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The evolution of transposable elements 
in Brachypodium distachyon is governed 
by purifying selection, while neutral and 
adaptive processes play a minor role
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Abstract Understanding how plants adapt to changing environments and the potential contribu-
tion of transposable elements (TEs) to this process is a key question in evolutionary genomics. While 
TEs have recently been put forward as active players in the context of adaptation, few studies have 
thoroughly investigated their precise role in plant evolution. Here, we used the wild Mediterranean 
grass Brachypodium distachyon as a model species to identify and quantify the forces acting on 
TEs during the adaptation of this species to various conditions, across its entire geographic range. 
Using sequencing data from more than 320 natural B. distachyon accessions and a suite of popula-
tion genomics approaches, we reveal that putatively adaptive TE polymorphisms are rare in wild B. 
distachyon populations. After accounting for changes in past TE activity, we show that only a small 
proportion of TE polymorphisms evolved neutrally (<10%), while the vast majority of them are under 
moderate purifying selection regardless of their distance to genes. TE polymorphisms should not 
be ignored when conducting evolutionary studies, as they can be linked to adaptation. However, 
our study clearly shows that while they have a large potential to cause phenotypic variation in B. 
distachyon, they are not favored during evolution and adaptation over other types of mutations 
(such as point mutations) in this species.

eLife assessment
This valuable study seeks to disentangle the different selective forces shaping the evolutionary 
dynamics of transposable elements (TEs) in the wild grass Brachypodium distachyon. Using 
haplotype-length metrics, and genetic and environmental differentiation tests, the authors present 
convincing evidence that positive selection on TE polymorphisms is rare and that the distribution of 
TE ages points to purifying selection being the main force acting on TE evolution in this species. This 
study will be relevant for anyone interested in the role of TEs in evolution and adaptation.

Introduction
Transposable elements (TEs) are an intrinsic part of eukaryotic genomes and their evolution (Bhat-
tacharyya et  al., 1990; Hof et  al., 2016; Feschotte, 2008; Qiu and Köhler, 2020; Slotkin and 
Martienssen, 2007; Hollister and Gaut, 2009; Xiao et al., 2008; Gordon et al., 2017; Bennetzen 
and Kellogg, 1997; Vitte and Panaud, 2003; Piegu et al., 2006; Wendel et al., 2016). In addition to 
modulating genome size, the ability of TEs to create genetic diversity through insertion and excision 
events can lead to new phenotypes on which selection can act. TEs can alter phenotypes through 
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various mechanisms, including the functional disruption of genes (Bhattacharyya et al., 1990; Hof 
et al., 2016), large-scale changes in the regulatory apparatus (Feschotte, 2008; Qiu and Köhler, 
2020), alteration of epigenetic landscapes (Slotkin and Martienssen, 2007; Hollister and Gaut, 
2009), ectopic recombination and structural rearrangements (Xiao et al., 2008; Gordon et al., 2017). 
In plants, the dynamics of TE loss and proliferation play a major role in genome evolution (e.g. 9–12). 
TEs therefore constitute potentially important drivers of plant evolution, both in nature and during 
domestication (Lisch, 2013).

Beyond their influence on genome structure, and given that their transpositional activity can be 
stress-inducible (for review Negi et al., 2016), TEs are often regarded as more likely than classical 
point mutations to produce the diversity needed for individuals to respond quickly to challenging 
environments (Rey et al., 2016; Dubin et al., 2018; Quadrana et al., 2019). For instance, punctual 
TE polymorphisms can lead to gains of fitness and evolve under positive selection (Hof et al., 2016; 
González et al., 2010; Studer et al., 2011; Barrón et al., 2014; Rishishwar et al., 2018; Niu et al., 
2019; Jiang et al., 2022). TE polymorphisms can even induce more extreme changes in gene expres-
sion than single-nucleotide polymorphisms (SNPs) in plants (Uzunović et al., 2019; Castanera et al., 
2023).

Despite such evidence, whether TE polymorphisms are major contributors to adaptation to 
changing environments is still debated. Indeed, TE transposition can be disruptive, and purifying 
selection has been shown to play an important role in TE evolution (e.g. Bourgeois et al., 2020; 
Stritt et al., 2018). Based on simulations, it has been suggested that the persistence of TE poly-
morphisms within a genome without an uncontrolled accumulation, can only be achieved if weak 
purifying selection is the main force governing TE evolution (Charlesworth, 1991; Charlesworth 
et  al., 1997; Charlesworth and Charlesworth, 1983; Charlesworth, 1996). The uncertainty 
surrounding this important question in evolutionary genomics results from the limited number of 
studies that comprehensively tested the extent to which selection shapes TE allele frequencies, 
both in plants (Jiang et al., 2022; Lockton et al., 2008) and animals (Bourgeois et al., 2020; 
Boissinot et  al., 2006; Blumenstiel et  al., 2014; Rech et  al., 2019; Mérel et  al., 2021) and 
characterized the distribution of fitness effects of new TE insertions. To clarify this question, we 
used the plant model system Brachypodium distachyon (International Brachypodium Initiative, 
2010) to disentangle the effects of purifying and positive selection on TE polymorphisms in natural 
populations.

B. distachyon is a wild annual grass endemic to the Mediterranean basin and Middle East. Recent 
genetic studies based on more than 320 natural accessions spanning from Spain to Iraq (hereafter 
referred to as the B. distachyon diversity panel) revealed that B. distachyon accessions cluster into 
three main genetic lineages (the A, B, and C genetic lineages), which further divide into five main 
genetic clades that display little evidence for historical gene flow (Figure 1A; Stritt et  al., 2022; 
Minadakis et al., 2023). Niche modeling analyses suggest that the species moved southward during 
the last glacial period and recolonized Europe and the Middle East within the last five thousand years 
(Minadakis et al., 2023). Consequently, while some B. distachyon genetic clades currently occur in 
the same broad geographical areas (Figure 1A), natural accessions are adapted to a mosaic of habi-
tats (Stritt et al., 2022; Minadakis et al., 2023). These past and more recent shifts in the species 
distribution led to clear footprints of positive selection in the genome (Minadakis et al., 2023; Bour-
geois et al., 2018) and make B. distachyon an ideal study system to investigate the contribution of 
TEs to the adaptation of plants in the context of environmental changes.

