
Ballmer and Akiyoshi. eLife 2024;13:RP93522. DOI: https://doi.org/10.7554/eLife.93522 � 1 of 31

Dynamic localization of the chromosomal 
passenger complex in trypanosomes is 
controlled by the orphan kinesins KIN-A 
and KIN-B
Daniel Ballmer1,2, Bungo Akiyoshi1,2*

1Department of Biochemistry, University of Oxford, Oxford, United Kingdom; 2The 
Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological 
Sciences, Edinburgh, United Kingdom

Abstract The chromosomal passenger complex (CPC) is an important regulator of cell division, 
which shows dynamic subcellular localization throughout mitosis, including kinetochores and the 
spindle midzone. In traditional model eukaryotes such as yeasts and humans, the CPC consists of the 
catalytic subunit Aurora B kinase, its activator INCENP, and the localization module proteins Borealin 
and Survivin. Intriguingly, Aurora B and INCENP as well as their localization pattern are conserved 
in kinetoplastids, an evolutionarily divergent group of eukaryotes that possess unique kinetochore 
proteins and lack homologs of Borealin or Survivin. It is not understood how the kinetoplastid CPC 
assembles nor how it is targeted to its subcellular destinations during the cell cycle. Here, we iden-
tify two orphan kinesins, KIN-A and KIN-B, as bona fide CPC proteins in Trypanosoma brucei, the 
kinetoplastid parasite that causes African sleeping sickness. KIN-A and KIN-B form a scaffold for the 
assembly of the remaining CPC subunits. We show that the C-terminal unstructured tail of KIN-A 
interacts with the KKT8 complex at kinetochores, while its N-terminal motor domain promotes CPC 
translocation to spindle microtubules. Thus, the KIN-A:KIN-B complex constitutes a unique ‘two-
in-one’ CPC localization module, which directs the CPC to kinetochores from S phase until meta-
phase and to the central spindle in anaphase. Our findings highlight the evolutionary diversity of 
CPC proteins and raise the possibility that kinesins may have served as the original transport vehicles 
for Aurora kinases in early eukaryotes.

eLife assessment
This important study identifies the mitotic localization mechanism for Aurora B and INCENP (parts 
of the chromosomal passenger complex, CPC) in Trypanosoma brucei. The mechanism differs from 
that in the more commonly studied opisthokonts and is supported by compelling RNAi and imaging 
experiments, targeted mutations, immunoprecipitations with crosslinking/mass spec, and AlphaFold 
interaction predictions. The findings will be of interest to cell biologists working on cell division, 
parasitologists, and those interested in the evolution of mitotic mechanisms.

Introduction
During cell division, duplicated genetic material must be distributed equally into two daughter cells. 
The Aurora B kinase is a key mitotic regulator widely conserved among eukaryotes (Hochegger et al., 
2013). It undergoes dynamic localization changes throughout mitosis to enable the spatially restricted 
phosphorylation of substrates involved in chromosome alignment, chromosome bi-orientation, spindle 
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assembly checkpoint (SAC) signaling, and cytokinesis (Carmena et al., 2012). In early mitosis, Aurora 
B is first detected on chromosome arms and during prometaphase becomes enriched at centromeres, 
where it destabilizes incorrect kinetochore-microtubule attachments (Krenn and Musacchio, 2015). 
Upon anaphase onset, Aurora B translocates to the spindle midzone, and during cytokinesis associ-
ates with the equatorial cortex to regulate cell abscission (Adams et al., 2000; Cooke et al., 1987; 
Trivedi and Stukenberg, 2016).

The dynamic localization pattern of the Aurora B kinase is in part achieved through its association 
with a scaffold comprised of inner centromere protein (INCENP), Borealin, and Survivin (Adams et al., 
2001; Adams et al., 2000; Gassmann et al., 2004; Romano et al., 2003; Sampath et al., 2004; 
Vader et  al., 2006; Wheatley et  al., 2001). Together, these proteins form a tetrameric complex 
referred to as the chromosomal passenger complex (CPC). The CPC can be partitioned into two 
functional modules: The ‘catalytic module’ and the ‘localization module’. The catalytic module is 
composed of Aurora B in complex with the IN-box at the INCENP C-terminus, which is required 
for full activation of the Aurora B kinase (Bishop and Schumacher, 2002). The localization module 
comprises Borealin, Survivin, and the N-terminus of INCENP, which are connected to one another 
via a three-helical bundle (Jeyaprakash et al., 2011; Jeyaprakash et al., 2007; Klein et al., 2006). 
The two modules are linked by the central region of INCENP, composed of an intrinsically disordered 
domain and a single alpha helical (SAH) domain. INCENP harbors microtubule-binding domains within 
the N-terminus and the central SAH domain, which play key roles for CPC localization and function 
(Cormier et al., 2013; Fink et al., 2017; Kang et al., 2001; Mackay et al., 1993; Nakajima et al., 
2011; Noujaim et al., 2014; Samejima et al., 2015; van der Horst et al., 2015; Wheatley et al., 
2001; Wheelock et al., 2017).

In vertebrates, recruitment of the CPC to centromeric chromatin depends on two pathways, 
involving the Haspin and Bub1 kinases. Haspin phosphorylates histone H3 on Thr3 (H3T3ph), which 
is recognized by the baculovirus IAP repeat (BIR) domain of Survivin (Kelly et al., 2010; Wang et al., 
2010; Yamagishi et  al., 2010). H3T3ph is initially found along the entire length of chromosomes 
between sister chromatids but becomes enriched at the inner centromere (the space between sister 
kinetochores) during late prophase. In contrast, the kinetochore-associated Bub1 kinase phosphory-
lates histone H2A on Thr120 (H2AT120ph) (Kawashima et al., 2010). H2AT120ph recruits Shugoshin-
like proteins (Sgo1 and Sgo2), which in turn are bound by Borealin (Tsukahara et al., 2010; Yamagishi 
et al., 2010). Recently, Sgo1 has also been demonstrated to interact with the BIR domain of Survivin 
through an N-terminal histone H3-like motif (Abad et al., 2022; Jeyaprakash et al., 2011). The inter-
actions of Borealin and Survivin with Sgo1 form the basis for a kinetochore-proximal pool of the CPC 
which is distinct from the inner centromere pool (Broad et al., 2020; Hadders et al., 2020; Liang 
et al., 2020).

In most studied eukaryotes, ranging from yeast to humans, kinetochore assembly is scaffolded 
by a centromere-specific histone H3 variant, CENP-A (Allshire and Karpen, 2008; Black and Cleve-
land, 2011; Hori and Fukagawa, 2012; Maddox et  al., 2012; Westhorpe and Straight, 2013). 
An assembly of inner kinetochore protein complexes, referred to as the constitutive centromere-
associated network, interacts with centromeric CENP-A chromatin throughout the cell cycle and 
provides a platform for recruitment of the outer kinetochore KNL1/Mis12 complex/Ndc80 complex 
network that has microtubule-binding activity (Cheeseman et al., 2006; Foltz et al., 2006; Izuta et al., 
2006; Okada et al., 2006). Some of these kinetochore proteins are present in nearly all sequenced 
eukaryotes, suggesting that key principles of chromosome segregation are widely shared among 
eukaryotes (Drinnenberg and Akiyoshi, 2017; van Hooff et al., 2017; Meraldi et al., 2006; Tromer 
et  al., 2019). However, a unique set of kinetochore proteins (KKT1–20, KKT22–25, KKIP1–12) are 
present in kinetoplastids (Brusini et al., 2021; Akiyoshi and Gull, 2014; D’Archivio and Wickstead, 
2017; Nerusheva et al., 2019; Nerusheva and Akiyoshi, 2016), a group of flagellated protists that 
are highly divergent from commonly studied eukaryotes (Cavalier-Smith, 2010). Trypanosoma brucei, 
Trypanosoma cruzi, and Leishmania spp. are causative agents of African trypanosomiasis, Chagas 
disease, and leishmaniasis, respectively, and as such pose a serious threat to public health and pros-
perity across the tropics and subtropics (Stuart et al., 2008; WHO, 2017).

Despite the absence of canonical kinetochore components (Berriman et al., 2005; Lowell and 
Cross, 2004), Aurora kinases are conserved in kinetoplastids. Early studies suggested that the Aurora 
B homolog (Aurora BAUK1) in T. brucei forms a complex with chromosomal passenger complex proteins 
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1 and 2 (CPC1 and CPC2) and plays a crucial role in mitosis and cytokinesis (Li et al., 2008; Tu et al., 
2006). CPC1 was later found to be a divergent INCENP homolog (hereafter referred to as INCEN-
PCPC1) based on the presence of a conserved C-terminal IN-box (Hu et al., 2014). However, INCEN-
PCPC1 lacks the central SAH domain and N-terminal residues, which in other eukaryotes interact with 
Survivin and Borealin. In addition, two orphan kinesins, KIN-A and KIN-B, have been proposed to 
transiently associate with Aurora BAUK1 during mitosis (Li, 2012; Li et al., 2008). Although homologs 
of the ‘localization module’ proteins Survivin and Borealin have not been identified in kinetoplastids 
(Komaki et al., 2022), the trypanosome CPC displays a dynamic localization pattern similar to that 
of the metazoan CPC (Li et al., 2008): Aurora BAUK1, INCENPCPC1, and CPC2 localize to kinetochores 
in early mitosis and then translocate to the central spindle upon anaphase onset. From late anaphase 
onward, an additional population of CPC proteins is detectable at the tip of the new flagellum attach-
ment zone (FAZ), the point of cytokinesis initiation in T. brucei. It is presently not understood how 
the CPC assembles in these evolutionarily divergent eukaryotes nor how its localization dynamics are 
regulated during the cell cycle.

