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Abstract Plants have evolved sophisticated mechanisms to regulate gene expression to activate 
immune responses against pathogen infections. However, how the translation system contributes to 
plant immunity is largely unknown. The evolutionarily conserved thiolation modification of transfer 
RNA (tRNA) ensures efficient decoding during translation. Here, we show that tRNA thiolation is 
required for plant immunity in Arabidopsis. We identify a cgb mutant that is hyper-susceptible to 
the pathogen Pseudomonas syringae. CGB encodes ROL5, a homolog of yeast NCS6 required for 
tRNA thiolation. ROL5 physically interacts with CTU2, a homolog of yeast NCS2. Mutations in either 
ROL5 or CTU2 result in loss of tRNA thiolation. Further analyses reveal that both transcriptome 
and proteome reprogramming during immune responses are compromised in cgb. Notably, the 
translation of salicylic acid receptor NPR1 is reduced in cgb, resulting in compromised salicylic acid 
signaling. Our study not only reveals a regulatory mechanism for plant immunity but also uncovers 
an additional biological function of tRNA thiolation.

Editor's evaluation
This valuable study provides solid evidence for a role of tRNA thiolation in Arabidopsis immunity 
through genetic, transcriptomic, and proteomic approaches, specifically that the tRNA mcm5s2U 
modification affects SA signaling through NPR1 translation.

Introduction
As sessile organisms, plants are frequently infected by different pathogens, which greatly affect plant 
growth and development, and cause a tremendous loss in agriculture (Jones and Dangl, 2006; Spoel 
and Dong, 2012; Yan et al., 2013). To defend against pathogens, plants have evolved sophisticated 
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immune mechanisms. One essential immune regulator is the phytohormone salicylic acid (SA), which 
plays a central role in immune responses (Vlot et al., 2009; Peng et al., 2021; Yan and Dong, 2014; 
Zhou and Zhang, 2020). Upon pathogen infection, the biosynthesis of SA is dramatically induced. 
Plants defective in SA biosynthesis or SA signaling are hyper-susceptible to pathogens (Cao et al., 
1997; Rekhter et al., 2019). Several independent forward genetic screens revealed that NONEX-
PRESSER OF PR GENES 1 (NPR1) is a master regulator of SA signaling (Canet et  al., 2010; Cao 
et al., 1997; Ryals et al., 1997; Shah et al., 1997). In the Arabidopsis npr1 mutant, the SA-mediated 
immune responses are dramatically reduced. Biochemical and structural studies suggested that NPR1 
and its homologs NPR3 and NPR4 are SA receptors (Ding et al., 2018; Fu et al., 2012; Kumar et al., 
2022; Wang et al., 2020; Wu et al., 2012; Zhou et al., 2023).

Immune responses involve massive changes in gene expression at transcription, post-transcription, 
translation, and post-translation levels. Compared with other regulatory mechanisms, the translation 
regulation mechanism is less well studied. Notably, it is reported that both the pattern-triggered 
immunity (PTI) and effector-triggered immunity (ETI) involve translational reprogramming (Xu et al., 
2017; Yoo et al., 2020). And PABP/purine-rich motif was described as an initiation module for PTI-
associated translation (Wang et al., 2022) and CDC123, an ATP-grasp protein, is a key activator of 
ETI-associated translation (Chen et al., 2023b).

During translation, the code information of mRNA is decoded by transfer RNA (tRNA) molecules, 
which carry different amino acids. In this sense, the tRNA molecules function as deliverers of the 
building blocks for translation. The decoding efficiency of tRNAs is affected by their abundance and 
modifications as well as aminoacyl-tRNA synthetases, amino acid abundance, and elongation factors. 
Interestingly, an emerging regulatory role for tRNA modifications during elongation has been reported 
(Delaunay et al., 2016; Schaffrath and Leidel, 2017; Torres et al., 2014).

Currently, more than 150 different tRNA modifications have been identified (Agris et al., 2018). 
Among them, the 5-methoxycarbonylmethyl-2-thiouridine of uridine at wobble nucleotide (mcm5s2U) 
is highly conserved in all eukaryotes. The mcm5s2U modification is present in the wobble position of 
tRNA-Lys(UUU), tRNA-Gln(UUG), and tRNA-Glu(UUC) (Huang et al., 2005; Lu et al., 2005; Sen and 
Ghosh, 1976). In budding yeast (Saccharomyces cerevisiae), the 5-methoxycarbonylmethyl of uridine 
(mcm5U) is catalyzed by the Elongator protein (ELP) complex and the Trm9/112 complex, whereas thio-
lation (s2U) is mediated by the ubiquitin-related modifier 1 (URM1) pathway involving URM1, UBA4, 
NCS2, and NCS6 (Leidel et al., 2009; Nakai et al., 2004; Noma et al., 2009; Zabel et al., 2008). 
Loss of the mcm5s2U modification causes ribosome pausing at AAA and CAA codons, which results 
in defective co-translational folding of nascent peptides and protein aggregation, thereby disrupting 
proteome homeostasis (Nedialkova and Leidel, 2015; Ranjan and Rodnina, 2017; Rezgui et al., 
2013). In yeasts, the mcm5s2U modification was reported to regulate cell cycle, DNA damage repair, 
and abiotic stress responses (Dewez et al., 2008; Jablonowski et al., 2006; Klassen et al., 2017; 
Leidel et al., 2009; Nedialkova and Leidel, 2015; Zinshteyn and Gilbert, 2013). In humans, loss of 
the mcm5s2U modification causes numerous disorders including severe developmental defects, neuro-
logical diseases, tumorigenesis, and cancer metastasis (Pan, 2018; Shaheen et al., 2019; Simpson 
et al., 2009; Torres et al., 2014; Waszak et al., 2020). In plants, loss of the mcm5s2U modification 
was associated with developmental defects and hypersensitivity to heat stress (Leiber et al., 2010; 
Nakai et al., 2019; Xu et al., 2020). However, it remains unknown whether the mcm5s2U modification 
is involved in plant immune responses.