In B. distachyon, TEs are exhaustively annotated and account for approximately 30% of the genome 
(International Brachypodium Initiative, 2010). Recent TE activity has been reported for many fami-
lies, but despite past independent bottlenecks and expansions experienced by the different genetic 
clades, no lineage-specific TE family activity has been observed (Lockton et al., 2008). Rather, TE 
activity tends to be homogeneous throughout the species range and across genetic clades, indicating 
a high level of conservation of the TE regulatory apparatus (Lockton et al., 2008). While purifying 
selection shapes the accumulation patterns of TEs in this species (Lockton et al., 2008), some TE poly-
morphisms have been observed in the vicinity of genes (Lockton et al., 2008), potentially affecting 
gene expression (Wyler et  al., 2020). These early studies, based on a relatively small number of 
accessions originating exclusively from Spain and Turkey, suggested that TE polymorphisms could 
contribute to functional divergence and local adaptation in B. distachyon (Lockton et al., 2008).

https://doi.org/10.7554/eLife.93284
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Figure 1. Distribution of the studied accessions and TE polymorphism frequencies. (A) Map showing the geographical distribution of the accessions 
(n = 326) used in the current study. The phylogenetic tree illustrates the phylogeny between the five genetic clades. This panel was made based on 
the data and results published by Stritt et al., 2022 and Minadakis et al., 2023. (B) Observed (blue, n = 97,660) and simulated (gray, n = 100,000) XtX 
values of TE polymorphisms in B. distachyon. Dotted lines show the 2.5% and 97.5% quantiles of the simulated XtX values. (C-G) Folded site frequency 
spectrum of TE polymorphisms and synonymous SNPs in all clades. (C) A_East (nTE = 37,563; nSNP = 92,130); (D) A_Italia (nTE = 32,753; nSNP = 82,101); E: 
B_West (nTE = 48,315; nSNP = 99,953); F: B_East (nTE = 25,757; nSNP = 60,539); G: C (nTE = 24,161 ; nSNP = 78,681). Principal Component Analyses using TE, 
SNP, retrotransposon and DNA-transposon are shown in Figure 1—figure supplements 1 and 2. Observed correlation between age in generations 
and frequency of synonymous SNPs in the four derived genetic clades are shown in Figure 1—figure supplement 3. Distribution of the observed TE 
age scaled by the effective population size (Ne) in the four derived genetic clades are shown in Figure 1—figure supplement 4. Folded site frequency 
spectrum of DNA-transposons and retrotransposons are shown in Figure 1—figure supplements 5 and 6.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Principal Component Analyses using TE (left panel, n = 97,660) and SNP (right panel, n = 182,801) polymorphisms.

Figure supplement 2. Principal Component Analyses using retrotransposon (left panel, n = 9,172) and DNA-transposon (right panel, n = 52,249) 
polymorphisms.

Figure supplement 3. Observed correlation between age in generations and frequency of synonymous SNPs in the four derived genetic clades.

Figure 1 continued on next page

https://doi.org/10.7554/eLife.93284
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To test this hypothesis, we used the B. distachyon diversity panel to identify TE polymorphisms in 
a large set of 326 natural accessions spanning the whole species distribution. We combined a set of 
population genomic analyses to assess the proportion of TE polymorphisms associated with positive 
or purifying selection as well as neutral evolution. We also quantified the strength of purifying selec-
tion through forward simulations. Altogether, our work provides the first quantitative estimate, to our 
knowledge, of the adaptive, neutral, and disruptive potential of TEs, while accounting for changes in 
TE activity, in a plant harboring a relatively small genome. Altogether, our result advocate against an 
extended role of TEs in recent adaptation.

Results
Genetic variation in Brachypodium distachyon
Using the B. distachyon diversity panel (Figure 1A), we identified 97,660 TE polymorphisms in our B. 
distachyon dataset, of which 9172 were retrotransposons, 52,249 were DNA-transposons and 36,239 
were unclassified. We also identified 9 million SNPs across the 326 samples, including 182,801 synon-
ymous SNPs. A Principal Component Analysis (PCA) performed either with SNPs or TE polymor-
phisms reflects the previously described population structure of B. distachyon (Stritt et al., 2022; 
Minadakis et al., 2023), with the first two components of the PCA splitting the data according to the 
demographic structure (Figure 1—figure supplement 1). Investigating the genetic variation caused 
by retrotransposons and DNA-transposons revealed that the observed diversity in retrotransposons 
strongly correlated with the demographic structure (Mantel test; r=0.79, p-value = 0.001), while the 
observed diversity in DNA-transposons only had a weaker correlation (Mantel test; r=0.36, p-value = 
0.001) with the demographic structure (Figure 1—figure supplement 2).

From the initial TE and SNP dataset, we could estimate the time of origin in generations (age) of 
50,891 TE polymorphisms and 108,855 synonymous SNPs based on pairwise differences in identity 
by descent (IBD) regions around the focal mutation (see Materials and methods). The results of the 
age estimate analysis were checked by contrasting the observed correlation between allele age and 
frequency of synonymous SNPs to the theoretical predictions of Kimura and Ohta, 1973 for neutrally 
evolving mutations. We found that, the observed correlation matched expectations (Figure 1—figure 
supplement 3), with older alleles found on average at higher frequencies than younger ones. Further-
more, most TE polymorphisms in our dataset were young and only a few were very old (Figure 1—
figure supplement 4).

Figure supplement 4. Distribution of the observed TE age scaled by the effective population size (Ne) in the four derived genetic clades of B. 
distachyon.

Figure supplement 5. Folded site frequency spectrum of DNA-transposons and synonymous SNPs in all genetic clades.

Figure supplement 6. Folded site frequency spectrum of retrotransposons and synonymous SNPs in all genetic clades.

Figure 1 continued

Table 1. ANCOVA predicting the number of fixed TE polymorphisms per clade in candidate regions 
under positive selection.

Variable Sum of squares degrees of freedom F value p value

Total number of TEs in the 
region 28969.6 1 35405.64 <0.001

TE superfamily 887.5 14 77.48 <0.001

Clade 587 3 239.13 <0.001

Genomic region 136.7 80 2.09 <0.001

TE age 45.5 2 27.81 <0.001

High iHS 0 1 0.03 0.869

https://doi.org/10.7554/eLife.93284
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The overall contribution of TEs to clade differentiation and adaptation 
is limited
To examine the overall contribution of TEs to evolution and adaptation in B. distachyon, we first iden-
tified regions of the genomes that were likely affected by recent selective sweeps. The fast increase 
in the frequency of a beneficial allele is expected to lead to a longer than average haplotype around 
the mutation under positive selection. Such events (known as selective sweeps) can be identified 
by computing the integrated haplotype score (iHS) around focal mutations (Voight et  al., 2006). 
We therefore computed iHS along the genome for the four derived genetic clades. Regions of the 
genomes with significantly higher iHS than average are expected to harbor mutations that were 
under positive selection during evolution and adaptation. We hypothesized that if TEs constitute an 
important part of the genetic makeup that led to adaptation in a given genetic clade, then they should 
be more frequently fixed or at higher frequencies in regions with high iHS than in the corresponding 
regions that did not experience recent selective sweeps in other clades.

