE 
that’s not already included in ICE. We then compute the Pearson correlation coefficient between 
new average ICE interchromosomal contact probabilities and experimental values. If the Pearson 
correlation coefficient is higher than the value determined from the original ICE, the new structure 

https://doi.org/10.7554/eLife.93223
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is accepted and the ICE is updated. Otherwise, the new structure is rejected. We stop the selection 
process for when the Pearson correlation coefficient stops improving.

We found that as N increases, the agreement between ICE interchromosomal contact probabilities 
and experimental values continue to increase (Figure 6—figure supplement 2B). We set N = 50, 
which produces a Pearson correlation coefficient between ICE and experimental interchromosomal 
contact probabilities of 0.9. Further increasing N does not significantly improve the agreement but 
incurs more computational cost.

It is worth noting that the outcomes of the selection procedure depend on the initial set of 
configurations included in ICE at the beginning. However, we found that the ICEs produced from 
20 independent trials are highly correlated (Figure 6—figure supplement 2C) and all reproduce 
the heterogeneity in interchromosomal contacts seen in DNA MERFISH data (Figure  6—figure 
supplement 2D). Therefore, the selection procedure is robust and can produce biologically 
meaningful configurations to initialize simulations.

With the chromosome positions prepared, we randomly placed 300 nucleoli and 1600 speckle 
particles inside the nucleus to complete the set up of initial configurations.

Langevin dynamics simulations
We used the Langevin integrator with the damping coefficient ‍γ

−1 = 10‍ to control the temperature 
at T = 1.0 for simulations used for parameter optimization and for producing an ensemble 
of nucleus structures. Langevin dynamics simulations allow faster chromosome movements, 
compared to Brownian dynamics simulations, facilitating the conformational sampling. In these 
simulations, the lamina particles were frozen and no explicit dynamics were considered for the 
nuclear envelope.

Brownian dynamics simulations
We also performed Brownian dynamics simulations with damping coefficient ‍γ

−1 = 10−2
‍ to control 

the temperature at T = 1.0. These simulations provide better approximations of the overdamped 
dynamics of chromatin for direct comparison with live cell imaging studies. As detailed in section ‘Unit 
conversion’, upon mapping the coarse-grained timescale to the physical unit, Brownian dynamics 
simulations produce diffusion coefficients for telomeres comparable to experimental values (see 
Figure 5).

Nuclear envelope deformation simulations
We performed Langevin dynamics simulations to investigate the impact of nuclear envelope 
deformation on genome organization. To induce a compressing force along the z-axis, we introduced 
a harmonic potential in the form of

	﻿‍
Ucompress =

NLa∑
i=1

k × z2
i

RN
.
‍�

(40)

where zi is the z coordinate of the ith lamina bead, and ‍NLa‍ represents the total number of lamina 
beads. The particles in the system evolve under the combined effect of ‍Ucompress‍ and ‍UNucleus‍ defined 
in Equation 6.

Details of simulation data analysis
The computer simulations yield 3D coordinates of the diploid genome. However, when comparing 
directly with experimental data processed for the haploid genome, unless stated otherwise, we 
computed averages across paternal and maternal chromosomes to ascertain various genome-wide 
properties as listed below.

Computing simulated contact probabilities
Simulated contact probability maps were computed by averaging over chromosome configurations 
collected from all trajectories. For a given configuration, the contact probability between two 
chromatin segments (i and j) was evaluated using the contact function defined in Equation 13.

https://doi.org/10.7554/eLife.93223
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Computing the Pearson correlation coefficients between experimental and 
simulated contact maps
We computed the Pearson correlation coefficients (PCCs) between experimental and simulated 
contact maps in Figure 4A and Figure 4—figure supplement 1 as

	﻿‍

r =

n∑
i=1

(
xi − x̄

) (
yi − ȳ

)
√

n∑
i=1

(
xi − x̄

)2
√

n∑
i=1

(
yi − ȳ

)2
.