In this study, we found that the mcm5s2U modification is required for plant immunity. Transcriptome 
and proteome analyses revealed that the mcm5s2U modification is essential for the reprogramming of 
immune-related genes. Especially, the translation of the master immune regulator NPR1 is compro-
mised in the mcm5s2U mutant. Our study not only expands the biological function of tRNA thiolation 
but also highlights the importance of translation control in plant immunity.

Results
ROL5 is required for plant immunity
In a study to test the disease phenotypes of some transgenic Arabidopsis, we found that one 
transgenic line was hyper-susceptible to the bacterial pathogen Pseudomonas syringae pv. Macu-
licola (Psm) ES4326. The disease symptom resembled that of npr1, in which the master immune 
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regulator NPR1 was mutated (Figure  1A and B). We named this line cgb (for Chao Gan Bing; 
‘hyper-susceptible to pathogens’ in Chinese). To identify the causal gene of cgb, we sequenced 
its genome using the next-generation sequencing technology, which revealed that there was a 
T-DNA insertion in the fourth exon of ROL5 (AT2G44270; Figure 1C). The insertion was confirmed 
by genotyping analysis (Figure 1D). In the cgb mutant, the transcript of ROL5 was undetectable 
(Figure 1E), indicating that cgb was a knock-out mutant. To confirm that ROL5 was the CGB gene, 
we carried out a complementation experiment by transforming ROL5 into the cgb mutant. As 
shown in Figure 1A and B, the disease phenotype of the complementation line (COM) was similar 
to that of wild-type (WT). Moreover, we generated another allele of ROL5 mutant, rol5-c, using the 
CRISPR-Cas9 gene-editing approach (Wang et al., 2015). In rol5-c, a 2 bp deletion in the first exon 
of ROL5 causes a frameshift (Figure 1C). As expected, the rol5-c mutant was hyper-susceptible 
to Psm as cgb (Figure 1A and B). These data strongly suggested that ROL5 is required for plant 
immunity.
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Figure 1. The rol5 mutants are more susceptible to the bacterial pathogen Psm ES4326 than wild-type (WT). (A) Pictures of Arabidopsis 3 days 
after infection. The arrows indicate the leaves inoculated with Psm ES4326 (OD600=0.0002). cgb and rol5-c are mutants defective in ROL5. COM, the 
complementation line of cgb. npr1-1 serves as a positive control. Bar = 1 cm. (B) The growth of Psm ES4326. CFU, colony-forming unit. Error bars 
represent 95% confidence intervals (n=7). Statistical significance was determined by two-tailed Student’s t-test. ***, p<0.001; ns, not significant. (C) A 
schematic diagram showing the site of the T-DNA insertion in cgb and the deleted nucleotides in rol5-c. (D) The genotyping results using the primers 
indicated in C. (E) The transcript of ROL5 is not detectable in cgb. UBQ5 serves as an internal reference gene.

The online version of this article includes the following source data for figure 1:

Source data 1. Source data related to Figure 1B.

Source data 2. Source data related to Figure 1D.

Source data 3. Source data related to Figure 1E.

https://doi.org/10.7554/eLife.93517
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ROL5 interacts with CTU2 in Arabidopsis
ROL5 is a homolog of yeast NCS6 (Leiber et al., 2010), which forms a protein complex with NCS2 to 
catalyze mcm5s2U34 (Figure 2A). The NCS2 homolog in Arabidopsis is CTU2 (Philipp et al., 2014). To 
test whether ROL5 interacts with CTU2, we first performed yeast two-hybrid assays. Consistent with 
the previous finding (Philipp et al., 2014), only when ROL5 and CTU2 were co-expressed, the yeasts 
could grow on the selective medium (Figure 2B), indicating that ROL5 interacts with CTU2 in yeast. To 
test whether they can interact in vivo, we carried out split luciferase assays in Nicotiana benthamiana. 
ROL5 was fused with the N-terminal half of luciferase (nLUC) and CTU2 was fused with the C-terminal 
half of luciferase (cLUC). An interaction between two proteins brings the two halves of luciferase in 
close proximity, leading to enzymatic activity and production of luminescence that is detectable using 
a hypersensitive CCD camera. As shown in Figure 2C, the luminescence signal could be detected only 
when ROL5-nLUC and cLUC-CTU2 were co-expressed. We also performed co-immunoprecipitation 
(CoIP) assays in N. benthamiana. When ROL5-FLAG was co-expressed with CTU2-GFP, ROL5-FLAG 
could be immunoprecipitated by the GFP-Trap beads (Figure 2D). To test whether the interaction 
is direct, we conducted GST pull-down assays. GST-CTU2 and ROL5-His proteins were expressed 
in Escherichia coli and were purified using affinity resins. As shown in Figure 2E, ROL5-His could be 
specifically pulled down by GST-CTU2, but not by GST alone, suggesting that ROL5 directly interacts 
with CTU2.

The tRNA thiolation is required for plant immunity
Given that CTU2 interacts with ROL5, we reasoned that the ctu2 mutant should have similar pheno-
types to rol5 in response to pathogens. To test this, we infected the T-DNA insertion mutant ctu2-1 
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Figure 2. ROL5 interacts with CTU2. (A) A schematic diagram showing the function of ROL5 and CTU2. The ROL5 homolog NCS6 and the CTU2 
homolog NCS2 form a complex to catalyze the mcm5s2U modification at wobble nucleotide of tRNA-Lys (UUU), tRNA-Gln (UUC), and tRNA-Glu (UUG), 
which pair with the AAA, GAA, and CAA codons in mRNA, respectively. (B) Yeast two-hybrid assays. The growth of yeast cells on the SD-Trp/Leu/
His medium indicates interaction. BD, binding domain. AD, activation domain. (C) Split luciferase assays. The indicated proteins were fused to either 
the C- or N-terminal half of luciferase (cLUC or nLUC) and were transiently expressed in N. benthamiana. The luminesce detected by a CCD camera 
reports interaction. (D) Co-immunoprecipitation (CoIP) assays. CTU2-GFP and/or ROL5-FLAG fusion proteins were expressed in N. benthamiana. The 
protein samples were precipitated by GFP-Trap, followed by western blotting using anti-GFP or anti-FLAG antibodies. (E) GST pull‐down assays. The 
recombinant GST or GST-CTU2 proteins coupled with glutathione beads were used to pull down His-ROL5, followed by western blotting using anti-His 
or anti-GST antibodies.