First, we tested if more TE polymorphisms were fixed in a specific region of the genome if a genetic 
clade had a high iHS, and presumably experienced a selective sweep, than in other genetic clades. An 
analysis of covariance (ANCOVA) revealed that the number of fixed TE polymorphisms per clade did 
not significantly differ between high iHS regions and the same regions in other clades (Table 1). These 
results indicate that there is no correlation between the overall number of fixed TE polymorphisms 
per clade in a region and recent selective sweeps. However, the number of fixed TEs in genomic 
regions along the genome was significantly affected by the total number of TEs in the region, the TE 
superfamily, the TE age, the genetic clade and the overall genetic features of the region (e.g. recom-
bination rate, see Materials and methods) but not by the iHS itself (Table 1). Similarly, we tested if the 
allele frequency of TE polymorphisms was significantly higher in a specific region of the genome if a 
genetic clade had a high iHS than in other genetic clades. A second ANCOVA revealed that the allele 
frequency of TE polymorphisms was significantly influenced by the TE superfamily, TE age, clade and 
overall genetic features of the region but not by the iHS (Table 2). These results indicate that TEs in 
high iHS regions did not experience a significant increase in their frequency and that TEs in high iHS 
regions are experiencing the same selective constraints as other TEs. Similar results were obtained 
when investigating the number of fixed TE polymorphisms (Supplementary file 1 -table 1a) and the 
allele frequency of TE polymorphisms (Supplementary file 1-table 1b) in high iHS regions using a 
subset of our dataset with an expected lower false negative TE call rate, that only included samples 
with a genome-wide mapping coverage of at least 20 x (see Discussion and Materials and ethods for 
more details).

A complementary approach to explore the impact of positive selection on TEs consists in investi-
gating their genetic differentiation among populations. Using the five genetic clades as focal popu-
lations, we computed XtX values, a standardized measure of genetic differentiation corrected for 
the neutral covariance structure across populations (Günther and Coop, 2013; Olazcuaga et  al., 
2020), for each TE polymorphism. Mutations affected by positive selection are expected to be over-
differentiated between clades and display significantly higher XtX values than other mutations (Olazc-
uaga et al., 2020). In contrast, a low XtX value implies that the mutation is less differentiated than other 
mutations and potentially evolves under balancing selection, whereas purifying selection and a neutral 
evolution are not expected to impact the differentiation of a mutation among populations (Günther 
and Coop, 2013). We contrasted the observed XtX values computed for each TE polymorphism to a 

Table 2. ANCOVA predicting the allele frequency of TE polymorphisms per clade in candidate 
regions under positive selection.

Variable Sum of squares degrees of freedom F value p value

TE superfamily 453.2 14 247.3 <0.001

Clade 17.7 3 45.18 <0.001

Genomic region 147 80 14 <0.001

TE age 2 2 7.7 <0.001

High iHS 0.1 1 0.79 0.374

https://doi.org/10.7554/eLife.93284
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simulated pseudo-observed dataset (simulated observations under the demographic model inferred 
from the covariance matrix of the SNP dataset, for more details see Olazcuaga et al., 2020) and 
found that only a small fraction of the TE polymorphisms (0.06%) displayed XtX values higher than the 
97.5% quantile of the simulated values (Figure 1B). This indicates that only a few TE polymorphisms 
are over-differentiated among genetic clades and might have been affected by positive selection. 
However, a relatively larger portion of the TE polymorphisms (4.3%) displayed XtX values smaller than 
the 2.5% quantile of the simulated values (Figure 1B), indicating that balancing selection might also 
shape TE frequency in B. distachyon.

To further examine the contribution of TEs to adaptation, we tested whether and how many 
TE polymorphisms were significantly associated with environmental factors. If the presence of a 
TE provides an advantage in a certain environment and contributes to adaptation, we expected 
a correlation between the environment and the presence/absence of this TE. In this context, we 
performed genome-environment association analyses (GEA) using all TEs and SNPs identified across 
the 326 samples and 32 environmental factors associated with precipitation, solar radiation, tempera-
ture, elevation and aridity (see in Materials and methods for the full list). The GEA revealed that only 
nine of the 97,660 TE polymorphisms were significantly associated with some environmental factors 
(Supplementary file 1-table 1c), confirming that TEs only had a limited contribution to adaptation in 
B. distachyon. Importantly, two of these nine TEs were found in a gene, and three were in the vicinity 
of genes (less than 2 kilobase (kb) away, Supplementary file 1-table 1c).

Purifying selection dominates the evolution of TE polymorphisms in B. 
distachyon
To further characterize the forces governing the evolution of TE polymorphisms in B. distachyon, 
we examined the genome-wide frequency distribution of TEs. We first computed the folded site 
frequency spectrum (SFS) and found that the folded SFS of TE polymorphisms was shifted toward a 
higher proportion of rare minor alleles compared to neutral sites in all genetic clades (Figure 1C–G). 
Splitting the TE data into DNA-transposons and retrotransposons resulted in similar folded SFS and 
shifts in both TE classes (Figure 1—figure supplements 5 and 6).

These shifts could be the result of purifying selection as the analyses presented above indicate 
that positive selection has a negligible effect on TE polymorphism frequencies in B. distachyon. 
However, in contrast to SNPs, TEs do not evolve in a clock-like manner, as their transposition rate is 
known to vary between generations (García Guerreiro, 2012; Belyayev, 2014). Changes in trans-
position rate and purifying selection can lead to similar shifts in the SFS but can be disentangled 
using age-adjusted SFS (Horvath et al., 2022). In brief, if TE polymorphisms are evolving neutrally, 
they are expected to accumulate on average at the same rate in a population as neutral SNPs of the 
same age. Hence, Δ frequency, the difference between the average frequency of TE polymorphisms 
and neutral sites in a specific age bin, will remain close to 0 regardless of the polymorphisms’ age. 
In contrast, if TE polymorphisms evolve under purifying selection, they will tend to occur at lower 
frequencies than neutral SNPs of the same age, as selection will prevent them from accumulating in 
the population. Consequently, the Δ frequency will reach negative values for older TE polymorphisms 
(Horvath et al., 2022).

Because this model does not allow for back mutations, as typically observed for DNA-transposons 
that can excise from the genome, we primarily investigated the age-adjusted SFS of retrotransposons 
in the four derived clades. This analysis revealed that retrotransposons are indeed prevented by 
natural selection from randomly accumulating, as older retrotransposons are significantly less frequent 
than neutral SNPs of the same age (Figure 2; one-sided Wilcoxon test, Bonferroni corrected p-value 
<0.01).

As previous studies showed that the distance between TE polymorphisms and the next gene 
can impact the strength of selection affecting TEs (Hollister and Gaut, 2009; Wright et al., 2003; 
Horvath and Slotte, 2017), we further split our retrotransposon polymorphisms into three categories 
based on their distance to the next gene: retrotransposons (i) in and up to 1 kb away from genes, (ii) 
between 1 kb and 5 kb away and (iii) more than 5 kb away. The age-adjusted SFS of all three cate-
gories displayed the same pattern as that observed for the whole retrotransposon polymorphism 
dataset: older retrotransposon polymorphisms were significantly less frequent than neutral sites of 
the same age regardless of their distance to genes (one-sided Wilcoxon test, Bonferroni corrected 

https://doi.org/10.7554/eLife.93284
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Figure 2. Age-adjusted SFS of retrotransposons. The top row shows the age-adjusted SFS of all retrotransposons (colored), non-synonymous SNPs 
(light gray) and high effect SNPs (dark gray) in the four derived clades. The bottom row shows the age-adjusted SFS of retrotransposons based on 
their distance to the next gene in the four derived clades. The X axes show the age range of the mutations in each bin, and the age range of each bin 
was chosen so that each bin represents the same number of retrotransposon observations in the top row. The different columns show the four derived 
clades: (A) A_East (nretrotransposon = 2,106, nnon-synonymous SNP = 10,000, nhigh effect SNP = 9,050, nretrotransposon in genes and 1 kb surrounding = 733, nretrotransposon between 1 and 5 kb away from genes 
= 664, nretrotransposon more than 5 kb away from genes = 709); (B) A_Italia (nretrotransposon = 1,232, nnon-synonymous SNP = 10,000, nhigh effect SNP = 7,273, nretrotransposon in genes and 1 kb surrounding 
= 390, nretrotransposon between 1 and 5 kb away from genes = 388, nretrotransposon more than 5 kb away from genes = 454); (C) B_West (nretrotransposon = 2,081, nnon-synonymous SNP = 10,000, nhigh effect 