Here, by combining biochemical, structural, and cell biological approaches in procyclic form T. 
brucei, we show that the trypanosome CPC is a pentameric complex comprising Aurora BAUK1, INCEN-
PCPC1, CPC2, and the two orphan kinesins KIN-A and KIN-B. KIN-A and KIN-B interact via their coiled-
coil domains to form a subcomplex within the CPC, which serves as a scaffold for the catalytic module 
(Aurora BAUK1 + INCENPCPC1). The C-terminal unstructured tail of KIN-A directs kinetochore localization 
of the CPC from S phase to metaphase, while the N-terminal motor domain promotes the central 
spindle enrichment in anaphase. Furthermore, we identify the KKT7-KKT8 complex pathway as the 
main kinetochore recruitment arm of the trypanosome CPC.

Results
KIN-A and KIN-B are bona fide CPC proteins in trypanosomes
To identify additional interactors of the CPC in trypanosomes, we performed immunoprecipitation 
followed by liquid chromatography tandem mass spectrometry (IP-MS) of endogenously YFP-tagged 
Aurora BAUK1 (Figure 1—figure supplement 1A, Supplementary files 1 and 2). Besides Aurora BAUK1, 
INCENPCPC1, and CPC2, we observed notable enrichment of two orphan kinesins, KIN-A and KIN-B 
(Wickstead and Gull, 2006), as reported previously (Li et al., 2008). Both KIN-A and KIN-B were also 
highly enriched in immunoprecipitates of ectopically expressed GFP-INCENPCPC1. Vice versa, IP-MS of 
GFP-tagged KIN-A and KIN-B identified Aurora BAUK1, INCENPCPC1, and CPC2 as top hits (Figure 1A 
and Supplementary file 2).

We next assessed the localization dynamics of fluorescently tagged KIN-A and KIN-B over the 
course of the cell cycle (Figure 1B–E). T. brucei possesses two DNA-containing organelles, the nucleus 
(‘N’) and the kinetoplast (‘K’). The kinetoplast is an organelle found uniquely in kinetoplastids, which 
contains the mitochondrial DNA and replicates and segregates prior to nuclear division. The ‘KN’ 
configuration serves as a good cell cycle marker (Siegel et al., 2008; Woodward and Gull, 1990). 
To our surprise, KIN-A-YFP and GFP-KIN-B exhibited a CPC-like localization pattern similar to that of 
Aurora BAUK1: Both kinesins localized to kinetochores from S phase to metaphase, and then translo-
cated to the central spindle in anaphase (Figure 1C–E). Moreover, like Aurora BAUK1, a population of 
KIN-A and KIN-B localized at the new FAZ tip from late anaphase onward (Figure 1—figure supple-
ment 1B and C). This was unexpected, because KIN-A and KIN-B were previously reported to localize 
to the spindle but not to kinetochores or the new FAZ tip (Li et al., 2008). These data suggest that 
KIN-A and KIN-B are bona fide CPC proteins in trypanosomes, associating with Aurora BAUK1, INCEN-
PCPC1, and CPC2 throughout the cell cycle.

A bioinformatic search for homologs of CPC proteins within Euglenozoa revealed that both KIN-A 
and KIN-B are present in trypanosomatids and bodonids, with KIN-A homologs detectable even in 
prokinetoplastids (Figure  1F) (Materials and methods). CPC2, on the other hand, was detectable 
only within trypanosomatids. Aurora BAUK1 and INCENPCPC1 are present in kinetoplastids as well as 
in diplonemids and euglenids (sister groups of kinetoplastids). Interestingly, homologs of Borealin, 
Survivin, KIN-A, or KIN-B were not detectable in diplonemids or euglenids, raising a possibility that 
these organisms may also possess ‘non-canonical’ CPC proteins. We conclude that the KIN-A and 
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Figure 1. KIN-A and KIN-B are bona fide chromosomal passenger complex (CPC) proteins in T. brucei. (A) Clustered heatmap showing enrichment (log2 
intensity-based absolute quantification [IBAQ]) of mitotic proteins co-purifying with ectopically expressed GFP-INCENPCPC1, GFP-KIN-A, and GFP-KIN-B. 
The heatmap was generated using the Python Seaborn library using WPGMA clustering. Cell lines: BAP2190, BAP2286, BAP2288. Immunoprecipitation 
was performed using anti-GFP antibodies. See Supplementary file 2 for all proteins identified by mass spectrometry. (B) Cartoon depicting the 

Figure 1 continued on next page
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KIN-B kinesins are highly conserved within kinetoplastids, constituting integral components of the 
CPC in this evolutionary divergent group of eukaryotes.

KIN-A and KIN-B promote kinetochore localization of the CPC
To investigate which subunits of the CPC are responsible for its kinetochore targeting, we performed 
a series of RNAi experiments (Figure 2A–E). Because CPC2 is poorly conserved among kinetoplastids 
(Figure 1F) and depletion of CPC2 using two different hairpin RNAi constructs (Supplementary file 
1) was inefficient, we did not include CPC2 in these experiments. As previously reported (Li et al., 
2008), depletion of Aurora BAUK1, INCENPCPC1, KIN-A, or KIN-B resulted in a prominent growth defect 
(Figure 2—figure supplement 1A) with cells arresting in G2/M (2K1N) (Figure 2—figure supplement 
1B). Knockdown of Aurora BAUK1 did not affect the kinetochore localization of YFP-tagged INCEN-
PCPC1, KIN-A, or KIN-B (Figure  2A and C–E). Knockdown of INCENPCPC1 caused delocalization of 
Aurora BAUK1 but not of KIN-A or KIN-B (Figure 2A, B, D, and E). In contrast, both Aurora BAUK1 and 
INCENPCPC1 were delocalized upon depletion of KIN-A or KIN-B (Figure 2A–C). RNAi against KIN-A 
disrupted KIN-B localization and vice versa (Figure 2A, D, and E). Moreover, total protein levels of 
KIN-B were affected by depletion of KIN-A (Figure 2—figure supplement 1C), suggesting that the 
interaction with KIN-A is required to stabilize KIN-B.

We next ectopically expressed GFP-tagged truncations of KIN-A and KIN-B to assess which 
domains promote their kinetochore targeting. Both KIN-A and KIN-B contain an N-terminal kinesin 
motor domain followed by several predicted coiled-coil motifs (Li et al., 2008), although KIN-B is 
predicted to be an inactive motor (Wickstead and Gull, 2006). In addition, KIN-A has a long, disor-
dered C-terminal tail (see below). Unlike full-length KIN-B, KIN-B2-316 (inactive motor domain) failed 
to enrich at kinetochores and was instead found in the nucleolus (Figure 2—figure supplement 1D 
and E). KIN-A2-309 (motor domain) was also primarily detected in the nucleolus, although we observed 
additional spindle and weak kinetochore-like signal in some metaphase cells (Figure 2G). By contrast, 
both KIN-A310-862 (coiled-coil domain+C-terminal disordered tail) and KIN-B317-624 (coiled-coil domain) 
clearly localized to kinetochores from S phase to metaphase (Figure 2H; Figure 2—figure supple-
ment 1F). Intriguingly, unlike endogenously YFP-tagged KIN-A, ectopically expressed GFP fusions of 
both full-length KIN-A and KIN-A310-862 localized at kinetochores even in anaphase (Figure 2F and H). 
Weak anaphase kinetochore signal was also detectable for KIN-B317-624 (Figure 2—figure supplement 
1F). GFP fusions of the central coiled-coil domain or the C-terminal disordered tail of KIN-A did not 
localize to kinetochores (data not shown). These results show that kinetochore localization of the CPC 
is mediated by KIN-A and KIN-B and requires both the central coiled-coil domain and the C-terminal 
disordered tail of KIN-A.

Structural model of the trypanosome CPC
To gain structural insights into the trypanosome CPC, we used AlphaFold2 (AF2) (Jumper et al., 2021; 
Mirdita et al., 2022) to predict the overall structure of the trypanosome CPC by testing combinations 
of full-length Aurora BAUK1, INCENPCPC1, CPC2, KIN-A, and KIN-B, and truncations thereof (Figure 3—
figure supplement 1A–D). AF2 confidently predicted parallel coiled coils between KIN-A and KIN-B, 
with the main region of interaction contained within the central region of KIN-A (residues ~310–550) 
and the C-terminal region of KIN-B (residues ~320–580). The C-terminal tail (residues ~550–862) of 
KIN-A is predicted to be intrinsically disordered (pLDDT scores <20, Figure 3—figure supplement 
1A and B). The first ~55 residues of INCENPCPC1, predicted to form two α-helices (residues ~7–20 

kinetoplast (K)/nucleus (N) configuration throughout the cell cycle in procyclic T. brucei, with K* denoting an elongated kinetoplast. The kinetoplast 
is an organelle found uniquely in kinetoplastids, which contains the mitochondrial DNA and replicates and segregates prior to nuclear division. The 
KN configuration serves as a cell cycle marker (Siegel et al., 2008; Woodward and Gull, 1990). (C–E) Representative fluorescence micrographs 
showing the dynamic localization of YFP-Aurora BAUK1 (C), KIN-A-YFP (D), and GFP-KIN-B (E) over the course of the cell cycle. Kinetochores are marked 
with tdTomato-KKT2. DNA was stained with DAPI. Cell lines: BAP1515, BAP3066, BAP2288. Scale bars, 2 μm. (F) Phylogenetic tree of kinetoplastids, 
diplonemids, and euglenids along with the presence (black dots)/absence (white dots) patterns of CPC components. The phylogenetic tree of 
Euglenozoa is based on Butenko et al., 2020.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. KIN-A and KIN-B are bona fide chromosomal passenger complex (CPC) proteins in T. brucei.