The online version of this article includes the following source data for figure 2:

Source data 1. Source data related to Figure 2D.

Source data 2. Source data related to Figure 2E.

https://doi.org/10.7554/eLife.93517
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Figure 3. ROL5 and CTU2 are required for mcm5s2U modification and plant immunity. (A and B) The rol5-c and ctu2-1 mutants are more susceptible to 
the bacterial pathogen Psm ES4326 than wild-type (WT). (A) Pictures of Arabidopsis plants 3 days after infection. Arrows indicate the leaves inoculated 
with Psm ES4326. Bar = 1 cm. (B) The growth of Psm ES4326. CFU, colony-forming unit. Error bars represent 95% confidence intervals (n=6). Statistical 
significance was determined by two-tailed Student’s t-test. ***, p<0.001. (C) The rol5-c and ctu2-1 mutants lack the mcm5s2U modification. The levels of 
U, cm5U, mcm5U, and mcm5s2U were quantified through high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) analyses. 
The intensity and the retention time of each nucleotide are shown. The structure of each nucleotide and the catalyzing enzymes are shown on the right.

The online version of this article includes the following source data for figure 3:

Source data 1. Source data related to Figure 3A.

Source data 2. Source data related to Figure 3C.

https://doi.org/10.7554/eLife.93517
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with Psm ES4326. As expected, the ctu2-1 mutant is hyper-susceptible to the pathogen (Figure 3A 
and B).

By using N-acryloylamino phenyl mercuric chloride, which binds thiolated tRNAs, previous studies 
revealed that tRNA thiolation was defective in the rol5 and ctu2 mutant (Leiber et al., 2010; Philipp 
et al., 2014). To confirm this result, we measured the mcm5U and mcm5s2U levels in WT, rol5-c, and 
ctu2-1 using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). 
In WT, mcm5U was almost undetectable (Figure 3C), indicating that it is efficiently transformed into 
mcm5s2U in Arabidopsis. However, in the rol5-c and ctu2-1 mutants, the mcm5s2U level was unde-
tectable while the mcm5U level was very high, suggesting that both ROL5 and CTU2 are required for 
mcm5s2U. These data revealed that ROL5 and CTU2 form a complex to catalyze the mcm5s2U modifi-
cation, which is essential for plant immunity.

Transcriptome and proteome reprogramming are compromised in cgb
To understand why the cgb mutant was hyper-susceptible to pathogens, we performed transcrip-
tome and proteome analyses of the cgb mutant and the COM line. Each sample was divided into 
two parts, one for transcriptome analysis using RNA sequencing (RNA-seq) approach, and the other 
for proteome analysis using a tandem mass tag (TMT)-based approach. Principal component analysis 
showed that the reproducibility between biological replicates was good (Figure 4—figure supple-
ment 1). The differentially expressed genes (DEGs) and the differentially expressed proteins (DEPs) 
between different samples were identified and quantified through data analysis. Regarding the tran-
scriptome, in COM, 22% (4819) and 27% (5767) of genes were respectively up-regulated or down-
regulated after Psm infection (Figure 4A). However, only 18% (3986) and 23% (4913) of genes were 
respectively up-regulated or down-regulated in cgb. Regarding the proteome, in COM, 16% (1193) 
and 13% (1021) of proteins were respectively up-regulated or down-regulated after Psm infection 
(Figure 4B). In contrast, only 12% (909) and 10% (787) of proteins were respectively up-regulated 
or down-regulated in cgb. Therefore, the numbers of both DEGs and DEPs were reduced in cgb 
compared to those in COM.

To further examine the gene expression defects in cgb, we compared the expression changes 
after Psm infection between cgb and COM. Among 4819 up-regulated DEGs in COM, the expres-
sion changes of 1113 genes were less prominent in cgb than in COM (Figure 4C). These genes were 
referred to as attenuated genes. Among 1193 up-regulated DEPs in COM, the expression changes 
of 366 proteins were less prominent in cgb than in COM (Figure 4D). These proteins were named 
attenuated proteins. Gene Ontology (GO) analysis of the attenuated genes and attenuated proteins 
revealed that many important biological processes were significantly enriched (Figure  4E and F). 
These data suggested that both transcriptome and proteome reprogramming were compromised in 
cgb.

The translation efficiency of immune-related proteins is compromised in 
cgb
Since the mcm5s2U modification directly regulates translation process (Nedialkova and Leidel, 2015; 
Schaffrath and Leidel, 2017), we sought to identify the proteins with compromised translation effi-
ciency. The 366 attenuated proteins in cgb may be due to reduced transcription or reduced transla-
tion. To distinguish between these two possibilities, we performed Venn diagram analysis between 
attenuated genes and attenuated proteins, revealing that 261 attenuated proteins were not atten-
uated at the transcript level, suggesting that the attenuated expression of these proteins is due to 
reduced translation (Figure  5A). GO analysis of these 261 proteins revealed that some immune-
related processes (i.e. response to salicylic acid, defense response to bacterium, and immune system 
process) were significantly enriched (Figure 5B). Notably, NPR1 is one of these proteins.