SNP = 10,000, nretrotransposon in genes and 1 kb surrounding = 812, nretrotransposon between 1 and 5 kb away from genes = 647, nretrotransposon more than 5 kb away from genes = 622); (D) B_East (nretrotransposon = 
1,035 , nnon-synonymous SNP = 10,000, nhigh effect SNP = 6,306, nretrotransposon in genes and 1 kb surrounding = 387, nretrotransposon between 1 and 5 kb away from genes = 311, nretrotransposon more than 5 kb away 

from genes = 337). Boxplots are based on 100 estimations of D frequency. Significant deviations of D frequency estimates from 0 in the age-adjusted SFS of 
retrotransposons are shown with asterisks (one-side Wilcoxon tests, Bonferroni corrected p-value <0.01: ***). Age-adjusted SFS of DNA-transposons are 
shown in Figure 2—figure supplement 1. Age-adjusted SFS of simulated mutations under negative selection in the four derived clades transposons 
are shown in Figure 2—figure supplement 2. Age-adjusted SFS of retrotransposons in accessions with at least 20 x coverage are shown in Figure 2—
figure supplement 3. Age-adjusted SFS of retrotransposons more than 5 kb away from genes are shown in Figure 2—figure supplement 4. Age-
adjusted SFS of Copia, Ty3, Helitron and MITE TEs are shown in Figure 2—figure supplements 5–8.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure 2 continued on next page

https://doi.org/10.7554/eLife.93284
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p-value <0.01), indicating that retrotransposons more than 5 kb away from genes are also affected by 
purifying selection (Figure 2).

Retrotransposon polymorphisms tended to be more deleterious than SNPs predicted to have a 
high impact on fitness. Indeed, the age-adjusted SFS of retrotransposons resulted in a larger deviation 
of Δ frequency from 0 than for non-synonymous SNPs and high effect SNPs (Figure 2). In addition, 
Δ frequency in the oldest (last) age bin was significantly more negative than in all other age bins in 
the A_East, B_East and B_west clades (one-sided Wilcoxon test, Bonferroni corrected p-value <0.01). 
In the A_Italia clades the oldest age bin was not significantly different from the second oldest age 
bin (two-sided Wilcoxon test, Bonferroni corrected p value N.S.). While older non-synonymous SNPs 
and high effect SNPs were generally less frequent than neutrally evolving SNPs at the same age, the 
negative Δ frequency trend was reversed for the oldest non-synonymous SNPs and high effect SNPs 
(Figure 2). In all clades, Δ frequency in the oldest age bin was significantly higher than at least the 
lowest Δ frequency observed in the other age bins for non-synonymous SNPs, as well as high effect 
SNPs (one-sided Wilcoxon test, Bonferroni corrected p-value <0.01). This might be because not all 
predicted non-synonymous SNPs and high effect SNPs might result in fitness effects. Those SNPs can 
therefore evolve neutrally or nearly neutrally and persist as polymorphic SNPs much longer in a popu-
lation than those affecting fitness negatively. Hence, even the oldest retrotransposon polymorphisms 
seem to be mostly non-neutral and are affected by purifying selection.

To assess whether similar forces may drive retrotransposon and DNA-transposon evolution, we 
repeated the analysis for DNA-transposons. The age-adjusted SFS of DNA-transposons revealed very 
similar patterns, with Δ frequency showing significant deviations from 0 in older age bins (one-sided 
Wilcoxon test, Bonferroni corrected p-value <0.01), but DNA-transposon polymorphisms seemed less 
deleterious than non-synonymous SNPs and high effect SNPs (Figure 2—figure supplement 1).

Forward simulations allow us to quantify the strength of purifying 
selection
To evaluate to what extent the proportion of neutrally evolving mutations in the focal group of muta-
tions affects the shape of the age-adjusted SFS, we ran forward simulation with mutations under 
multiple selective constraints, and we tested what ratio of neutral to selected mutations can lead to 
an age-adjusted SFS similar to that observed for retrotransposons in B. distachyon. Specifically, we 
investigated the conditions under which we observed a Δ frequency in the oldest age bin significantly 
smaller than Δ frequency in all other age bins. Our simulations revealed that the shape of the age-
adjusted SFS of retrotransposons could only be reproduced if less than 10% of the mutations were 
neutrally evolving for most of the selective constraint investigated (Figure 2—figure supplement 2 
and Supplementary file 1-table 1d).

Finally, we used the results from our simulations to narrow down the selection strength affecting 
retrotransposons in B. distachyon by investigating the age of the oldest retrotransposons in our 
dataset. The main difference between the age-adjusted SFS of mutations evolving under weak and 
strong purifying selection is that the oldest mutations are much older in the simulation with weak 
purifying selection than in the simulation with strong purifying selection. This age difference arises 
because mutations under strong purifying selection are removed from the population more effectively 
and, therefore, cannot persist as long in the population. Examining the age of the last retrotransposon 

Figure supplement 1. Age-adjusted SFS of DNA-transposons (colored), non-synonymous SNPs (light gray) and high effect SNPs (dark gray) in the four 
derived clades.

Figure supplement 2. Age-adjusted SFS of simulated mutations under negative selection in the four derived clades.

Figure supplement 3. Age-adjusted SFS of retrotransposons in accessions with at least 20 x coverage.

Figure supplement 4. Age-adjusted SFS of retrotransposons (colored) and SNPs (gray) more than 5 kb away from genes in the four derived clades.

Figure supplement 5. Age-adjusted SFS of Copia TEs in the four derived clades.

Figure supplement 6. Age-adjusted SFS of Ty3 TEs in the four derived clades.

Figure supplement 7. Age-adjusted SFS of Helitron TEs in the four derived clades.

Figure supplement 8. Age-adjusted SFS of MITE TEs in the four derived clades.

Figure 2 continued

https://doi.org/10.7554/eLife.93284
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bins in the age-adjusted SFS revealed that the ages of the oldest retrotransposons were the most 
similar to the expected ages of the oldest mutations in our simulations, with a scaled selection coeffi-
cient (S) of –5 and –8 (Figure 3), indicating that retrotransposons in B. distachyon are under moderate 
purifying selection. In simulations with a nearly neutral selection coefficient (S = –1), the simulated 
mutations were much older than the oldest observed retrotransposons (Figure 3). Conversely, in simu-
lations with a strong purifying selection coefficient (S < –10), they were much younger than the oldest 
observed retrotransposons (Figure 3).