Figure 1 continued
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Figure 2. Kinetochore localization of the chromosomal passenger complex (CPC) depends on KIN-A and KIN-B. (A) Representative fluorescence 
micrographs showing the localization of YFP-tagged Aurora BAUK1, INCENPCPC1, KIN-A, and KIN-B in 2K1N cells upon RNAi-mediated knockdown 
of indicated CPC subunits. Note that nuclear close-ups are shown here. CPC proteins were not detected in the cytoplasm. RNAi was induced with 
1 μg/ml doxycycline for 24 hr (KIN-B RNAi) or 16 hr (all others). Cell lines: BAP3092, BAP2552, BAP2557, BAP3093, BAP2906, BAP2900, BAP2904, 
BAP3094, BAP2899, BAP2893, BAP2897, BAP3095, BAP3096, BAP2560, BAP2564, BAP3097. Scale bars, 2 μm. (B–E) Quantification of 2K1N cells that 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.93522
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and ~36–55), interact with the coiled coils of KIN-A:KIN-B in close proximity to the kinesin motors. A 
flexible central linker in INCENPCPC1 bridges the N-terminus of INCENPCPC1 and the catalytic module of 
the CPC (Aurora BAUK1 + INCENPCPC1 IN-box). Similarly to INCENPCPC1, an N-terminal α-helical region 
in CPC2 (residues ~19–75) interacts with the KIN-A:KIN-B coiled coils immediately downstream 
of the INCENPCPC1 binding site. Consistent with these predictions, GFP-tagged INCENPCPC1 2-147 or 
CPC22-120 displayed normal localization dynamics indistinguishable from the corresponding full-length 
constructs (Figure 3—figure supplement 1E, F, H, I). In contrast, deletion of the N-terminal domains 
of INCENPCPC1 or CPC2 impaired kinetochore localization (Figure 3—figure supplement 1G and I). 
Together, these data suggest that Aurora BAUK1 forms a subcomplex with the C-terminus of INCEN-
PCPC1, and that INCENPCPC1 and CPC2 interact with the coiled-coil domain of KIN-A:KIN-B via their 
N-terminal domains.

To validate these findings biochemically, we performed bis(sulfosuccinimidyl) suberate (BS3) cross-
linking of native CPC complexes isolated by immunoprecipitation of endogenously tagged YFP-
Aurora BAUK1 from cells arrested prior to anaphase, followed by mass spectrometry analysis (IP-CLMS) 
(Figure  3A and Supplementary file 2). Indeed, our IP-CLMS data revealed high-score crosslinks 
between the predicted coiled-coil domains of KIN-A and KIN-B, suggesting that the two kinesins 
form a parallel heterodimer. As expected, Aurora BAUK1 formed contacts with the C-terminal IN-box 
of INCENPCPC1, consistent with these two proteins constituting the catalytic module of the CPC. The 
N-terminal region of INCENPCPC1 interacted mainly with KIN-B and to a lesser degree with KIN-A, with 
most contacts confined to the N-terminal ends of the predicted coiled-coil domains of the kinesins 
close to their motor domains. The N-terminus of CPC2, on the other hand, formed crosslinks with 
the coiled-coil domain of KIN-A. We used PyXlinkViewer (Schiffrin et al., 2020) to map our IP-CLMS 
data onto the assembled AF2 model of the trypanosome CPC (Figure 3B). Using a Euclidean distance 
cut-off of 30 Å, ~85% of crosslinks were compatible with the model, providing confidence in the AF2 
predictions. The few crosslinks that violated the distance constraints mainly represent intra-protein 
contacts between the INCENPCPC1 N- and C-terminal domains or inter-protein contacts between the 
INCENPCPC1 C-terminal domain and the kinesin motor domain of KIN-A. The central domain of INCEN-
PCPC1 is predicted to be unstructured (pLDDT scores <20, Figure 3—figure supplement 1C and D) 
and may act as a flexible linker, permitting multiple orientations of the catalytic module relative to 
the KIN-A:KIN-B scaffold. Taken together, these data indicate that KIN-A and KIN-B interact via their 
coiled-coil domains, which serve as a scaffold for the assembly of the remaining CPC subunits.

The CPC is recruited to kinetochores through the KKT7-KKT8 complex 
pathway
Core components of the Haspin-H3T3ph and Bub1-H2AT120ph-Sgo1 pathways that control CPC 
recruitment to the centromere in other model eukaryotes are not found in kinetoplastids (Berriman 
et al., 2005), and so far, no centromere-specific histone modifications and/or histone variants have 
been uncovered in T. brucei. We reasoned that the centromere receptor(s) of the trypanosome CPC 
may lie within the repertoire of unconventional kinetochore proteins present in kinetoplastids. Our 
IP-CLMS approach failed to detect crosslinks between CPC subunits and kinetochore components 
(Supplementary file 2), possibly due to the transient nature of these interactions. Nevertheless, 

have kinetochore-like dots of YFP-tagged Aurora BAUK1 (B), INCENPCPC1 (C), KIN-A (D), and KIN-B (E) upon RNAi-mediated depletion of indicated CPC 
components. All graphs depict the means (bar) ± SD of at least two replicates (shown as dots). A minimum of 100 cells per replicate were quantified. 
*p<0.05, **p≤0.01, ***p≤0.001 (two-sided, unpaired t-test). (F–H) Representative fluorescence micrographs showing the localization of ectopically 
expressed GFP-KIN-Afl (F), -KIN-A2-309 (G), and -KIN-A310-862 (H). Expression of GFP fusion proteins was induced with 10 ng/ml doxycycline for 24 hr. 
Kinetochores are marked with tdTomato-KKT2. Arrowheads indicate KIN-Afl and KIN-A310-862 signals at kinetochores in anaphase. KIN-A2-309 localizes to 
the mitotic spindle during (pro)metaphase. Cell lines: BAP2286, BAP2297, BAP2287. Scale bars, 2 μm.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure supplement 1. Depletion of chromosomal passenger complex (CPC) proteins causes growth defects and cell cycle arrest.

Figure supplement 1—source data 1. Original scans of the western blot analysis (anti-GFP and anti-tubulin) in Figure 2—figure supplement 1C.

Figure supplement 1—source data 2. PDF containing the uncropped, original scans of the western blot analysis (anti-GFP and anti-tubulin) in 
Figure 2—figure supplement 1C with highlighted bands and sample labels.

Figure 2 continued

https://doi.org/10.7554/eLife.93522
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several KKT proteins were commonly enriched in the immunoprecipitates of Aurora BAUK1, INCEN-
PCPC1, KIN-A, and KIN-B, the most abundant ones being KKT6, KKT7, KKT8, KKT9, KKT10, KKT11, and 
KKT12 (Figure 1A; Figure 1—figure supplement 1A; and Supplementary file 2). KKT7 is detected 
at kinetochores from S phase until the end of anaphase and recruits the KKT8 complex (comprising 
KKT8, KKT9, KKT11, and KKT12) (Akiyoshi and Gull, 2014; Ishii and Akiyoshi, 2020). The KKT8 
complex localizes at kinetochores from S phase and dissociates at the metaphase-anaphase transition.

A

Aurora BAUK1

INCENPCPC1

CPC2
KIN-A
KIN-B

satisfied
not satisfied

IP-CLMS:

pLDDT

low high

BA

Aurora BAurora BAUK1AUK1

B

Figure 3. Structural model of the trypanosome chromosomal passenger complex (CPC). (A) Circular view of the bis(sulfosuccinimidyl) suberate (BS3) 
crosslinks observed between the subunits of the trypanosome CPC, obtained from native complexes isolated by immunoprecipitation of YFP-Aurora 
BAUK1 (cell line: BAP2198). pLink2 (Chen et al., 2019) was used to obtain crosslinks from mass spectrometry data. xiView (Graham et al., 2019) was used 
for data visualization. Only crosslinks with a score better than e–3 are shown. See Supplementary file 2 for all crosslinks identified by mass spectrometry. 
(B) Cartoon representation showing two orientations of the trypanosome CPC, colored by protein on the left (Aurora BAUK1: crimson, INCENPCPC1: green, 
CPC2: cyan, KIN-A: magenta, and KIN-B: yellow) or according to their pLDDT values on the right, assembled from AlphaFold2 predictions shown in 
Figure 3—figure supplement 1. The pLDDT score is a per-residue estimate of the confidence in the AlphaFold prediction on a scale from 0 to 100. 
pLDDT >70 (blue, cyan) indicates a reasonable accuracy of the model, while pLDDT <50 (red) indicates a low accuracy and often reflects disordered 
regions of the protein (Jumper et al., 2021). BS3 crosslinks in (B) were mapped onto the model using PyXlinkViewer (blue = distance constraints 
satisfied, red = distance constraints violated, Cα-Cα Euclidean distance threshold = 30 Å) (Schiffrin et al., 2020).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. AlphaFold2 models of chromosomal passenger complex (CPC) subcomplexes and localization of CPC protein 1 (CPC1) and 
CPC2 truncations.

https://doi.org/10.7554/eLife.93522
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Using previously validated RNAi constructs (Akiyoshi and Gull, 2014; Llauró et  al., 2018; 
Marcianò et al., 2021), we found that knockdown of KKT7 or KKT9 resulted in dispersal of YFP-Aurora 
BAUK1 from kinetochores in ~70% of cells (Figure 4A–D). In contrast, depletion of KKT1, KKT2, KKT3, 
KKT4, KKT6, KKT10/19, KKT14, and KKT16 had little or no effect on YFP-Aurora BAUK1 localization 
(Figure 4—figure supplement 1A and B). Knockdown of KKT8 complex subunits also impaired kine-
tochore recruitment of KIN-A-YFP (Figure 4—figure supplement 1C and D). We next tested whether 
KKT7 or the KKT8 complex were able to recruit Aurora BAUK1 to an ectopic locus using the LacI-LacO 
system (Landeira and Navarro, 2007). For these experiments, we expressed GFP-tagged KKT72-261 
or KKT8 fused to the Lac repressor (LacI) in trypanosomes containing an ectopic Lac operator (LacO) 
array stably integrated into rDNA repeats. We previously showed that KKT7 lies upstream of the KKT8 
complex (Ishii and Akiyoshi, 2020). Indeed, GFP-KKT72-261-LacI recruited tdTomato-KKT8, -KKT9, 
and -KKT12 (Figure 4—figure supplement 1E). Expression of GFP-KKT72-261-LacI or GFP-KKT8-LacI 
resulted in robust recruitment of tdTomato-Aurora BAUK1 to LacO foci in S phase (Figure 4E and F). 
Intriguingly, we also noticed that, unlike endogenous KKT8 (which is not present in anaphase), ectop-
ically expressed GFP-KKT8-LacI remained at kinetochores during anaphase (Figure 4F). This resulted 
in a fraction of tdTomato-Aurora BAUK1 being trapped at kinetochores during anaphase instead of 
migrating to the central spindle (Figure  4F). We observed a comparable situation upon ectopic 
expression of GFP-KIN-A, which is retained on anaphase kinetochores together with tdTomato-KKT8 
(Figure 4—figure supplement 1F). In contrast, Aurora BAUK1 was not recruited to LacO foci marked by 
GFP-KKT72-261-LacI in anaphase (Figure 4E).