To verify the expression of NPR1, we performed RT-qPCR and western blot analysis. Consistent 
with transcriptome and proteome data, the transcription levels of NPR1 were similar between COM 
and cgb both before and after Psm ES4326 infection (Figure 5—figure supplement 1), whereas the 
NPR1 protein level was much higher in COM than that in cgb after Psm ES4326 infection (Figure 5C). 
To further confirm that the translation of NPR1 was reduced in cgb, we carried out ribosome profiling 
experiment. Compared with COM, the polysome fractions in cgb were reduced (Figure  5D), 

https://doi.org/10.7554/eLife.93517
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Figure 4. The transcriptome and proteome reprogramming are compromised in cgb. (A and B) The percentage and the number of the 
differentially expressed genes (DEGs, p-value <0.05, |Log2Foldchange|>Log21.5, (A)) and the differentially expressed proteins (DEPs, p-value <0.05, 
|Log2Foldchange|>Log21.2, (B)) after Psm infection in the cgb mutant and the complementation line (COM). Down, down-regulated. Up, up-regulated. 
Nc, no change. (C and D) The percentage and the number of the attenuated genes (C) and proteins (D) in cgb among the up-regulated DEGs and 
DEPs in COM. (E and F) Gene Ontology (GO) analysis of the attenuated genes (E) or proteins (E) in cgb. The top 15 significantly enriched GO terms are 
shown.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data related to Figure 4A.

Source data 2. Source data related to Figure 4B.

Source data 3. Source data related to Figure 4C.

Source data 4. Source data related to Figure 4D.

Source data 5. Source data related to Figure 4E.

Source data 6. Source data related to Figure 4F.

Figure supplement 1. Principal component analysis (PCA) of the transcriptome (A) and proteome samples (B).

https://doi.org/10.7554/eLife.93517
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Figure 5. The translation of immune-related proteins is compromised in cgb. (A) Venn diagram analysis of attenuated genes and proteins. (B) Gene 
Ontology (GO) analysis of the 261 attenuated proteins. The top 6 significantly enriched GO terms are shown. (C) Western blot analysis of NPR1 protein 
levels. The 7-day-old seedlings grown on 1/2 MS medium were treated with buffer (10 mM MgCl2, pH 7.5, Mock) or Psm ES4326 (OD600=0.2) for 48 hr. 
(D) Polysome profiling results. Abs, the absorbance of sucrose gradient at 254 nm. The numbers on the X-axis indicate the polysomal fractions subjected 
to qPCR analyses. (E) The qPCR analyses. The relative mRNA level of NPR1 in different fractions or in total mRNA was normalized against UBQ5. The 
ratio between the relative mRNA levels in each fraction and in total mRNA was shown (n=3). Statistical significance was determined by two-tailed 
Student’s t-test. **, p<0.01; ***, p<0.001; ns, not significant. (F) The heatmap showing the expression changes of salicylic acid (SA)-responsive genes 
after pathogen infection.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Source data related to Figure 5A.

Figure 5 continued on next page
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suggesting that the overall translation efficiency is lower in cgb. As expected, the relative mRNA 
levels of NPR1 in multiple polysome fractions were significantly lower in cgb than in COM (Figure 5E).

The reduced NPR1 protein level in cgb suggested that SA signaling is compromised. To test this 
possibility, we examined the expression of all the genes (118) belonging to the GO term ‘response 
to salicylic acid’. In our transcriptome data, we could detect the expression of 73 genes, among 
which 59 genes (80.8%) were reduced in cgb compared with COM (Figure 5F). To further examine 
the defects of SA signaling in cgb, we performed SA-mediated protection assay. The Arabidopsis 
plants were treated with benzothiadiazole (BTH), a functional analog of SA, for 24 hr before infection. 
As expected, the growth of Psm ES4326 was reduced in BTH-treated COM, but not cgb and npr1 
(Figure 5—figure supplement 2). These results suggested that SA signaling is indeed compromised 
in the cgb mutant.

To investigate the genetic relationship between CGB and NPR1, we generated the cgb npr1 
double mutant and examined its disease phenotypes. We found that cgb npr1 was significantly more 
susceptible than either npr1 or cgb (Figure 5—figure supplement 3). There are two possible reasons 
for the observed additive effects of cgb and npr1. First, the translation of NPR1 was reduced rather 
than completely blocked in cgb (Figure 5C). In other words, NPR1 still has some function in cgb. But 
in the cgb npr1 double mutant, the function of NPR1 is completely abolished, which explains why cgb 
npr1 was more susceptible than cgb. Second, in addition to NPR1, some other immune regulators 
(such as PAD4, EDS5, and SAG101) were also compromised in cgb (Figure 5B), which explains why 
cgb npr1 was more susceptible than npr1.

Discussion
Upon pathogen infections, plants need to efficiently reprogram their gene expression, allowing the 
transition from growth to defense. However, how translation contributes to the immune response is 
not well studied. It is known that tRNA thiolation is required for efficient protein expression (Nedi-
alkova and Leidel, 2015; Schaffrath and Leidel, 2017). Here, we show that tRNA thiolation is abol-
ished in the cgb mutant (Figure 3), leading to disease hyper-susceptibility (Figure 1). We found that 
the translation of many immune-related proteins was reduced in cgb (Figure 5). Therefore, our study 
strongly suggested that tRNA thiolation is required for plant immunity, revealing an additional mecha-
nism underlying plant immune responses. It is possible that tRNA thiolation is a regulatory step during 
immune responses. However, since many defense-related proteins are up-regulated after pathogen 
infection (Figure 4B), we cannot rule out the possibility that tRNA thiolation just becomes a limiting 
factor due to the high demand of translation resource during immune responses. More studies are 
required to distinguish these two possibilities.

The SA receptor NPR1 is the master regulator of SA signaling. NPR1 can function as a transcription 
coactivator to regulate gene expression and an adaptor of ubiquitin E3 ligase to mediate protein 
degradation (Yu et al., 2022; Yu et al., 2021; Zavaliev et al., 2020). It has been shown that the 
activity of NPR1 is regulated at multiple levels including post-translational modifications such as phos-
phorylation, ubiquitination, S-nitrosylation, and sumoylation (Saleh et al., 2015; Spoel et al., 2009; 
Tada et al., 2008). However, how NPR1 is regulated at the translational level is unknown. Here, we 
show that the tRNA thiolation-mediated translation control is required for the optimal expression of 
NPR1 (Figure 5B and D), revealing an additional layer of regulation for NPR1.