‍�

(41)

where xi and yi represent the experimental and simulated contact probabilities, and n is the total 
number of data points. Only non-redundant data points, that is, half of the pairwise contacts, are 
used in the PCC calculation.

Computing pairwise interchromosomal contact probabilities
For a given genome structure, we computed the pairwise interchromosomal contacts as follows. 
For every pair of chromosomes, we determined their contact probability by averaging all genomic 
pairs from two chromosomes using Equation 13. We then averaged over all four pairs of diploid 
chromosomes to compute the haploid average contacts. In total, there are ‍C

2
22 = 231‍ contact pairs 

between haploid chromosomes excluding the sex chromosomes.

Distances from nuclear bodies and association frequencies
The contacts of a chromatin bead i with the nuclear lamina were evaluated as

	﻿‍
CLa

i = 1
Nt

∑
t

∑
j∈La

1
2
(
1 + tanh

[
η
(
rc − ri,j

)])
‍�

(42)

with ‍rc = 0.75σ‍. We average over the ensemble of nuclear configurations and homologs to compute 
the in silico Lamin B DamID signal as

	﻿‍

DamIDi = log2




⟨
CLa

i

⟩

C̄La


 ,

‍�

(43)

where the angular brackets indicate ensemble averaging. ‍̄CLa‍ is defined as the genome wide average 

of 
‍

⟨
CLa

i

⟩
‍
.

For chromatin-speckle contacts, we first identified the speckles formed at any given structure 
using the density-based spatial clustering algorithm DBSCAN (Ester et al., 1996) as implemented in 
the scikit library for Python (Pedregosa et al., 2011). For the identified droplets, we computed their 
center of mass coordinates, ‍

→r
com

‍ and the radius of gyration, R. With the identified clusters, we then 
determined the distance from the ith chromatin bead to the sth speckle as

	﻿‍ di,s = ||→r i −
→r

com
s || − Rs,‍� (44)

where ‍|| · ||‍ represents the L2 norm. We subtract the radius of the speckle cluster in the above equation 
to determine the distance to the droplet surface. From the list of distances to different speckles, the 
contact between chromatin bead i and speckles is computed as

	﻿‍
CSp

i = 1
Ns

∑
s

1
2
(
1 + tanh

[
η
(
dc − di,s

)])
,
‍�

(45)

where we sum over all the Ns speckle clusters. A similar expression was used for determining the 
contacts between chromatin and nucleoli.

Finally, we average over the ensemble of nuclear configurations and homologs to compute the in 
silico SON TSA-Seq signal as

https://doi.org/10.7554/eLife.93223
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	﻿‍

TSAi = log2




⟨
CSp

i

⟩

C̄


 ,

‍�

(46)

where the angular brackets indicate ensemble averaging. ‍̄CSp‍ is defined as the genome wide average 

of 
‍

⟨
CSp

i

⟩
‍
.

Computing simulated normalized chromosome radial positions
For a given chromosome i, we first determined its center of mass position denoted as Ci. Starting 
from the center of the nucleus, O, we extend the vector ‍vOC‍ to identify the intersection point with 

the nuclear lamina as Pi. The normalized radial position of chromosome i is then defined as 
‍
||vOCi ||
||vOPi ||‍

, 

where ‍||.||‍ represents the L2 norm.

Computing simulated chromosome radii of gyration
The radius of gyration for a chromosome is computed as

	﻿‍
Rg =

√∑n
i || ri − rcom||

n
,
‍�

(47)

where ‍rcom‍ and n are the center of mass and the number of beads of the chromosome. i indices over 
all the chromosome beads and ‍ri‍ correspond to the Cartesian coordinates of bead i. ‍||.||‍ represents 
the L2 norm.

Computing simulated mean-square displacement
MSD for telomeres were computed as

	﻿‍

⟨
r2 (∆t

)⟩
= 1

Ntraj

Ntraj∑
t=1

1
Nstep

Nstep∑
i=1

[
rt ((i − 1

)
δt + ∆t

)
− rt ((i − 1

)
δt
)]2 ,

‍�
(48)

where ‍∆t, δt‍, and ‍Nstep‍ represent the time interval, the time step, and the total number of steps, 
respectively. The summation over t corresponds to averaging over eight independent trajectories. 
MSDs telomeres from paternal and maternal chromosomes are separately computed and analyzed.