KKT7 recruits the KKT8 complex via the KKT9:KKT11 subcomplex
To gain further insights into the structure and assembly hierarchy within the KKT7-KKT8 complex 
pathway, we performed CLMS on native complexes isolated by immunoprecipitation of endogenously 
YFP-tagged kinetochore proteins and mapped the detected crosslinks onto AF2 structure predictions 
(Figure 4G and H; Supplementary file 2) (Materials and methods). AF2 confidently predicted coiled 
coils between KKT8 and KKT12 and between KKT9 and KKT11 (Figure 4G; Figure 4—figure supple-
ment 1G and H), suggesting that KKT8:KKT12 and KKT9:KKT11 each form distinct subcomplexes. 
To validate these findings, we co-expressed combinations of 6HIS-KKT8, KKT9, KKT11, and KKT12 in 
E. coli and performed metal affinity chromatography (Figure 4I). 6HIS-KKT8 efficiently pulled down 
KKT9, KKT11, and KKT12, as shown previously (Ishii and Akiyoshi, 2020). In the absence of KKT9, 
6HIS-KKT8 still pulled down KKT11 and KKT12. Removal of either KKT9 or KKT11 did not impact 
formation of the KKT8:KKT12 subcomplex. In contrast, 6HIS-KKT8 could not be recovered without 
KKT12, indicating that KKT12 is required for the formation of the full KKT8 complex. These results 
support the idea that the KKT8 complex consists of KKT8:KKT12 and KKT9:KKT11 subcomplexes. 
The two subcomplexes appear to be connected to each other through interactions between the 
C-terminal region of the KKT8:KKT12 coiled coils and the C-terminus of KKT11. Two alpha helices in 
KKT72-261 (residues ~149–181) are predicted to interact with KKT9:KKT11. Using a distance cut-off of 
30 Å, ~70% of crosslinks were compatible with the model (Figure 4G and H). Of the crosslinks that 
failed to meet the distance criteria, ~90% involved unstructured regions within KKT7 or the C-terminal 
tail of KKT8. Collectively, our results reveal that KKT7 recruits the KKT8 complex through interaction 
with the KKT9:KKT11 subcomplex.

We next examined the localization dependency of KKT8 complex components in cells. Using RNAi 
constructs against individual subunits of the KKT8 complex (Akiyoshi and Gull, 2014; Ishii and Akiy-
oshi, 2020; Marcianò et  al., 2021), we assessed localization of endogenously YFP-tagged KKT8, 
KKT9, and KKT12 (Figure 4—figure supplement 2A–D). We found that knockdown of any subunit 
of the KKT8 complex affected protein levels and kinetochore localization of the other subunits, indi-
cating that presence of all subunits is required to stabilize the full complex. YFP-KKT9 was least 
affected and was still detectable at kinetochores in ~50% of cells depleted of KKT8, KKT11, or KKT12 
(Figure 4—figure supplement 2D). Thus, KKT9:KKT11 may lie upstream of KKT8:KKT12. Indeed our 
IP-CLMS data suggest that the KKT9:KKT11 subcomplex directly interacts with the N-terminus of KKT7 
(Figure 4H and Supplementary file 2). KKT7 also formed robust crosslinks with the KKT10/19 kinases 
(Supplementary file 2), supporting our previous finding that KKT7 and KKT10 form a stable complex 
(Ishii and Akiyoshi, 2020). Together, these data suggest that the KKT7-KKT8 complex pathway serves 
as the main CPC recruitment arm in trypanosomes.

https://doi.org/10.7554/eLife.93522
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Figure 4. The chromosomal passenger complex (CPC) is recruited to kinetochores via the KKT7-KKT8 complex pathway. (A) Representative fluorescence 
micrographs showing the localization of YFP-Aurora BAUK1 upon RNAi-mediated knockdown of KKT7. RNAi was induced with 1 μg/ml doxycycline for 
24 hr. Cell line: BAP577. Scale bars, 2 μm. (B) Quantification of 2K1N cells that have kinetochore-like dots of YFP-Aurora BAUK1 upon knockdown of 
KKT7. All graphs depict the means (bar) ± SD of three replicates (shown as dots). A minimum of 50 cells per replicate were quantified. ***p≤0.001 (two-

Figure 4 continued on next page
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The KIN-A C-terminal tail interacts with the KKT8 complex through a 
conserved domain
By IP-CLMS we failed to detect reliable crosslinks between the CPC and the KKT7-KKT8 complex 
or other kinetochore proteins (Supplementary file 2). This suggests that the IP-CLMS approach, 
although well suited for characterizing stable protein complexes, may not be sensitive enough to 
detect transient or lower affinity interactions. To overcome this, we used AF2 to probe for potential 
interactions between the KKT8 complex and chromosomal passenger subunits or (sub)complexes. 
AF2 did not predict interactions between the KKT8 complex and INCENPCPC1, CPC2, or KIN-B (data 
not shown). Intriguingly, AF2 predicted with high confidence interactions between KKT9:KKT11 and 
a conserved region (residues ~722–741) within the KIN-A C-terminal tail, which we termed conserved 
domain 1 (CD1) (Figure 5A and B; Figure 5—figure supplements 1 and 2A). This interaction involves 
a triple helix composed of KIN-A CD1, KKT9, and KKT11 in a region close to the KKT7-binding site. 
pLDDT scores improved significantly for KIN-A CD1 in complex with KKT9:KKT11 (>80) compared 
to KIN-A CD1 alone (~20) (Figure 3—figure supplement 1A and B), suggesting that CD1 forms a 
helical structure upon binding to KKT9:KKT11. Sequence alignment revealed the presence of a second 
conserved domain (residues ~816–862) within the C-terminal tail of KIN-A, hereafter referred to as CD2 
(Figure 5B; Figure 5—figure supplement 1). To assess the contributions of CD1 and CD2 for kine-
tochore recruitment of KIN-A in vivo, we ectopically expressed GFP fusions of the central coiled coils 
and C-terminal tail of KIN-A (residues ~310–862) lacking either CD1, CD2, or both (Figure 5—figure 
supplement 2B–E). GFP-KIN-A310-862 ∆CD2 showed a moderate reduction in kinetochore localization in 
metaphase and was completely lost from kinetochores in anaphase (Figure 5—figure supplement 2C 
and F). By contrast, GFP-KIN-A310-862 ∆CD1 was largely dispersed in metaphase but reappeared at kine-
tochores in anaphase (Figure 5—figure supplement 2D and F). GFP-KIN-A310-716 lacking both CD1 
and CD2 failed to enrich at kinetochores both in metaphase and anaphase (Figure 5—figure supple-
ment 2E and F). These data suggest that CD1 and CD2 synergistically promote kinetochore local-
ization of KIN-A, with CD1 interacting with KKT9:KKT11 and CD2 possibly interacting with another 
receptor at the kinetochore.

sided, unpaired t-test). (C) Representative fluorescence micrographs showing the localization of YFP-Aurora BAUK1 upon RNAi-mediated knockdown 
of KKT9. RNAi was induced with 1 μg/ml doxycycline for 24 hr. Kinetochores are marked with tdTomato-KKT2. Cell line: BAP2276. Scale bars, 2 μm. 
(D) Quantification of 2K1N cells that have kinetochore-like dots of YFP-Aurora BAUK1 upon knockdown of KKT9. All graphs depict the means (bar) ± SD of 
three replicates (shown as dots). A minimum of 50 cells per replicate were quantified. ***p≤0.001 (two-sided, unpaired t-test). (E and F) Representative 
micrographs of cells in S phase and anaphase showing recruitment of tdTomato-Aurora BAUK1 to LacO foci marked by ectopically expressed GFP-KKT72-

261-LacI (E) or -KKT8-LacI (F). The insets show the magnification of the boxed region. Expression of LacI fusion proteins was induced with 10 ng/ml 
doxycycline for 24 hr. Arrowheads in (F) indicate anaphase kinetochore localization of GFP-KKT8-LacI and tdTomato-Aurora BAUK1. Anaphase kinetochore 
localization of tdTomato-Aurora BAUK1 was observed in 75% of anaphase cells expressing GFP-KKT8-LacI (n=28). Cell lines: BAP1395, BAP2640. Scale 
bars, 2 μm. Of note, LacI fusions with INCENPCPC1, KIN-A, and KIN-B constructs robustly localized to kinetochores like their endogenous counterparts 
and failed to form distinct LacI foci and could therefore not be used to assess ectopic recruitment of KKT proteins. (G) AlphaFold2 model of the 
KKT7-KKT8 complex, colored by protein (KKT71-261: green, KKT8: blue, KKT12: pink, KKT9: cyan, and KKT11: orange) (left) and by pLDDT (center). 
Bis(sulfosuccinimidyl) suberate (BS3) crosslinks in (H) were mapped onto the model using PyXlinkViewer (Schiffrin et al., 2020) (blue = distance 
constraints satisfied, red = distance constraints violated, Cα-Cα Euclidean distance threshold = 30 Å). Right: Predicted aligned error (PAE) plot of 
model shown on the left (rank_2). The color indicates AlphaFold’s expected position error (blue = low, red = high) at the residue on the x axis if the 
predicted and true structures were aligned on the residue on the y axis (Jumper et al., 2021). (H) Circular view of the BS3 crosslinks observed among 
KKT7 and KKT8 complex subunits, obtained from native complexes isolated by immunoprecipitation of YFP-tagged KKIP1 (cell line: BAP710). pLink2 
(Chen et al., 2019) was used to obtain crosslinks from mass spectrometry data and xiView (Graham et al., 2019) was used for data visualization. Only 
crosslinks with a score better than e–3 are shown. See Supplementary file 2 for all crosslinks identified by mass spectrometry. (I) Indicated combinations 
of 6HIS-tagged KKT8 (~46 kDa), KKT9 (~39 kDa), KKT11 (~29 kDa), and KKT12 (~23 kDa) were co-expressed in Escherichia coli, followed by metal affinity 
chromatography and SDS-PAGE. The asterisk indicates a common contaminant. Raw, uncropped gels are shown in Figure 4—source data 1 and 2.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Original scans of the SimplyBlue-stained SDS-PAGE gel in Figure 4I.