Source data 2. Source data related to Figure 5B.

Source data 3. Source data related to Figure 5C.

Source data 4. Source data related to Figure 5D.

Source data 5. Source data related to Figure 5E.

Source data 6. Source data related to Figure 5F.

Figure supplement 1. Analyses of NPR1 transcript levels in cgb and COM.

Figure supplement 2. The salicylic acid (SA)-mediated protection assay.

Figure supplement 3. The genetic relationship between NPR1 and CGB.

Figure 5 continued
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The tRNA thiolation modification is highly conserved in eukaryotes. However, its biological func-
tions in plants are less well understood. Previously, it was reported that tRNA thiolation regulates 
the development of root hairs, chloroplasts, and leaf cells (Leiber et al., 2010; Philipp et al., 2014). 
Recently, it was found that tRNA thiolation is required for heat stress tolerance (Xu et al., 2020). Our 
study revealed an additional biological function of tRNA thiolation in plant immunity. It will also be 
interesting to test whether tRNA thiolation is required for responses to other stresses such as drought, 
salinity, and cold.

The ELP complex is composed of six proteins, with ELP1, ELP2, and ELP3 forming a core sub-
complex, and ELP4, ELP5, and ELP6 forming an accessory sub-complex. The ELP complex catalyzes 
the cm5U modification, which is the precursor of mcm5s2U catalyzed by ROL5 and CTU2. As expected, 
the mcm5s2U modification was undetectable in the elp mutants such as elp3 and elp6 mutants (Leitner 
et al., 2015; Mehlgarten et al., 2010). Interestingly, similar to the rol5 and ctu2 mutants, the elp2 and 
elp3 mutants were hyper-susceptible to pathogens (DeFraia et al., 2010; Defraia et al., 2013; Wang 
et al., 2013). In addition to tRNA modification, the ELP complex has several other distinct activities 
including histone acetylation, α-tubulin acetylation, and DNA demethylation (Wang et  al., 2013). 
Therefore, it is difficult to dissect which activity of the ELP complex contributes to plant immunity. 
However, the only known activity of ROL5 and CTU2 is to catalyze tRNA thiolation. Considering that 
the elp, rol5, and ctu2 mutants are all defective in tRNA thiolation, it is likely the tRNA modification 
activity of the ELP complex underlies its function in plant immunity.

Previous studies have identified numerous pathogen-responsive genes through transcriptome 
analysis (Zhang et al., 2020). However, the correlation between mRNAs and proteins is not always 
that strong (Lahtvee et al., 2017; Schwanhäusser et al., 2011). Given that proteins are major players 
in cellular functions, it is necessary to study immune responses at the protein level. Through high-
throughput proteome analysis, we found 2215 proteins differentially accumulated after Psm infec-
tion in Arabidopsis (Figure 4). To our knowledge, this is the largest dataset of pathogen-responsive 
proteins in Arabidopsis. We believe that this dataset will provide a good research resource for future 
studies on plant immunity.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Gene (Arabidopsis thaliana) ROL5 TAIR AT2G44270

Gene (Arabidopsis thaliana) CTU2 TAIR AT4G35910

Genetic reagent (Arabidopsis thaliana) cgb This paper

It contains a T-DNA insertion in 
the fourth exon of ROL5 and is 
hypersusceptible to pathogen.

Genetic reagent (Arabidopsis thaliana) COM This paper
It contains the coding sequence of 
ROL5 driven by 35S promoter in cgb.

Genetic reagent (Arabidopsis thaliana) rol5-c This paper

The mutant was generated using 
CRISPR-Cas9 system. It contains a 2-
bp deletion in the first exon of ROL5.

Genetic reagent (Arabidopsis thaliana) ctu2-1 ABRC SALK_032692

Genetic reagent (Arabidopsis thaliana) npr1-1 Cao et al., 1997

Strain, strain Background (Escherichia 
coli) BL21 TransGen Cat # CD901-02 Electrocompetent cells

Strain, strain background (Escherichia 
coli) DH5α TransGen Cat # CD201-01 Electrocompetent cells

Strain, strain background 
(Agrobacterium tumefaciens) GV3101 Sangon Cat # B528430 Electrocompetent cells

Strain, strain background 
(Saccharomyces cerevisiae) AH109 Clontech Cat # 630489 Electrocompetent cells

https://doi.org/10.7554/eLife.93517
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Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Strain, strain background 
(Pseudomonas syringae pv. Maculicola) Psm 4326 Durrant et al., 2007 ES4326

Antibody
Anti-NPR1 (Rabbit 
polyclonal) From Dr. Li Yang WB(1:3000)

Antibody
Anti-His (Mouse 
monoclonal) Abclonal Cat # AE003 WB(1:5000)

Antibody
Anti-GST (Mouse 
monoclonal) Abclonal Cat # AE001 WB(1:5000)

Antibody
Anti-FLAG (Mouse 
monoclonal) Promoter WB(1:5000)

Antibody
Anti-GFP (Mouse 
monoclonal) Promoter WB(1:5000)

Other GFP-Trap chromotek Cat # gtma

Other Hypersil GOLD Thermo Fisher Cat # 25005-254630

 Continued

Plant material and growth conditions
All Arabidopsis seeds used in this study are in Columbia-0 background. The npr1-1 mutant was 
described previously (Cao et al., 1997). The cgb mutant and the complementation line were generated 
in this study. The mutant of ctu2-1 (SALK_032692) was purchased from ABRC. The rol5-c mutant was 
generated using EC1-based CRISPR-Cas9 system (Wang et al., 2015). All seeds were sterilized with 
2% Plant Preservative Mixture-100 (Plant Cell Technology) at 4°C in the dark for 2 days and then were 
plated on Murashige and Skoog (MS) medium with 1% sucrose and 0.3% phytagel. The plants were 
grown under long-day conditions at 22°C (16 hr of light/8 hr of dark; supplied by white-light tubes).