Details of experimental data analysis
Interchromosomal contacts from DNA MERFISH data
We collected the DNA MERFISH data reported in Su et al., 2020 to construct the experimental 
ensemble of 5455 genome structures. For each structure, we computed the pairwise interchromosomal 
contacts following the procedure outlined in section ‘Computing pairwise interchromosomal contact 
probabilities’.

To better visualize and analyze interchromosomal contacts, we applied the Uniform Manifold 
Approximation and Projection (UMAP) technique as implemented in software package umap-learn 
(McInnes et al., 2018; Moshtagh, 2005), with default parameters to reduce the 231 haploid contacts 
into two dimensions. All 5455 DNA MERFISH structures were included in this analysis.

The same transformations produced from the UMAP analysis of experimental structures were 
applied to in silico configurations to produce results shown in Figure 6—figure supplement 2C and 
D .

Computing experimental normalized chromosome radial positions
We followed the same procedure outlined in section ‘Computing simulated normalized chromosome 
radial positions’ to compute the experimental values. To determine the center of the nucleus 
using DNA MERFISH data, we used the algorithm, minimum volume enclosing ellipsoid (MVEE) 
(Moshtagh, 2005), to fit an ellipsoid for each genome structure. The optimal ellipsoid defined as 

‍
(
x − c

)T A
(
x − c

)
≡ 1‍ is obtained by optimizing ‍min

(
log

(
det

[
A
]))

‍ subjecting to the constraint that 

‍
(
xi − c

)T A
(
xi − c

)
≤ 1‍. ‍xi‍ correspond to the list of chromatin positions determined experimentally.
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Computing experimental radii of gyration
We computed the experimental radii of gyration with using the same expression as that for analyzing 
simulated structures (Equation 47).

Appendix 1—figure 1. The function defined in Equation 13 smoothly switches from high to low contact 
probabilities. The left and right panels plot the function and its derivative as a function of the distance, r.

Appendix 1—figure 2. Correlation between average DamID profiles of individual chromosomes with their 
normalized radial positions. The normalized radial positions were determined using the average value of all cells 
reported from DNA MERFISH data (Su et al., 2020). The correlation coefficient between the two datasets is 0.8.

https://doi.org/10.7554/eLife.93223
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Appendix 1—figure 3. Parameters of the ideal potential, ‍αideal‍, as defined in Equation 12. Numerical values for 

‍αideal‍ are included in the software’s GitHub repository.

https://doi.org/10.7554/eLife.93223
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Appendix 1—figure 4. Parameters of the inter potential, ‍αinter‍, as defined in Equation 15. Numerical values for 

‍αinter‍ are included in the software’s GitHub repository.
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Appendix 1—figure 5. Parameters of the chromosome-lamina potential, ‍αC−La‍, as defined in Equation 24. 
Numerical values for ‍αC−La‍ are included in the software’s GitHub repository.

https://doi.org/10.7554/eLife.93223
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Appendix 1—figure 6. Parameters of the chromosome-lamina potential, ‍αC−Sp‍, as defined in Equation 25. 
Numerical values for ‍αC−Sp‍ are included in the software’s GitHub repository.

Appendix 1—figure 7 continued on next page
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Appendix 1—figure 7. Pearson correlation coefficients between experimental and simulated contact probabilities 
at various sequence separations within specific chromosomes. For each chromosome, we first gathered a set of 
experimental contacts alongside a matching set of simulated ones for genomic pairs within a particular separation 
range. The Pearson correlation coefficient at the corresponding sequence separation was then determined using 
Equation 41. We limited the calculations to half of the chromosome length to ensure the availability of sufficient 
data.

https://doi.org/10.7554/eLife.93223
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