Source data 2. PDF containing the uncropped, original scans of the SimplyBlue-stained SDS-PAGE gel in Figure 4I with highlighted bands and sample 
labels.

Figure supplement 1. Kinetochore localization of Aurora BAUK1 and KIN-A depends on the KKT7-KKT8 complex pathway.

Figure supplement 2. Co-dependencies of KKT8 complex subunits for kinetochore localization.

Figure 4 continued
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Figure 5. Two conserved domains within the C-terminal tail of KIN-A promote kinetochore recruitment of the chromosomal passenger complex (CPC). 
(A) Left: AlphaFold2 model of KKT9:KKT11 in complex with KIN-A700-800. Cartoon representations are colored by protein (KKT9: cyan, KKT11: orange, 
KIN-A: magenta) (left) or according to their pLDDT values (blue = high confidence, red = low confidence) (center). Right: Predicted aligned error (PAE) 
plot of model (rank_1) predicted by AlphaFold2 (blue = high confidence, red = low confidence in the relative positions of the domains to one another). 

Figure 5 continued on next page
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We next tested the relevance of KIN-A CD1 and CD2 for CPC localization and function by replacing 
one allele of KIN-A with C-terminally tagged wild-type or mutant constructs lacking either CD1 or 
CD2 and performed RNAi against the 3’UTR of KIN-A to deplete the untagged allele. We were 
unable to obtain a rescue cell line lacking both CD1 and CD2 as the double-mutant protein was 
not properly expressed. Wild-type KIN-A-YFP along with Aurora BAUK1 robustly localized to kineto-
chores from S phase until anaphase onset (Figure 1C and D; Figure 5C). KIN-A∆CD1-YFP was detect-
able at kinetochores in G2 but predominantly localized to the mitotic spindle from (pro)metaphase 
onward (Figure 5D and F), indicating that removal of CD1 severely weakens the affinity of KIN-A for 
kinetochores and instead shifts the balance toward microtubule binding. Interestingly, expression of 
KIN-A∆CD1-YFP similarly affected the localization of Aurora BAUK1 (Figure 5D and G; Figure 5—figure 
supplement 2G). We also detected partial spindle localization of Aurora BAUK1 in a small population 
(~25%) of metaphase cells expressing KIN-A∆CD2-YFP (Figure 5E–G). Central spindle localization of 
KIN-A in anaphase was unaffected by deletion of either CD1 or CD2 (Figure 5D and E). Remark-
ably, despite a substantial loss of Aurora BAUK1 from kinetochores in metaphase, ∆CD1 cells exhibited 
normal cell cycle profiles (Figure 5—figure supplement 2H) and showed only a modest decrease in 
proliferation rates (Figure 5H). This parallels the situation in budding yeast, in which error-free chro-
mosome segregation can be sustained even when inner centromere localization of Aurora B is largely 
abolished (Campbell and Desai, 2013; García-Rodríguez et al., 2019).

CPC targeting to the central spindle in anaphase depends on KIN-A’s 
ATPase activity
Finally, we asked how translocation of the CPC to the spindle midzone in anaphase is achieved in 
trypanosomes. In mammalian cells, dephosphorylation of INCENP and the kinesin MKLP2 upon 
anaphase onset allows formation of a transient CPC-MKLP2 complex (Gruneberg et  al., 2004; 
Hümmer and Mayer, 2009; Kitagawa et al., 2014; Serena et al., 2020). MKLP2 activity then drives 
plus-directed movement of this complex along microtubules of the anaphase spindle. We therefore 
speculated that anaphase translocation of the kinetoplastid CPC to the central spindle may involve 
the kinesin motor domain of KIN-A. KIN-B is unlikely to be a functional kinesin based on the absence 
of several well-conserved residues and motifs within the motor domain, which are fully present 
in KIN-A (Li et  al., 2008). These include the P-loop, switch I and switch II motifs, which form the 
nucleotide-binding cleft, and many conserved residues within the α4-L12 elements, which interact 
with tubulin (Figure 6—figure supplement 1; Endow et al., 2010). Consistent with this, the motor 
domain of KIN-B, contrary to KIN-A, failed to localize to the mitotic spindle when expressed ectop-
ically (Figure 2—figure supplement 1E) and did not co-sediment with microtubules in our in vitro 
assay (Figure 6—figure supplement 2A).

Ectopically expressed GFP-KIN-A and -KIN-A2-309 partially localized to the mitotic spindle but failed 
to concentrate at the midzone during anaphase (Figure 2F and G), suggesting that N-terminal tagging 
of the KIN-A motor domain may interfere with its function. To address whether the ATPase activity of 
KIN-A is required for central spindle localization of the CPC, we replaced one allele of KIN-A with a 
C-terminally YFP-tagged G210A ATP hydrolysis-defective rigor mutant (Figure 6A; Rice et al., 1999) 

Conserved domain 1 (CD1) of KIN-A was predicted to interact with KKT9:KKT11 in all five AlphaFold2 models (rank_1 to rank_5). (B) Multiple sequence 
alignment of KIN-A CD1 and CD2 showing conservation. (C–E) Representative fluorescence micrographs showing the localization of tdTomato-Aurora 
BAUK1 and YFP-tagged KIN-Awt (C), KIN-AΔCD1 (717–743) (D), and KIN-AΔCD2 (816–862) (E). RNAi was induced with 1 μg/ml doxycycline for 24 hr to deplete the 
untagged KIN-A allele. Cell lines: BAP3067, BAP3128, BAP3127. Scale bars, 2 μm. (F) Stacked bar charts showing the percentage of YFP-tagged KIN-
Awt, KIN-AΔCD1, and KIN-AΔCD2 on kinetochores, kinetochores+spindle, and spindle only in metaphase cells. Examples and schematic illustrations of the 
three categories used for scoring are presented on the left. A minimum of 50 cells per condition were quantified. (G) Stacked bar charts showing the 
percentage of tdTomato-Aurora BAUK1 on kinetochores, kinetochores+spindle, and spindle only in metaphase cells upon rescue with YFP-tagged KIN-
Awt, KIN-AΔCD1, or KIN-AΔCD2. A minimum of 50 cells per condition were quantified. (H) Growth curves for indicated cell lines and conditions. RNAi was 
induced with 1 μg/ml doxycycline for to deplete the untagged KIN-A allele in the knockdown conditions and cultures were diluted at day 2. Cell lines: 
BAP3067, BAP3128, BAP3127.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Multiple sequence alignment of KIN-A.

Figure supplement 2. Conserved domain 1 (CD1) and CD2 contribute synergistically to kinetochore localization of KIN-A.

Figure 5 continued
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Figure 6. KIN-A ATPase activity is required for central spindle localization of the chromosomal passenger complex (CPC) in anaphase. (A) Multiple 
sequence alignment showing conservation of switch II region in KIN-A and KIN-B, with the key glycine residue (G210 in T. brucei) targeted for rigor 
mutation highlighted in red. (B) Representative fluorescence micrographs showing the localization of tdTomato-MAP103 (spindle marker) and YFP-
tagged KIN-Awt or KIN-AG210A (rigor mutant). RNAi was induced with 1 μg/ml doxycycline for 24 hr to deplete the untagged KIN-A allele. Cell lines: 
BAP3068, BAP3071. Scale bars, 2 μm. (C) Quantification showing the percentage of anaphase cells that have YFP-tagged KIN-Awt or KIN-AG210A localized 
at the central spindle. All graphs depict the means (bar) ± SD of three replicates (shown as dots). A minimum of 40 cells per replicate were quantified. 
***p≤0.001 (two-sided, unpaired t-test). (D and E) Representative fluorescence micrographs showing the localization of tdTomato-Aurora BAUK1 and YFP-
tagged KIN-Awt (D) or KIN-AG210A (E). RNAi was induced with 1 μg/ml doxycycline for 24 hr to deplete the untagged KIN-A allele. Cell lines: BAP3067, 
BAP3070. Scale bars, 2 μm. (F) Quantification showing the percentage of anaphase cells that have tdTomato-Aurora BAUK1 localized at the central spindle 
upon rescue with YFP-tagged KIN-Awt or KIN-AG210A. Graphs for the KIN-AG210 rescue conditions (gray) depict the means (bar) ± SD of three replicates 
(shown as dots). A minimum of 30 cells per replicate were quantified. (G) Growth curves for indicated cell lines and conditions. RNAi was induced with 
1 μg/ml doxycycline for to deplete the untagged KIN-A allele in the knockdown conditions and cultures were diluted at day 2. Cell lines: BAP3064, 

Figure 6 continued on next page
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and used an RNAi construct directed against the 3’UTR of KIN-A to deplete the untagged allele. The 
rigor mutation did not affect recruitment of KIN-A to kinetochores (Figure 6—figure supplement 
2B and C). However, KIN-AG210A-YFP-marked kinetochores were misaligned in ~50% of cells arrested 
in metaphase, suggesting that ATPase activity of KIN-A promotes chromosome congression to the 
metaphase plate (Figure 6—figure supplement 2D–G). In anaphase, the KIN-A rigor mutant failed 
to concentrate at the central spindle and instead widely decorated the mitotic spindle, with increased 
signal observed at spindle poles likely due to poleward flux (Figure 6B and C). Importantly, expression 
of the KIN-AG210A rigor mutant prevented Aurora BAUK1 from translocating to the central spindle and 
caused lagging chromosomes (Figure 6D–F). The KIN-A rigor mutation also slowed cell proliferation 
even in the presence of wild-type protein and caused accumulation of cells in anaphase (Figure 6G 
and H). We conclude that central spindle localization of the CPC depends on KIN-A’s ATPase activity 
and is required for proper chromosome segregation.