Strains and growth conditions
E. coli strain DH5α for molecular cloning was cultured in LB medium at 37°C. E. coli strain BL21 
(DE3) for recombinant protein expression was cultured in LB medium at 16°C. Agrobacterium tume-
faciens strain GV3101 for transformation was cultured in Yeast Extract Beef (YEB) medium at 28°C. 
Psm ES4326 for infection assay was cultured in King’s B (KB) medium at 28°C. Yeast strain AH109 for 
yeast two-hybrid assay was cultured in Yeast Peptone Dextrose (YPD) medium or SD medium at 28°C.

Vector constructions
The vectors were constructed using the digestion-ligation method or a lighting cloning system 
(Biodragon Immunotechnology). For complementation experiment, ROL5 was inserted into Nco I/Xba 
I-digested pFGC5941. For pull-down assays, CTU2 was inserted into BamH I/Xho I-digested pGEX-
6P-1; ROL5 was inserted into Nco I/Hind III-digested pET28a. For split luciferase assays, ROL5 and 
CTU2 were cloned into the Kpn I/Sal I-digested pJW771 and pJW772, respectively. For yeast two-
hybrid assays, ROL5 and CTU2 were cloned into EcoR I/BamH I-digested pGBKT7 and pGADT7. 
For CoIP assays, ROL5-FLAG and CTU2-GFP were cloned into Nco I/Xba I-digested pFGC5941. To 
generate rol5-c, the target sequence was designed and cloned into pHEE401 as described previously 
(Wang et al., 2015). The primer sequences used for cloning are listed in Appendix 1—table 1.

Reverse transcription and qPCR
The total RNA or the RNA in ribosome fractions was extracted using TRIzol Reagent (Invitrogen). The 
cDNA was synthesized using HiScript II Q RT SuperMix (Vazyme). The qPCR analyses were performed 
using the AceQ qPCR SYBR Green Master Mix (Vazyme). UBQ5 was used as the internal reference 
gene. Primers used for qPCR are listed in Appendix 1—table 1.

Pathogen infection
The third and fourth leaves of 3-week-old Arabidopsis plants were infiltrated with Psm ES4326 
(OD600=0.0002) using a needleless syringe. Three days after infection, the leaves were sampled to 

https://doi.org/10.7554/eLife.93517
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measure the growth of Psm ES4326 as described previously (Durrant et al., 2007). For SA-mediated 
protection assay, the 3-week-old Arabidopsis plants were treated with 600 μM BTH (Syngenta) for 
24 hr before infection.

Yeast two-hybrid assays
Matchmaker GAL4 Two-Hybrid System (Clontech) was used and the assays were performed according 
to the user manual. Briefly, the bait (in pGBKT7) and prey (in pGADT7) vectors were co-transformed 
into the yeast strain AH109. The protein interactions were determined by yeast growth on SD/-Leu/-
Trp/-His/ medium. The empty vectors were used as negative controls.

In vitro pull-down assays
The GST pull-down assays were performed as previously described (Chen et al., 2023a , Chen et al., 
2023b). Briefly, ROL5-His, GST, and GST-CTU2 proteins were expressed in E. coli BL21 (DE3). GST 
(5 μg) and GST-CTU2 (5 μg) were coupled to glutathione beads (GE Healthcare Life Sciences) and then 
were incubated with ROL5-His (10 μg) in 0.5 mL binding buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 
1 mM EDTA, and 2 mM DTT) at 4°C for 2 hr. The beads were washed three times with washing buffer 
(binding buffer plus 2% NP-40), boiled in 1× SDS loading buffer, and analyzed by western blot using 
anti-GST (Abclonal) or anti-His (Abclonal) antibodies.

CoIP assays
The CoIP assays were performed as previously described (Chen et al., 2021). 35S:ROL5-FLAG and 
35S:CTU2-GFP were transformed into A. tumefaciens GV3101. 35S:ROL5-FLAG strain (OD600=1) was 
mixed with the same volume of buffer or 35S:CTU2-GFP strain (OD600=1) and was infiltrated into 
N. benthamiana leaves. After 48 hr, the infiltrated leaves were ground in liquid nitrogen and were 
resuspended in IP buffer (20 mM Tris-HCl pH 7.5, 50 mM NaCl, 1 mM EDTA, 0.1% SDS, 1% Triton 
X-100, 1 mM PMSF, 100 μM MG132, 1× protease inhibitor cocktail) for total protein extraction. The 
lysates were incubated with GFP-Trap magnetic beads (Chromotek) at 4°C for 2 hr. The beads were 
washed using washing buffer (20 mM Tris-HCl pH 7.5, 150–500 mM NaCl, 1 mM EDTA, 1 mM PMSF, 
1× Protease Inhibitor Cocktail) and then boiled in 1× SDS loading buffer. The western blotting was 
performed using anti-FLAG (Promoter) and anti-GFP (Promoter) antibodies.

Split luciferase assays
Split luciferase assay was performed as described previously (Chen et al., 2008). The constructs were 
transformed into A. tumefaciens strain GV3101 (OD600=1). The resultant strains were then infiltrated 
into leaves of N. benthamiana. After 48 hr, 1 mM luciferin (GOLDBIO) was applied onto leaves and the 
images were captured using Lumazone imaging system equipped with 2048B CCD camera (Roper).