Discussion
B. distachyon is a widely used model species in evolutionary genomics, molecular ecology, develop-
mental biology, and crop functional genomics (for review Raissig and Woods, 2022; Hasterok et al., 
2022) with past and ongoing TE movements in its genome (Lockton et al., 2008). In this study, we 
used a diversity panel containing next-generation sequencing data from over 320 individuals sampled 
across the whole geographical range of B. distachyon to examine the role of TEs during evolution 
and adaptation. We investigated the frequency with which positive selection led to an increase in the 
frequency and fixation of TEs and quantified the strength of purifying selection on TE polymorphisms. 
Accounting for population structure and fluctuant transposition rates, we demonstrate that TEs are 
rarely part of the genetic makeup that was positively selected during environmental adaptation in 
B. distachyon. Furthermore, we show that the majority of TE polymorphisms found in the natural 
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Figure 3. Relative age difference ((mutation age in simulations - observed mutation age)/maximum absolute age difference) between simulated and 
observed data in the last bin of the age-adjusted SFS. (A): 25% quantile; (B): 50% quantile; (C): 75% quantile. Relative age difference between simulated 
data assuming fully outcrossing individuals and observed data in the last bin of the age-adjusted SFS are shown in Figure 3—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Relative age difference ((mutation age in simulations - observed mutation age)/maximum absolute age difference) between 
simulated data assuming fully outcrossing individuals and observed data in the last bin of the age-adjusted SFS.

https://doi.org/10.7554/eLife.93284
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population of this model species are under weak to moderate purifying selection, with only a small 
minority of TE polymorphisms evolving neutrally.

Rare instances of positive selection on TEs
By combining complementary approaches, we were able to demonstrate that TEs are rarely the target 
of positive selection in B. distachyon. We first probed for footprints of positive selection on TE poly-
morphisms using the five genetic clades as focal populations. In conducting this analysis, we did not 
find TE polymorphisms to be at high frequencies or fixed at higher rates than expected, in regions 
of the genome presumably harboring selective sweeps in at least one of the genetic clades (high iHS 
regions). This suggested that TEs were rarely the target of positive selection, which we confirmed 
with a genome-wide scan for overly differentiated TE polymorphisms using XtX analysis. Indeed, this 
approach revealed that only a very small proportion of TE polymorphisms are more differentiated than 
expected under a neutral scenario.

Importantly, the XtX analysis also revealed that a non-negligible fraction of the TE polymorphisms 
is less differentiated than expected and are shared among genetic clusters. This could be the result 
of selection favoring the same TE polymorphisms in different accessions to adapt to similar environ-
mental constraints across genetic clades. To test this scenario, we performed GEA with 32 environ-
mental factors, and found only nine TE polymorphisms significantly associated with any of these, and 
representing a very small proportion (<0.01%) of all the TE polymorphisms we identified. Interestingly 
though, these nine TE polymorphisms were associated with environmental variables pertaining to 
precipitation, temperature and altitude, which are known to drive adaptation in B. distachyon (Mina-
dakis et al., 2023). Some insertions were found within or in close proximity of genes, making these 
polymorphisms very good candidates for future functional validation.

Single TE insertions can have a drastic impact on phenotypic variation and be affected by positive 
selection (for review, see Dubin et  al., 2018; Bourgeois and Boissinot, 2019; Casacuberta and 
González, 2013). For instance, TEs have increased in frequency through positive selection in humans 
(Jiang et al., 2022) or during range expansion in Arabidopsis (Castanera et al., 2023) and D. mela-
nogaster (Barrón et al., 2014; Niu et al., 2019). Evidently, B. distachyon exhibits a different pattern, 
as causal mutations for adaptation in this grass species are rarely TEs. Only a few studies have thor-
oughly quantified the extent to which positive selection influences the evolution of TEs (Castanera 
et al., 2023; Bourgeois et al., 2020; Charlesworth, 1991; Charlesworth and Charlesworth, 1983; 
Charlesworth, 1996). But two of these drew similar conclusions to us, in the green anole Anolis 
carolinensis (Charlesworth and Charlesworth, 1983) and in the invasive species Drosophila Suzukii 
(Charlesworth, 1996). In addition, a large number of candidate genes for adaptation were identi-
fied with a similar approach focusing on SNPs (Minadakis et al., 2023), indicating that population 
structure or demographic events are not limiting factors for the methods we used. Altogether, these 
observations call for a closer investigation of which forces, for example purifying selection or neutral 
evolution, are important in shaping TE allele frequency in natural populations.

Moderate purifying selection is the dominant force during TE evolution
Our results suggest that purifying selection is an important factor limiting the ability of TE polymor-
phisms to fix and increase their frequency in B. distachyon. This finding that purifying selection is the 
main force shaping the landscape of TE polymorphisms in B. distachyon is in line with similar observa-
tions made for example in maize (Stitzer et al., 2023), Arabidopsis thaliana (Quadrana et al., 2016; 
Baduel et al., 2021) and Drosophila simulans (Langmüller et al., 2023). Indeed, one of the signifi-
cant explanatory variables in our ANCOVA models was the genetic clade, a proxy for the effective 
population size (Ne), which affects the efficiency with which selection can fix beneficial mutations and 
purge deleterious ones. In B. distachyon, the number of fixed TE polymorphisms per clade and the 
frequency of TE polymorphisms were negatively correlated with Ne, indicating that the accumulation 
of TEs is significantly lower in genetic clades with a larger Ne, potentially because of a greater efficacy 
of purifying selection.

It is widely accepted that most new TE insertions have a deleterious or no effect on the fitness 
of the host (Niu et  al., 2019; Bourgeois et  al., 2020; Charlesworth, 1991; Charlesworth and 
Charlesworth, 1983; Boissinot et  al., 2006; Blumenstiel et  al., 2014; Rech et  al., 2019; Mérel 
et al., 2021; Langmüller et al., 2023). To properly quantify the effect of purifying selection on TE 

https://doi.org/10.7554/eLife.93284
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evolution in B. distachyon, we used age-adjusted SFS analyses to evaluate the selective constraint 
experienced by TE polymorphisms while accounting for previously reported changes in their activity 
(Lockton et  al., 2008). While this method can only be applied to retrotransposons (because the 
model does not allow back mutations), it provided a first clue on the importance of purifying selec-
tion on TE evolution and revealed that overall, retrotransposons evolved under purifying selection 
in all four derived genetic clades. Indeed, the Δ frequency was significantly smaller than 0, espe-
cially for older retrotransposons, meaning that old retrotransposons are less common than neutrally 
evolving SNPs at the same age. This further demonstrates that even after accounting for the different 
genetic clades and using a large sample size, retrotransposons evolve under purifying selection in B. 
distachyon. One caveat of the approach used in this study is that TE calling pipelines based on short-
reads tend to have higher false positive and false negative call rates than SNP calling pipelines, which 
is also the case for the TEPID TE calling pipeline used here (Baduel et al., 2021; Stuart et al., 2016). 
A high false negative TE calling rate however might bias our TE frequency estimates toward lower 
frequencies, which could drive the observed patterns in the age-adjusted SFS. To assess if the false 
negative TE calling rate in our study substantially affected our results, we re-run the age-adjusted SFS 
on a subset of our dataset only including samples with a genome-wide mapping coverage of at least 
20 x, as higher mapping coverages are expected to reduce the false negative call rate (Stritt et al., 
2018; Stuart et al., 2016). Using the TE allele frequencies estimated based on this subset of our data 
to estimate Δ frequency revealed similar results of the age-adjusted SFS based on the whole dataset 
(Figure 2—figure supplement 3), indicating that our observation of retrotransposons evolving under 
purifying selection is not solely driven by a high false negative TE calling rate.