Discussion
Whereas astonishing diversity in kinetochore composition is seen among eukaryotes (van Hooff et al., 
2017; Komaki et al., 2022; Tromer et al., 2019), the proteins of the regulatory circuitry underlying 
chromosome segregation, such as the APC/C, SAC, and CPC, are more widely conserved. Homologs 
of the CPC proteins Aurora B kinase and its associated partner INCENP have been detected in almost 
all sequenced eukaryotes, including kinetoplastids. The dynamic localization pattern exhibited by the 
CPC (e.g. transferring from centromeres to the central spindle upon metaphase-anaphase transition) is 
likewise highly conserved across eukaryotes but appears to be achieved through a variety of different 
mechanisms. For instance, while CPC recruitment to the centromeres in higher eukaryotes is governed 
by two histone phosphorylation marks (Haspin-mediated H3T3ph and Bub1-mediated H2AT120ph), 
budding yeasts employ a combination of histone modifications (Bub1-mediated H2AT121ph) and 
kinetochore proteins as CPC receptors. BorealinBir1 not only recognizes Sgo1 but also interacts with 
the CBF3 complex through Ndc10 (Cho and Harrison, 2011; Yoon and Carbon, 1999). Further-
more, INCENPSli15/Aurora BIpl1 interact with the Ctf19 subunit of the COMA complex at kinetochores 
(Fischböck-Halwachs et  al., 2019). The proteins that form the localization module of the CPC in 
different species appear to mirror the diversity in centromeric CPC receptors. In fact, many phyla lack 
Borealin or Survivin homologs (Komaki et al., 2022). Komaki et al. recently identified two functionally 
redundant CPC proteins in Arabidopsis, Borealin Related Interactor 1 and 2, which engage in a triple 
helix bundle with INCENP and Borealin using a conserved helical domain, but employ an FHA domain 
instead of a BIR domain to read H3T3ph (Komaki et al., 2022).

In this study, we have identified KIN-A and KIN-B as components of the CPC in trypanosomes, and 
delineated a novel pathway for centromeric recruitment of the CPC in this evolutionary divergent 
group of eukaryotes. In agreement with our work, an early study on the CPC in T. brucei found that 
KIN-A and KIN-B co-purified with Aurora BAUK1, INCENPCPC1, and CPC2 based on a pull-down of an 
Aurora BAUK1-PTP fusion protein followed by mass spectrometry analysis (Li et al., 2008). However, 
HA-tagged KIN-A and KIN-B were not detected at kinetochores (from late interphase until meta-
phase) nor at the new FAZ tip (from late anaphase), and hence were not interpreted as CPC proteins. 
Contrary to this report, our data clearly show that KIN-A and KIN-B are constitutive components of 

BAP3065. (H) Cell cycle profiles for the indicated cell lines and conditions. RNAi was induced with 1 μg/ml doxycycline to deplete the untagged KIN-A 
allele in the knockdown conditions and cells were fixed after 24 hr. All graphs depict the means (bar) ± SD of at least two replicates. A minimum of 
300 cells per replicate were quantified. Cell lines: BAP3064, BAP3065. ***p≤0.001 (two-sided, unpaired t-test).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Figure supplement 1. Multiple sequence alignment of KIN-A and KIN-B from different kinetoplastids with human kinesin-1, human Mklp2, and yeast 
Klp9.

Figure supplement 2. ATPase activity of KIN-A promotes kinetochore alignment at the metaphase plate.

Figure supplement 2—source data 1. Original scans of the SimplyBlue-stained SDS-PAGE gel in Figure 6—figure supplement 2A.

Figure supplement 2—source data 2. PDF containing the uncropped, original scans of the SimplyBlue-stained SDS-PAGE gel in Figure 6—figure 
supplement 2A with highlighted bands and sample labels.

Figure 6 continued
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the CPC in T. brucei. First, YFP-tagged KIN-A and KIN-B co-localize with Aurora BAUK1, INCENPCPC1, 
and CPC2 throughout the cell cycle. Second, KIN-A and KIN-B are readily detected within native CPC 
complexes isolated by immunoprecipitation of CPC subunits from cells arrested prior to anaphase 
and form robust crosslinks with the other CPC subunits. Finally, YFP-Aurora BAUK1 and INCENPCPC1-YFP 
are crucially dependent on KIN-A and KIN-B for localizing both to kinetochores from S phase until 
metaphase and to the central spindle in anaphase. Thus, the KIN-A:KIN-B subcomplex represents the 
localization module of the trypanosome CPC.

Biochemical, cell biological, and in silico modeling approaches indicate that the kinesins KIN-A 
and KIN-B form coiled coils between their central and C-terminal domains, respectively, which then 
serve as a scaffold onto which INCENPCPC1 and CPC2 assemble via their N-terminal α-helical domains. 
The catalytic module of the trypanosomes CPC, consisting of Aurora BAUK1 bound to the C-terminal 
IN-box of INCENPCPC1, is connected to the KIN-A:KIN-B scaffold through a flexible linker in INCEN-
PCPC1. While our on-beads crosslinking of native CPCs suggests that the catalytic module is posi-
tioned in close proximity to the kinesin heads, this may not necessarily be true in vivo. For example, 
the catalytic module may exist in both ‘locked’ and ‘open’ conformations with regard to its associa-
tion with the kinesin motor domains. We speculate that the interaction of the KIN-A motor domain 
with microtubules from prometaphase onward may cause the catalytic module to disengage from its 
kinesin head-associated state (Figure 7). In analogy to the SAH domain of INCENP in other model 
eukaryotes which has been proposed to function as a dog leash (Samejima et al., 2015; Santaguida 
and Musacchio, 2009), the INCENPCPC1 flexible linker in trypanosomes (~100 amino acids long) may 
then permit Aurora BAUK1 to roam across a larger but nevertheless spatially constrained target area 
to phosphorylate its substrates while still being anchored to the kinetochore via KIN-A:KIN-B, which 
can interact both with kinetochore components and spindle microtubules. Importantly, this mecha-
nism would allow the CPC to act as an intrinsic ‘sensor’ of KT-MT attachments. Such models dealing 
with alternative conformations of the CPC in various cellular context will require further testing in 
the future.

We propose that multiple weak interactions of the KIN-A C-terminal unstructured tail with kine-
tochore components act in synergy to stabilize the CPC at kinetochores. Critically, these interactions 
need to be of transient and reversible nature to permit the dynamic release of the CPC upon anaphase 
onset. Three mechanisms are likely to play a role in this context (Figure 7). First, removal of the KKT8 
complex (the ‘CD1 receptor’) at the metaphase-anaphase transition effectively eliminates one of the 
key CPC-kinetochore interfaces. Second, the affinity of the KIN-A C-terminal tail for its binding part-
ners at the kinetochore may be further fine-tuned through reversible post-translational modifications. 
In support of this, the KIN-A C-terminal tail harbors many putative CRK3 sites (10 sites matching the 
minimal S/T-P consensus motif for CDKs) and is also heavily phosphorylated by Aurora BAUK1 in vitro 
(Ballmer et  al., 2024). Finally, we speculate that the interaction of the KIN-A motor domain with 
microtubules, coupled to the force generating ATP hydrolysis and possibly plus-end-directed motion, 
eventually outcompetes the weakened interactions of the CPC with the kinetochore and facilitates the 
extraction of the CPC from chromosomes onto spindle microtubules during anaphase. Indeed, dele-
tion of the KIN-A motor domain or impairment of its motor function through N-terminal GFP tagging 
causes the CPC to be trapped at kinetochores in anaphase. Central spindle localization is additionally 
dependent on the ATPase activity of the KIN-A motor domain as illustrated by the KIN-A rigor mutant.

It remains to be investigated whether KIN-A functions as a plus-end-directed motor. The role of the 
KIN-B in this context is equally unclear. Because KIN-B does not possess a functional kinesin motor 
domain, we deem it unlikely that the KIN-A:KIN-B heterodimer moves hand-over-hand along micro-
tubules as do conventional (kinesin-1 family) kinesins. Rather, the KIN-A motor domain may function 
as a single-headed unit and drive processive plus-end-directed motion using a mechanism similar to 
the kinesin-3 family kinesin KIF1A (Okada and Hirokawa, 1999). Formation of transient complexes 
between the CPC and kinesins or other microtubule plus-end tracking proteins upon anaphase onset 
appears to be a common theme underlying the central spindle translocation of the CPC. For instance, 
the CPC interacts with MKLP2 or Bim1EB1 in human and yeast cells, respectively (Gruneberg et al., 
2004; Zimniak et al., 2012). Thus, a deeper understanding of CPC regulation in trypanosomes is 
bound to provide evolutionary insights into fundamental principles of chromosome segregation in 
eukaryotes and can lead to the discovery of druggable targets to combat kinetoplastid diseases 
(Saldivia et al., 2020).

https://doi.org/10.7554/eLife.93522
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Figure 7. Model for chromosomal passenger complex (CPC) localization and function in trypanosomes. (A) KIN-A (magenta) and KIN-B (yellow) 
interact via their coiled-coil domains and form a scaffold for the assembly of CPC2 (cyan) and the catalytic module of the CPC, composed of Aurora 
BAUK1 (red) and INCENPCPC1 (green). During interphase, the catalytic module is positioned close to the kinesin head domains of KIN-A and KIN-B. CPC 
recruitment to the inner kinetochore is mediated through multiple weak interactions between the C-terminal unstructured tail of KIN-A, containing CD1 

Figure 7 continued on next page
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Materials and methods
Cloning
All primers, plasmids, bacmids, and synthetic DNA used in this study as well as their source or construc-
tion details are described in Supplementary file 1. All constructs were sequence verified.