Quantification of tRNA modifications
Quantification of tRNA modifications was performed using liquid chromatography coupled with 
mass spectrometry according to a previous study (Su et al., 2014). Total tRNA was extracted using 
a microRNA kit (Omega Bio-Tek). Five micrograms of tRNA were hydrolyzed in 10 μL enzymic buffer 
(1 U benzonase, 0.02 U phosphodiesterase I, and 0.02 U alkaline phosphatase) at 37°C for 3 hr. The 
UHPLC system (Thermo Fisher Scientific) coupled with TSQ Altis Triple Quadrupole Mass Spec-
trometer (Thermo Fisher Scientific) was used for quantification of tRNA modification. For the liquid 
chromatography, the Hypersil GOLD HPLC column (3 µm, 150×2.1 mm2; Thermo Fisher Scientific) 
was used. The solvent gradient was set as the protocol (Su et al., 2014). The Tracefinder software 
(Thermo Fisher Scientific) was further used for peak assignment, area calculation, and normalization. 
Corresponding structures and molecular masses were obtained from the Modomics database (https://​
iimcb.genesilico.pl/modomics/modifications).

RNA and protein extraction for transcriptome and proteome analysis
The samples were ground in liquid nitrogen and divided into two parts, one for transcriptome anal-
ysis and the other for proteome analysis. Total RNA was extracted using TRIzol Reagent (Invitrogen). 
Library preparation and RNA-sequencing were performed by Novogene Cooperation. Total proteins 

https://doi.org/10.7554/eLife.93517
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were extracted using phenol-methanol method (Deng et al., 2007). The protein concentration was 
determined with 2D Quant Kit (GE Healthcare Life Sciences) using bovine serum albumin as a standard.

Proteome analysis
For trypsin digestion, 60 μg proteins of each sample were reduced with 20 mM Tris-phosphine for 
60 min at 30°C. Cysteines were alkylated with 30 mM iodoacetamide for 30 min at room temperature 
in the dark. Proteins were precipitated with 6 volumes of cold acetone overnight and then dissolved in 
50 mM triethylammonium bicarbonate (TEAB). Proteins were digested with trypsin (protease/protein 
= 1/25, wt/wt) overnight at 37°C.

For TMT labeling, each sample containing 25 μg of peptide in 50 mM TEAB buffer was combined 
with its respective 10-plex TMT reagent (Thermo Fisher Scientific) and incubated for 1 hr at room 
temperature. Three biological replicates were labeled respectively for each sample, in which COM 
was labeled with 126-, 127N-, and 128C- of the 10-plex TMT reagent, while cgb was labeled with 
129N-, 130C-, and 131- of the 10-plex TMT reagents. The labeling reactions were stopped by the 
addition of 2 μL of 5% hydroxylamine.

For LC-MS/MS analysis, multiplexed TMT-labeled samples were combined, vacuum dried, recon-
stituted in 2% acetonitrile and 5 mM ammonium hydroxide (pH 9.5), and separated with the Waters 
Acquity BEH column (C18, 1.7 μm, 100 mm, Waters) using UPLC system (Waters) at a flow rate of 
300 μL/min. Total of 24 fractions were collected, combined into 12 fractions, and vacuum dried for 
LC-MS/MS analysis. The solvent gradient was set as previously described (Deng et al., 2007). Samples 
were then analyzed on an Ultimate 3000 nano UHPLC system (Thermo Fisher Scientific) coupled online 
to a Q Exactive HF mass spectrometer (Thermo Fisher Scientific). The trapping column (PepMap C18, 
100 Å, 100 μm×2 cm, 5 μm) and an analytical column (PepMap C18, 100 Å, 75 μm i.d.×50 cm long, 
2 μm) were used for separation of the samples. The solvent gradient and MASS parameters were set 
as previously described (Deng et al., 2007).

Transcriptome data analysis
Raw reads were processed and aligned to the Arabidopsis genome (https://www.arabidopsis.org) 
using STAR (v.2.6.1a). Genes with over 10 reads were filtered and processed using DESeq2 (v.1.22.2) 
to identify the DEGs (p-value <0.05, |Log2FoldChange|>Log21.5) (Love et al., 2014).

Proteome data analysis
Raw data were processed using Proteome Discoverer (v.2.2.0.388) and aligned to Arabidopsis genome 
(https://www.arabidopsis.org) with the SEQUEST HT search engine. Searches were configured with 
static modifications for the TMT reagents (+229.163 Da). The precursor mass tolerance was set as 10 
ppm; the fragment mass tolerance was set as 0.02 Da; the trypsin missed cleavage was set as 2. The 
reversed sequence decoy strategy was used to control peptide false discovery. The peptides with q 
scores <0.01 were accepted, and at least one unique peptide was required for matching a protein 
entry for its identification. PSMs (peptide spectrum matches) results were processed with DESeq2 
(v.1.22.2) to identify the DEPs (p-value <0.05, |Log2FoldChange|>Log21.2).

GO and heatmap analysis
The DEGs or proteins were analyzed by using Clusterprofile (v.3.18.1) (Yu et al., 2012). The heatmap 
analysis was processed by using pheatmap2 (v.1.0.12).

Analysis of NPR1 protein level
The seedlings were ground in liquid nitrogen and were resuspended in lysis buffer (50 mM Tris-HCl, 
pH 7.4, 150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 200 mM DTT, 1 mM 
PSMF, 50 µM MG132, 1× protease inhibitor cocktail). After centrifuging, the supernatants were mixed 
with the same volume of 2× SDS loading buffer and were incubated at 75°C for 15 min. The western 
blotting was performed using an anti-NPR1 antibody (provided by Li Yang from China Agricultural 
University).

Ribosome profiling
The ribosome profiling was performed as previously described with some modifications (Hsu et al., 
2016; Xu et al., 2017). The plant sample (0.05–0.1 g) was ground in liquid nitrogen and extracted 
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with 1 mL ribosome lysis buffer (200 mM Tris-HCl pH 8.0, 200 mM KCl, 35 mM MgCl2, 1% Triton X-100, 
100 μM MG132, 1 mM DTT, and 100 μg/mL cycloheximide), followed by ultracentrifugation at 4°C 
for 2 hr (38,000 rpm, Beckman, SW41 rotor) through a 20–60% sucrose gradient (40 mM Tris-HCl, 
pH 8.4, 20  mM KCl, 10  mM MgCl2, and 50  μg/mL cycloheximide) prepared by Gradient Master 
(Biocomp Instruments). The profiling signals were recorded by Piston Gradient Fractionator (Biocomp 
Instruments).
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Appendix 1—table 1. The primers used in this study.