We also revealed that only a minority of retrotransposons evolved neutrally, as the observed shape 
of the Δ frequency curve could only be reproduced in our simulation if the proportion of neutrally 
evolving mutations in our focal mutations was below 10%. This estimate gives a first glimpse into the 
distribution of fitness effects of new TE insertions, a fundamental parameter in genetics that describes 
the way in which new TE insertions can contribute to evolution and adaptation (Eyre-Walker et al., 
2006). Here, we show for the first time that new TE insertions have a less than 10% chance to insert 
into the genome of B. distachyon in a way that will allow them to evolve neutrally, advocating for a 
large potential of TEs to create, through their movement, new phenotypic variation on which selec-
tion can act on. PCAs based on TE polymorphisms allowed us to recover the population structure of 
B. distachyon, implying that demographic history and hence neutral processes may indeed partially 
explain the differences in the TE distribution we observed between genetic clades, as shown in Arabi-
dopsis thaliana and Arabidopsis lyrata (Bourgeois et al., 2020; Lockton and Gaut, 2010), Drosophila 
melanogaster (González et al., 2009), humans (Xue et al., 2018) and the green anole (Anolis carolin-
ensis; Charlesworth and Charlesworth, 1983). However, and in line with our simulations, the first two 
axes of the PCA explain less than 7% of the variance, indicating that neutrally evolving TEs contribute 
only mildly to overall TE diversity in our system.

Because TEs can cause phenotypic variation through new insertions (Bhattacharyya et al., 1990; 
Hof et al., 2016; Feschotte, 2008; Qiu and Köhler, 2020; Slotkin and Martienssen, 2007; Hollister 
and Gaut, 2009; Xiao et al., 2008; Gordon et al., 2017), it is not surprising that most new inser-
tions interfere with the function of the genome, especially in a species with a small genome, such as 
B. distachyon (272 Mb) (International Brachypodium Initiative, 2010). The proportion of neutrally 
evolving TE polymorphisms is expected to be very small in genes, as insertions in genic regions are 
likely to result in loss-of-function (Bhattacharyya et al., 1990; Hof et al., 2016). Similarly, TE insertions 
in close proximity to genes are expected to be highly disruptive, as regulatory elements such as cis-
regulatory elements are predominantly located in the proximity of genes. In A. thaliana, for instance, 
TEs located in the vicinity of genes (less than 2 kb) globally result in downregulation (Wang et al., 
2013). Although only specific families alter gene expression in B. distachyon (Wyler et al., 2020), the 
observed Δ frequency for retrotransposon polymorphisms in genes and in their 1 kb surroundings 
matched our expectations. The fact that TE polymorphisms located more than 5 kb away from genes 
are also evolving under purifying selection was more surprising. That said, little is known about the 
distance between cis-regulatory sequences and genes in B. distachyon. In plants, TEs are believed to 
affect gene expression in trans through the production of small-interfering RNA (McCue et al., 2013; 
McCue et al., 2012; McCue and Slotkin, 2012; Cho, 2018; Wyler et al., 2022). Hence, the fact 
that only a small proportion of TEs can accumulate neutrally indicates that, in a gene-dense genome 

https://doi.org/10.7554/eLife.93284
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such as that of B. distachyon (42.5% of the genome are genes; Wyler et al., 2022), TE insertions in 
any genomic compartment may result in some cis- or trans-regulatory effects visible to selection. 
Finally, we tested whether TE polymorphisms located more than 5 kb away from genes are evolving 
under purifying selection could be due to mapping or other artefacts by comparing the shape of 
the age-adjusted SFS of retrotransposons and SNPs more than 5 kb away from genes. However, the 
age-adjusted SFS of SNPs 5 kb away from genes differs from the one of retrotransposons (Figure 2—
figure supplement 4), indicating that the shape of the age-adjusted SFS of retrotransposons more 
than 5 kb away from genes is not likely to be the result of artefacts in regions of the genome far away 
from genes.

To further ascertain the strength of purifying selection, we used forward simulation and showed 
that simulations assuming a moderately weak selection pressure (S = –5 or S = –8) against TE polymor-
phisms best fitted our observed data. In theory, no TE polymorphisms under strong purifying selection 
should be present in a natural population, as such mutations are expected to be quickly lost, espe-
cially in a predominantly selfing species where most loci are expected to be homozygous. Therefore, 
it is not surprising that TE polymorphisms which persist in B. distachyon are under weak to moderate 
selection, as also shown, for example, for the L1 retrotransposons in humans (Stritt et al., 2018) or 
the BS retrotransposon family in Drosophila melanogaster (González et al., 2009).

While some of the parameters we chose for our simulations, such as the dominance or selfing rate, 
can affect the efficiency of TE purging, it is unlikely that discrepancies in the true and assumed values 
for these parameters would have led to drastically different results. For example, we assumed codom-
inance for all mutations, which might not hold true for each TE polymorphism. However, because of 
the high selfing rate observed in B. distachyon (Stritt et al., 2022), heterozygous loci are expected to 
be rare, and dominance is unlikely to have a strong impact on our observations. Similarly, with a higher 
selfing rate, deleterious TE polymorphisms should be removed more efficiently by purifying selection. 
To check whether a lower selfing rate could allow a higher proportion of TE polymorphisms to evolve 
neutrally, we reran the simulations assuming fully outcrossing individuals. This also resulted in simula-
tion with weak to moderate selection strength on TE polymorphisms best fitting the observed data, 
further strengthening our results (Figure 3—figure supplement 1).