Trypanosome culture
All trypanosome cell lines used in this study were derived from T. brucei SmOxP927 procyclic form 
cells (TREU 927/4 expressing T7 RNA polymerase and the tetracycline repressor to allow inducible 
expression; Poon et al., 2012) or from PCF1339 procyclic form cells (TREU 927/4 expressing T7 RNA 
polymerase, tetracycline repressor, and the Cas9 nuclease; Beneke et al., 2017) and are described in 
Supplementary file 1. Cell lines were confirmed by mass spectrometry analysis to be T. brucei TREU 
927/4. Cell lines with tagged proteins were confirmed by IP-MS and/or microscopy. RNAi-mediated 
depletion of target proteins was assessed by microscopy. Point mutants were confirmed by sequencing 
the targeted gene. The absence of Mycoplasma contamination was confirmed by DAPI staining. Cells 
were grown at 28°C in SDM-79 medium supplemented with 10% (vol/vol) heat-inactivated fetal calf 
serum, 7.5  μg/ml hemin (Brun and Schönenberger, 1979), and appropriate selection drugs. Cell 
growth was monitored using a CASY cell counter (Roche). PCR products or plasmids linearized by 
NotI were transfected into cells by electroporation (Bio-Rad). Transfected cells were selected by the 
addition of 30 μg/ml G418 (Sigma), 25 μg/ml hygromycin (Sigma), 5 μg/ml phleomycin (Sigma), or 
10 μg/ml blasticidin S (Insight Biotechnology). To obtain endogenously tagged clonal strains, trans-
fected cells were selected by the addition of appropriate drugs and cloned by dispensing dilutions 
into 96-well plates. Endogenous YFP tagging was performed using the pEnT5-Y vector (Kelly et al., 
2007) or a PCR-based method (Dean et al., 2015). Endogenous tdTomato tagging was performed 
using pBA148 (Akiyoshi and Gull, 2014) and its derivatives. All constructs for ectopic expression 
of GFP fusion proteins include a short nuclear localization signal (NLS) (Marchetti et al., 2000). For 
doxycycline inducible expression of head-to-head (pBA3-based) and hairpin (pBA310-based) RNAi 
constructs, GFP-NLS (pBA310-based) and GFP-NLS-LacI fusion proteins (pBA795-based), the linear-
ized plasmids were integrated into 177  bp repeats on minichromosomes. Expression of GFP-NLS 
or GFP-NLS-LacI fusions was induced by the addition of 10 ng/ml doxycycline for 24 hr. RNAi was 
induced by the addition of 1 μg/ml doxycycline. LacO-LacI tethering experiments were carried out 
as described previously using the LacO array inserted at the rDNA locus (Ishii and Akiyoshi, 2020; 
Landeira and Navarro, 2007).

Immunoprecipitation followed by mass spectrometry
For standard immunoprecipitations, 400 ml cultures of asynchronously growing cells were grown to 
∼5–10 million cells/ml. Cells were pelleted by centrifugation (800×g, 10 min), washed once with PBS, 
and extracted in PEME (100  mM PIPES-NaOH, pH 6.9, 2  mM EGTA, 1  mM MgSO4, and 0.1  mM 
EDTA) with 1% NP-40, protease inhibitors (10 μg/ml leupeptin, 10 μg/ml pepstatin, 10 μg/ml E-64, 
and 0.2 mM PMSF) and phosphatase inhibitors (1 mM sodium pyrophosphate, 2 mM Na-β-glycero-
phosphate, 0.1 mM Na3VO4, 5 mM NaF, and 100 nM microcystin-LR) for 5 min at room temperature 

and CD2, with the coiled-coil domain of KKT9:KKT11 (dark blue:light blue) and possibly the N-terminus of KKT7 (blue). The KKT8 complex, comprising 
KKT9:KKT11 and KKT8:KKT12 (dark gray:light gray) subcomplexes, is connected to other kinetochore proteins through KKT7. Additional kinetochore 
targeting domains of the CPC may reside within the C-terminus of KIN-B and/or CPC2. We propose that the KIN-A:KIN-B subcomplex represents the 
main localization module of the trypanosome CPC. As illustrated in (B), the affinity of the KIN-A C-terminal tail for its receptor(s) at the kinetochore 
may be further modulated through phosphorylation by the CDK1 homolog CRK3 and the Aurora BAUK1 kinase itself (Ballmer et al., 2024). Interaction 
of the N-terminal motor domain of KIN-A with spindle microtubules (MTs) from prometaphase onward causes the catalytic module to disengage from 
its kinesin head-associated state. The ~100 amino acid long flexible linker within INCENPCPC1 would then permit Aurora BAUK1 to phosphorylate its 
substrates within a larger but nevertheless spatially constrained target area while still being anchored to the kinetochore via KIN-A:KIN-B. The motor 
domain of KIN-A could thus act as built-in sensor for KT-MT attachments. (C) We propose that the trypanosome CPC is recruited to kinetochores 
via the KKT7-KKT8 complex pathway (dashed arrow) and that motor activity of KIN-A promotes congression of kinetochores to the metaphase plate 
during early mitosis. The KKT8 complex dissociates from kinetochores at the metaphase-to-anaphase transition and is possibly degraded in an APC/C-
dependent manner. Elimination of the KKT8 complex, the primary kinetochore receptor of the CPC, coupled to microtubule (MT) binding and motor 
activity of the KIN-A motor domain strips the CPC off kinetochores and facilitates its translocation to the central spindle in anaphase.

Figure 7 continued
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(RT), followed by centrifugation at 1800×g for 15 min. Samples were kept on ice from this point on. 
The pelleted fraction containing kinetochore proteins was resuspended in modified buffer H (BH0.15: 
25 mM HEPES, pH 8.0, 2 mM MgCl2, 0.1 mM EDTA, pH 8.0, 0.5 mM EGTA, pH 8.0, 1% NP-40, 150 mM 
KCl, and 15% glycerol) with protease and phosphatase inhibitors. Samples were sonicated to solubi-
lize kinetochore proteins (12 s, three times with 1 min intervals on ice). 12 μg of mouse monoclonal 
anti-GFP antibodies (11814460001; Roche) preconjugated with 60 μl slurry of Protein-G magnetic 
beads (10004D; Thermo Fisher Scientific) with dimethyl pimelimidate (Unnikrishnan et al., 2012) were 
incubated with the extracts for 2.5 hr with constant rotation, followed by four washes with modified 
BH0.15 containing protease inhibitors, phosphatase inhibitors, and 2 mM DTT. Beads were further 
washed three times with pre-elution buffer (50 mM Tris-HCl, pH 8.3, 75 mM KCl, and 1 mM EGTA). 
Bound proteins were eluted from the beads by agitation in 60 μl of elution buffer (0.1% RapiGest 
[186001860; Waters] and 50 mM Tris-HCl, pH 8.3) for 25 min at RT. Eluates were then incubated at 
100°C for 5 min. Proteins were reduced with 5 mM DTT at 37°C for 30 min and alkylated with 10 mM 
iodoacetamide at 37°C for 30 min. The reaction was quenched by adding 10 mM DTT at 37°C for 
30 min, and 100 μl of 20 mM Tris-HCl (pH 8.3) was added. Proteins were digested overnight at 37°C 
with 0.2 μg trypsin (Promega). Formic acid was then added to 2% and the samples were incubated 
at 37°C for 30 min to cleave RapiGest, followed by centrifugation for 10 min. The supernatant was 
desalted over a C18 column and analyzed by electrospray tandem mass spectrometry (MS/MS) over 
a 60 min gradient using Q-Exactive (Thermo Fisher Scientific) at the Advanced Proteomics Facility 
(University of Oxford). Peptides were identified by searching MS/MS spectra against the T. brucei 
protein database with MaxQuant (version 2.0.1) with carbamidomethyl cysteine set as a fixed modifi-
cation and oxidization (Met), phosphorylation (Ser, Thr, and Tyr), and acetylation (Lys) set as variable 
modifications. Up to two missed cleavages were allowed. The first peptide tolerance was set to 10 
ppm. Results were filtered to remove contaminants and reverse hits. Proteins identified with at least 
two peptides were considered as significant and shown in Supplementary file 2 (protein FDR 1%).