Name Sequence（5'–3'） Application

ROL5-F1 ​ACAT​​TACA​​ATTA​​CATT​​TACA​​ATTA​​CATG​​GAGG​​CCAA​​GAAC​​AAGA​A
For complementation

ROL5-R1 ​GGGT​​CTTA​​ATTA​​ACTC​​TCTA​​GATT​​AGAA​​ATCC​​AGAG​​ATCC​​ACAT​

ROL5-F2 CGGAATTC ATGG​AGGC​CAAG​AACA​AGA

For Y2H
ROL5-R2 CGGGATCC ​TTAG​​AAAT​​CCAG​​AGAT​​CCAC​

CTU2-F1 CGGAATTC ATGG​CTTG​TAAT​TCCT​CAG

CTU2-R1 CGGGATCC ​TTAG​​ACAA​​CCTC​​TTCA​​TCGT​

ROL5-F3 ​GGGG​​TACC​​ATGG​​AGGC​​CAAG​​AACA​​AGA

For split luc

ROL5-R3 ​GCGT​​CGAC​​GAAA​​TCCA​​GAGA​​TCCA​C

CTU2-F2 ​GGGG​​TACC​​ATGG​​CTTG​​TAAT​​TCCT​​CAG

CTU2-R2 ​GCGT​​CGAC​​TTAG​​ACAA​​CCTC​​TTCA​​TCGT​

GUS-F acgcgtcccggggcggtaccATGGTAGATCTGAGGGTAAA

GUS-R cgaaagctctgcaggtcgacCTATTGTTTGCCTCCCTGCTG

ROL5-F0 ​TGAC​​TGCT​​CCCT​​ACCT​​GTCG​​AGTT​​TTAG​​AGCT​​AGAA​​ATAG​C

For CRISPR mutant of ROL5
ROL5-R0 ​AACG​​AGAC​​GTCC​​CGTC​​CTCA​​AACA​​ATCT​​CTTA​​GTCG​​ACTC​​TAC

ROL5-BsF ​ATAT​​ATGG​​TCTC​​GATT​​GACT​​GCTC​​CCTA​​CCTG​​TCGA​​GTT

ROL5-BsR ​ATTA​​TTGG​​TCTC​​GAAA​​CGAG​​ACGT​​CCCG​​TCCT​​CAAA​​CAA

ROL5-F4 ​TTGA​​AAGG​​TTTA​​CATC​​TTGG​​AAT

For sequencing of target sites
ROL5-R4 ​AAAG​​GTGA​​TTGC​​TTAG​​ATTC​​TGAT​T

ROL5-F5 ​CTCA​​AAAA​​CCTC​​ATAA​​AAGC​​ACTC​T

ROL5-R5 ​AACT​​GCGT​​CACT​​GTCT​​TTAC​​TCT

ROL5-F6 ​TTAA​​GAAG​​GAGA​​TATA​​CCAT​​GGGC​​ATGG​​AGGC​​CAAG​​AACA​​AGA

For protein expression
ROL5-R6 ​GAGT​​GCGG​​CCGC​​AAGC​​TTTT​​AGAA​​ATCC​​AGAG​​ATCC​​AC

CTU2-F3 ​TTCC​​AGGG​​GCCC​​CTGG​​GATC​​CATG​​GCTT​​GTAA​​TTCC​​TCAG​

CTU2-R3 ​AGTC​​ACGA​​TGCG​​GCCG​​CTCG​​AGTT​​AGAC​​AACC​​TCTT​​CATC​​GT

ROL5-F7 ​CAAT​​TACA​​TTTA​​CAAT​​TACA​​TGGA​​GGCC​​AAGA​​ACAA​​GA

For co-immunoprecipitation
ROL5-R7 ​GGGT​​CTTA​​ATTA​​ACTC​​TCTA​​GATT​​TGTC​​ATCA​​TCGT​​CTTT​G

CTU2-F4 ​CAAT​​TACA​​TTTA​​CAAT​​TACA​​TGGC​​TTGT​​AATT​​CCTC​​AGG

CTU2-R4 ​GGGT​​CTTA​​ATTA​​ACTC​​TCTA​​GATT​​ACTT​​GTAC​​AGCT​​CGTC​​CA

cgb-LP ​GTAT​​GAGA​​AGTG​​ATTG​​AGTA​​TGTG​

For genotypingcgb-RP ​TCGA​​TGTG​​CACC​​TACT​​TAAT​​CTAC​

cgb-RB ​CTAA​​TGAG​​TGAG​​CTAA​​CTCA​C

ctu2-LP ​TCAC​​ATTG​​CATT​​GAAT​​CATC​C
For genotyping

ctu2-RP ​TCAA​​ATTT​​AGCA​​CATG​​GGAC​C

https://doi.org/10.7554/eLife.93517
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Name Sequence（5'–3'） Application

ROL5-F1 ​GGAG​​CTGC​​GTTA​​TTGA​​AAGT​​AG

For qPCR

ROL5-R1 ​CCAC​​GATA​​TGCA​​TTAG​​GAGA​​GT

UBQ5-F1 ​GAAG​​ATCC​​AAGA​​CAAG​​GAAG​​GA

UBQ5-R1 ​CTTC​​TTCC​​TCTT​​CTTA​​GCAC​​CA

NPR1-P1 ​ATGA​​TTTC​​TACA​​GCGA​​CGCT​​AA

NPR1-P2 ​GACT​​TCGT​​AATC​​CTTG​​GCAA​​TC

Appendix 1—table 1 Continued
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