While the analyses of positive selection and GEA were based on both DNA-transposons and retro-
transposons, we only used retrotransposons to assess the strength of selection on TE polymorphisms, 
as the age-adjusted SFS was developed with the assumption of no back mutations (Horvath et al., 
2022). Yet, DNA-transposons do not solely transpose through cut and paste mechanisms as they 
would otherwise not be so abundant in Eukaryotic genomes. DNA-transposons can also create extra 
copies of themselves by transposing during chromosome replication or repair from a position that has 
already been replicated, or repaired (Wicker et al., 2007). We therefore repeated the age-adjusted 
SFS analyses using DNA-transposons to evaluate whether DNA-transposons were affected by similar 
selective constraints. The folded SFS of DNA-transposons and retrotransposons display similar shifts 
toward high proportions of rare alleles and Δ frequency deviations from 0 in the age-adjusted SFS of 
DNA-transposons and retrotransposons are comparable. Hence, we argue that the conclusion drawn 
for retrotransposons also holds for DNA-transposons, and that purifying selection affect TEs broadly. 
To further examine our conclusion on purifying selection, we investigated the selective regime affecting 
different retrotransposons and DNA-transposons superfamilies. Thereby, we generated age-adjusted 
SFS for the four most common TE superfamilies Copia, Ty3 (also known under the name Gypsy, but 
we will avoid using this name because of its problematic nature see Wei et al., 2022), Helitron and 
MITE and found similar deviations of the Δ frequency from 0 in the four investigated TE superfamilies 
(Figure 2—figure supplements 5–8). These results indicate that our conclusion on the broad effect 
of purifying selection is not driven by a single TE superfamily but is at least common among the four 
most numerous TE superfamilies.

Conclusion
Adaptation to different environmental conditions is a complex process that involves various mutation 
types. Here, we show that the vast majority of TE polymorphisms are under purifying selection in the 
small genome of B. distachyon. Conversely, only a very small proportion of TEs seem to have contrib-
uted to adaptation. The observed lack of neutrally evolving TE polymorphisms in B. distachyon advo-
cates for a large potential of TE polymorphisms to contribute to the genetic diversity and phenotypic 
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variation on which selection can act and highlights the need to consider TE polymorphisms during 
evolutionary studies. Finally, our work shows that the ability of TEs to cause phenotypic variation does 
not necessarily translate into being favored during evolution and adaptation over other mutations 
with more subtle effects, such as SNPs.

Materials and methods
Whole-genome resequencing data
In this study, we analyzed a total of 326 publicly available whole-genome sequencing data from 
Brachypodium distachyon accessions sampled around the Mediterranean Basin (Figure 1A; Supple-
mentary file 1-table 1e). Our B. distachyon dataset consisted of 47 samples published by Gordon 
et al., 2017, 57 samples published by Skalska et al., 2020, 65 samples published by Gordon et al., 
2020, 86 samples published by Stritt et al., 2022 and 71 samples published by Minadakis et al., 
2023, covering all five genetic clades previously described in this species (Stritt et al., 2022; Mina-
dakis et  al., 2023). Each sample was assigned to a genetic clade based on previously published 
results (Minadakis et al., 2023).

Data processing
Raw reads were trimmed using Trimmomatic 0.36 (Bolger et al., 2014) and mapped to the B. distachyon 
reference genome version 3.0 (International Brachypodium Initiative, 2010) using bowtie2 (Lang-
mead and Salzberg, 2012) and yaha (Faust and Hall, 2012), and TE polymorphisms were identified 
using the TEPID pipeline (Stuart et al., 2016) and the recently updated TE annotation by Stritt et al., 
2020 and Wyler et al., 2022. TE polymorphisms include both TE insertion polymorphisms (TIPs; inser-
tions absent from the reference genome but present in at least one natural accession) and TE absence 
polymorphisms (TAPs; insertions present in the reference genome but absent from at least one natural 
accession). The class, superfamily and family of each TE call were assigned based on the TEPID results 
and the TE annotation from the reference genome. TIPs that were less than 100 base pairs (bp) apart 
in different samples and assigned to the same TE family were merged.

SNPs were called using GATK v.4.0.2.1 (McKenna et  al., 2010) using HaplotypeCaller (Poplin 
et al., 2018) following Minadakis et al., 2023. The SNP calls were hard filtered using the following 
conditions: QD <5.0; FS >20.0; SOR >3.0; MQ <50.0; MQRankSum <2.5; MQRankSum >–2.5; Read-
PosRankSum <2.0; ReadPosRankSum >–2.0. Because B. distachyon displays a high selfing rate (Stritt 
et al., 2022), most genetic variants are expected to be homozygous within an individual. Hence, all 
TE calls were treated as homozygous, and heterozygous SNP calls were removed from our dataset to 
reduce false variant calls. Additionally, all sites with multiallelic TE and SNP calls were removed. SNPs 
were classified as synonymous, non-synonymous and of high fitness effect using SnpEff (Cingolani 
et al., 2012). SNPs and TE polymorphisms were merged into a single vcf file using custom scripts 
provided in GitHub (copy archived at Roberthorv, 2024).

To estimate the age of each SNP and TE polymorphism, the SNPs and TEs found in the A_East, 
A_Italia, B_East and B_West clades were polarized using the C clade, which was identified as the 
most ancestral B. distachyon clade (Stritt et al., 2022) and used as the outgroup throughout this 
study. An estimate for the time of origin of all SNPs and TE polymorphisms was calculated with GEVA, 
a nonparametric approach that relies on pairwise differences in identity by descent (IBD) regions 
around the focal mutation to estimate the time of origin (Albers and McVean, 2020). GEVA was run 
separately for each clade using the genetic map produced by Huo et al., 2011 and a mutation rate of 
7x10–9 substitutions/generation. The theoretical prediction of the correlation between allele age and 
allele frequency of neutrally evolving mutations based on Ne (Kimura and Ohta, 1973) was compared 
to the observed correlation between allele age and frequency of synonymous SNPs to check the 
sanity of the age estimates.

The observed SNP and TE diversity was first examined using a principal component analysis (PCA), 
and correlations between TE diversity and genetic clades were tested with a mantel test using the 
ade4 package version 1.7–22 (Dray and Dufour, 2007) in R version 4.1.2 (R Development Core 
Team, 2021). The folded site frequency spectrum (SFS) was computed for TE polymorphisms and 
SNPs using the minor allele frequency in R version 4.1.2 (R Development Core Team, 2021). Finally, 
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the map of the geographical distribution of the used accessions was done in R using the rnaturalearth 
package 0.3.3 (Massicotte and South, 2023).

Mapping coverage is known to influence false discovery rate (Stritt et al., 2018; Stuart et al., 
2016). To investigate the impact of false positive and false negative TE calls on our results, we down 
sampled the TE dataset to only include TEs that have been called in samples that had at least an 
average mapping coverage of 20 x. The allele frequencies of TEs present in our high coverage dataset 
was recalculated only considering samples with at least an average mapping coverage of 20 x. This 
second TE dataset was then used to check if using a dataset with a higher mapping coverage and 
presumably a lower false TE calling rate impacted our results.

Analyses of positive selection
Regions of the genome affected by positive selection were identified using the integrated haplotype 
score (iHS), a measure of the amount of extended haplotype homozygosity along the ancestral allele 
relative to the derived allele for a given polymorphic site (Sabeti et al., 2002). iHS was calculated 
using the SNP dataset, and regions displaying longer haplotypes and hence high iHS were identified 
in R using the rehh package (Gautier et al., 2017; Gautier and Vitalis, 2012). The threshold to distin-
guish between regions of high iHS and other regions was selected such that less than 5% of the B. 
distachyon genome was classified as high iHS regions in each clade (Supplementary file 1-table 1f). 
Candidate regions under positive selection were defined as all regions that were found to have high 
iHS in each clade separately.

A first ANCOVA was used to model the number of fixed TE polymorphisms in each clade found in 
the candidate region under positive selection based on the following genetic features: total number 
of TEs, TE superfamily, TE age (split into three categories: young: age <10,000 generations; inter-
mediate: age between 10,000 generations and 60,000 generations; old: age >60,000 generations), 
clade, genomic region (a unique ID for each candidate region under positive selection) and iHS clas-
sification of the regions in each clade (high or average). A second ANCOVA was used to model the 
allele frequency of TE polymorphisms found in the candidate region under positive selection based 
on the following genetic features: TE superfamily, TE age, clade, genomic region and iHS classification 
of the regions in each clade. The TE superfamily was included to account for different evolutionary 
behaviors of TEs from different superfamilies. Age accounted for differences in the fixation rate and 
frequency distribution between young and old TEs. The clade was included to account for clade-
specific differences such as differences in Ne. Finally, a unique ID for each candidate region under 
positive selection was included to account for region-specific differences such as differences in the 
recombination rate and GC content. In the end, regions that were found to have a high iHS in some 
clades were compared to the same regions in the other clades. All ANCOVAs were run in R using the 
car package (Fox and Weisberg, 2019).

The standardized allele frequency of a mutation across populations (XtX) values (Günther and 
Coop, 2013) were computed for the combined TE and SNP dataset using Baypass version 2.3 (Olazc-
uaga et al., 2020; Gautier, 2015). The XtX values were used to identify over- and under differenti-
ated TE polymorphisms between clades. A pseudo-observed dataset (POD) of 100,000 SNPs was 
simulated under the demographic model inferred from the covariance matrix of the SNP dataset. The 
POD was then used to determine the 97.5% (over-differentiated polymorphisms) and 2.5% (under 
differentiated polymorphisms) quantiles.

Genome-environment association analyses
We identified TE polymorphisms significantly associated with environmental factors using genome-
environment association analyses (GEA) following Minadakis et al., 2023. GEAs were run with GEMMA 
0.98.5 (Zhou and Stephens, 2012) using the combined TE and SNP vcf file against the following 32 
environmental factors extracted by Minadakis et al., 2023: altitude, aridity from March to June, aridity 
from November to February, annual mean temperature, mean temperature of warmest quarter, mean 
temperature of coldest quarter, annual precipitation, precipitation of wettest month, precipitation of 
driest month, precipitation seasonality, precipitation of wettest quarter, precipitation of driest quarter, 
precipitation of warmest quarter, precipitation of coldest quarter, mean diurnal Range, isothermality, 
temperature seasonality, maximum temperature of warmest month, minimum temperature of coldest 
month, temperature annual range, mean temperature of wettest quarter, mean temperature of driest 
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quarter, precipitation from March to June, precipitation from November to February, solar radiation 
from March to June, solar radiation from November to February, mean temperature between March 
and June, mean temperature between November and February, maximum temperature between 
March and June, maximum temperature between November and February, minimum temperature 
between March and June and minimum temperature between November and February. We applied 
a False Discovery Rate (FDR, Benjamini and Hochberg, 1995) threshold of 5% to control for false 
positive rates.

Age-adjusted frequency spectra and analyses of purifying selection
Footprints of purifying selection on TE polymorphisms were first evaluated using folded SFS. An 
age-adjusted site frequency spectrum (age-adjusted SFS) approach was used to further investigate 
the impact of purifying selection on retrotransposons while accounting for nonconstant transposition 
rates. Briefly, the age-adjusted SFS is a summary statistic that describes the difference between the 
average frequency of TEs at a specific age and the average frequency of neutral sites of the same age 
(Horvath et al., 2022). Therefore, the TE dataset was sorted by age and split into equally large bins 
with respect to the number of observations in each age bin. Neutral sites were then randomly down-
sampled to match the number of observations in the TE dataset and its age distribution (Horvath 
et al., 2022).

The difference between the average TE and neutral site frequency, or Δ frequency, was computed 
for each age bin (Horvath et al., 2022). This method allows for an unbiased comparison between 
the allele frequencies of TEs and neutral sites, and is robust to transposition rate changes and demo-
graphic changes (Horvath et  al., 2022). However, the theory behind this method was developed 
assuming no back mutations and is therefore best suited for retrotransposons, as DNA-transposons 
can exit an insertion site (Horvath et al., 2022). We used the synonymous SNPs identified with SnpEff 
as the neutrally evolving sites. However, because estimating the population wide frequency of TEs is 
more challenging than estimating SNP frequencies, putative biases in frequency estimates need to 
be assessed before performing age-adjusted SFS analyses. To do so, the SNP dataset was resampled 
so that the SNP dataset used in the age-adjusted SFS had a frequency distribution that matched 
the observed TE frequency distribution. The age-adjusted SFS of retrotransposons was contrasted 
against the age-adjusted SFS of non-synonymous, as well as against high fitness effect SNPs. There-
fore, 10,000 non-synonymous and high fitness effect SNPs were randomly selected for each clade to 
reach approximately the same number of retrotransposon polymorphisms, non-synonymous and high 
fitness effect SNPs for final comparisons. To estimate the variation in Δ frequency estimates, all age-
adjusted SFS were computed 100 times. All Wilcoxon tests and Bonferroni p value corrections were 
done in R version 4.1.2 (R Development Core Team, 2021).

Forward simulation
We used SLiM 4.0.1 (Haller and Messer, 2019a; Haller and Messer, 2019b) to run forward simu-
lations and assess the proportion of neutrally evolving retrotransposons and the average selection 
strength affecting them. The simulations were designed to reflect the population size and demo-
graphic history of B. distachyon. The simulated genomic fragment was 1 megabase (Mb) long and 
included neutral (synonymous) mutations as well as focal mutations that evolved under different 
selective constraints. The focal mutations were a mix of neutrally evolving mutations and mutations 
evolving under a constant selection pressure. Therefore, the ratio (r) of focal mutations that evolved 
neutrally was either 0%, 5%, 10%, 25% or 50%. The scaled selection coefficient (S, defined as Nes, 
with s the strength of selection and Ne the effective population size) affecting the remaining focal 
mutations was set at the beginning of the simulation to be either −1,–5, −8,–10, −12,–15, –20 or –50 
to cover effectively neutral (0>S ≥ –1), intermediate (–1>S ≥ –10) ,and strongly deleterious (–10>S) 
selective constraints. The selfing rate was set to 70%, as B. distachyon is a highly selfing species with 
occasional outcrossing (Stritt et al., 2022; Minadakis et al., 2023). In addition, a high recombination 
rate was chosen to minimize the effects of linked selection in the small genomic fragment simulated. 
Simulations for each combination of these two parameters were run 20 times to assess the variation 
in the resulting age-adjusted SFS. The shape of the resulting age-adjusted SFS was used to narrow 
down the ratio of neutrally evolving TE polymorphisms. Similarly, the age distribution of the mutations 
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in the oldest bin of the age-adjusted SFS was used to narrow down the strength of selection affecting 
TE polymorphisms.
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