Ex vivo crosslinking of the native CPC and kinetochore complexes (IP-
CLMS)
For crosslinking IP-MS experiments, cell cultures were scaled up to 1600 ml. Cell cultures were treated 
with 10 μM MG132 for 4 hr to enrich for cells in metaphase. Cell lysis and immunoprecipitation steps 
were carried out as described above. After four washes with modified BH0.15 containing protease 
inhibitors, phosphatase inhibitors and 2 mM DTT, beads were washed three times with 25 mM HEPES 
pH 7.5, 150 mM NaCl. Proteins were then crosslinked on beads with 0.4 mM BS3 (bis(sulfosuccinim-
idyl)suberate) (Thermo Fisher Scientific) for 30 min at RT with agitation, followed by three washes in 
25 mM HEPES pH 7.5, 150 mM NaCl and a further three washes in 0.1 M ammonium bicarbonate. 
Samples were then incubated in 8 M urea dissolved in 0.1 M ammonium bicarbonate for 10 min at 
RT with agitation. Proteins were reduced with 10 mM TCEP for 20 min and alkylated with 10 mM 
iodoacetamide for 40 min at RT. Proteins were then pre-digested with 0.4 μg LysC for 2 hr at 37°C. 
The urea concentration in the sample was brought down to <1 M by the addition of 0.1 M ammo-
nium bicarbonate before adding CaCl2 (to 2 mM) and 0.7 μg of trypsin for overnight digestion at 
37°C. Formic acid was then added to 2% and the samples were frozen. The crosslinked samples 
were further processed and analyzed at the proteomics core facility at EMBL Heidelberg. Digested 
peptides were concentrated and desalted using an OASIS HLB µElution Plate (Waters) according to 
the manufacturer’s instructions. Crosslinked peptides were enriched using size exclusion chromatog-
raphy (Leitner et al., 2012). In brief, desalted peptides were reconstituted with SEC buffer (30% [vol/
vol] ACN in 0.1% [vol/vol] TFA) and fractionated using a Superdex Peptide PC 3.2/30 column (GE) 
on a 1200 Infinity HPLC system (Agilent) at a flow rate of 0.05 ml/min. Fractions eluting between 50 
and 70 μl were evaporated to dryness and reconstituted in 30 μl 4% (vol/vol) ACN in 1% (vol/vol) FA. 
Collected fractions were analyzed by liquid chromatography (LC)-coupled MS/MS using an UltiMate 
3000 RSLC nano LC system (Dionex) fitted with a trapping cartridge (µ-Precolumn C18 PepMap 100, 
5 µm, 300 µm ID × 5 mm, 100 Å) and an analytical column (nanoEase M/Z HSS T3 column 75 µm 
× 250 mm C18, 1.8 µm, 100 Å, Waters). Trapping was carried out with a constant flow of trapping 
solvent (0.05% trifluoroacetic acid in water) at 30 µl/min onto the trapping column for 6 min. Subse-
quently, peptides were eluted and separated on the analytical column using a gradient composed 
of solvent A (3% DMSO, 0.1% formic acid in water) and solvent B (3% DMSO, 0.1% formic acid in 
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acetonitrile) with a constant flow of 0.3 µl/min. The outlet of the analytical column was coupled directly 
to an Orbitrap Fusion Lumos (Thermo Scientific, San Jose) mass spectrometer using the nanoFlex 
source. The peptides were introduced into the Orbitrap Fusion Lumos via a Pico-Tip Emitter 360 µm 
OD × 20 µm ID; 10 µm tip (CoAnn Technologies) and an applied spray voltage of 2.1 kV, instrument 
was operated in positive mode. The capillary temperature was set at 275°C. Only charge states of 
4–8 were included. The dynamic exclusion was set to 30 s and the intensity threshold was 5e4. Full 
mass scans were acquired for a mass range 350–1700 m/z in profile mode in the Orbitrap with reso-
lution of 120,000. The AGC target was set to Standard and the injection time mode was set to Auto. 
The instrument was operated in data-dependent acquisition mode with a cycle time of 3 s between 
master scans and MS/MS scans were acquired in the Orbitrap with a resolution of 30,000, with a fill 
time of up to 100 ms and a limitation of 2e5 ions (AGC target). A normalized collision energy of 32 was 
applied. MS2 data was acquired in profile mode. RAW MS files were searched by the pLink2 software 
(Chen et al., 2019), with carbamidomethyl cysteine set as a fixed and oxidization (Met) set as variable 
modifications. Up to two missed cleavages were allowed. Precursor tolerance was set to 10 ppm. All 
the identified crosslinks are shown in Supplementary file 2 (FDR 5%). Crosslinks were plotted using 
xiView (Graham et al., 2019). All raw mass spectrometry files and custom database files used in this 
study have been deposited with the ProteomeXchange Consortium via the PRIDE partner repository 
(Deutsch et al., 2020; Perez-Riverol et al., 2019) with the dataset identifier PXD045987.

Fluorescence microscopy
Cells were washed once with PBS, settled onto glass slides, and fixed with 4% paraformaldehyde in 
PBS for 5 min as described previously (Nerusheva and Akiyoshi, 2016). Cells were then permeabilized 
with 0.1% NP-40 in PBS for 5 min and embedded in mounting media (1% wt/vol 1,4-diazabicyclo[2.2.2]
octane, 90% glycerol, 50 mM sodium phosphate, pH 8.0) containing 100 ng/ml DAPI. Images were 
captured on a Zeiss Axioimager.Z2 microscope (Zeiss) installed with ZEN using a Hamamatsu ORCA-
Flash4.0 camera with 63× objective lenses (1.40 NA). Typically, ∼20 optical slices spaced 0.2 or 
0.24 μm apart were collected. Images were analyzed in ImageJ/Fiji (Schneider et al., 2012). Kineto-
chore localization of endogenously tagged kinetochore proteins or ectopically expressed constructs 
were examined manually by quantifying the number of cells that clearly had detectable kinetochore-
like dots at indicated cell cycle stages. Shown images are central slices.

In silico structure and interaction predictions
Structures and interactions were predicted with AlphaFold2-Multimer-v2 (Evans et al., 2022; Jumper 
et  al., 2021) through ColabFold using MMseqs2 (UniRef+Environmental) and default settings 
(Mirdita et  al., 2022). Structural predictions of KIN-A/KIN-B, KIN-A310-862/KIN-B317-624, CPC1/CPC2/
KIN-A300-599/KIN-B 317–624, and KIN-A700-800/KKT9/KKT11 were performed using ColabFold version 
1.3.0 (AlphaFold-Multimer version 2), while those of AUK1/CPC1/CPC2/KIN-A1-599/KIN-B, KKT71-261/
KKT9/KKT11/KKT8/KKT12, KKT9/KKT11/KKT8/KKT12, and KKT71-261/KKT9/KKT11 were performed 
using ColabFold version 1.5.3 (AlphaFold-Multimer version 2.3.1) using default settings, accessed via 
https://colab.research.google.com/github/sokrypton/ColabFold/blob/v1.3.0/AlphaFold2.ipynb and 
https://colab.research.google.com/github/sokrypton/ColabFold/blob/v1.5.3/AlphaFold2.ipynb. All 
structure figures were made using PyMOL version 2.5.2 (Schrödinger, LLC). The following command 
was used to map pLDDT score onto the AF2 predicted structure models: spectrum b, rainbow_rev, 
maximum = 100, minimum = 50.

Protein purification from E. coli
Recombinant 6HIS-KKT8, KKT9, KKT11, KKT12 (pBA457) and derivatives were expressed in Rosetta 
2(DE3)pLys E. coli cells (Novagen). 6HIS-KIN-A2-309 (pBA2519) and 6HIS-KIN-B2-316 (pBA2513) were 
expressed in BL21(DE3) cells. Proteins were purified and eluted from TALON beads as previously 
described (Llauró et al., 2018). Briefly, cells were grown in 2xTY media at 37°C to an OD600 of ∼0.8, 
at which point protein expression was induced by 0.1 mM IPTG, and then incubated overnight at 
20°C. Cells were pelleted at 3400×g at 4°C and pellets were resuspended in P500 buffer (50 mM 
sodium phosphate, pH 7.5, 500 mM NaCl, 5 mM imidazole, and 10% glycerol) supplemented with 
protease inhibitors (20 μg/ml leupeptin, 20 μg/ml pepstatin, 20 μg/ml E-64, 0.4 mM PMSF) and 1 mM 
TCEP, and were sonicated on ice. Lysates were treated with benzonase nuclease (500 U/1 l culture) 
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and spun at 48,000×g at 4°C for 30  min. Supernatant was incubated with TALON beads (Takara 
Clontech) for 1 hr at 4°C, rotating. The beads were washed three times with lysis buffer and proteins 
were then eluted with elution buffer (P500 buffer containing 250 mM imidazole with 1 mM TCEP). 
For microtubule co-sedimentation assays, 6HIS-KIN-A2-309 and 6HIS-KIN-B2-316 were buffer exchanged 
into BRB80 (80 mM PIPES-KOH, pH 6.9, 1 mM EGTA, and 1 mM MgCl2) with 100 mM KCl using Zeba 
columns (Thermo Fisher) and flash-frozen in liquid nitrogen for –80°C storage. Polyacrylamide gels 
were stained with SimplyBlue SafeStain (Invitrogen).

Microtubule co-sedimentation assay
Microtubule co-sedimentation assays were performed as described previously (Ludzia et al., 2021). 
Briefly, taxol-stabilized microtubules were prepared by mixing 2.5 ml of 100 μM porcine tubulin (Cyto-
skeleton) resuspended in BRB80 with 1 mM GTP (Cytoskeleton), 1.25 μl BRB80, 0.5 μl of 40 mM MgCl2, 
0.5 μl of 10 mM GTP, and 0.25 μl DMSO, and incubated for 20 min at 37°C. 120 ml of pre-warmed 
BRB80 containing 12.5 μM Taxol (paclitaxel; Sigma) was added to the sample to bring the microtubule 
concentration to ~2 μM. 20 μl of 6HIS-KIN-A2-309 or 6HIS-KIN-B2-316 (at final concentration of 4 μM) in 
BRB80 with 100 mM KCl were mixed with 20 μl of microtubules (final, 1 μM) and incubated for 45 min 
at RT. As a control, we incubated 6HIS-KIN-A2-309 or 6HIS-KIN-B2-316 with BRB80 (with 12.5 μM Taxol). 
The samples were spun at 20,000×g at RT for 10 min, and the supernatant was collected. To the tubes 
containing pelleted fractions, we added 40 μl of chilled BRB80 with 5 mM CaCl2 and incubated on 
ice for 5 min to depolymerize microtubules. Following the incubation, samples were boiled for 5 min 
before SDS-PAGE. Gels were stained with SimplyBlue Safe Stain (Invitrogen). Co-sedimentation assays 
were performed at least twice with similar results.

Immunoblotting
Cells were harvested by centrifugation (800×g, 5 min) and washed with 1   ml PBS. The pellet was 
resuspended in 1× LDS sample buffer (Thermo Fisher) with 0.1 M DTT. Denaturation of proteins was 
performed for 5 min at 95°C. SDS-PAGE and immunoblots were performed by standard methods using 
the following antibodies: rabbit polyclonal anti-GFP (TP401, 1:5000) and mouse monoclonal TAT1 
(anti-trypanosomal-alpha-tubulin, 1:5000, a kind gift from Keith Gull) (Woods et al., 1989). Secondary 
antibodies used were: IRDye 680RD goat anti-mouse (LI-COR, 926-68070) and IRDye 800CW goat 
anti-rabbit (LI-COR, 926-32211). Bands were visualized on an ODYSSEY Fc Imaging System (LI-COR).

Multiple sequence alignment
Protein sequences and accession numbers for Aurora BAUK1, INCENPCPC1, CPC2, KIN-A, and KIN-B 
used in this study were retrieved from the TriTryp database (Aslett et al., 2010), UniProt (Bateman, 
2019), or a published study (Butenko et al., 2020). Searches for homologous proteins were done 
using BLAST in the TriTryp database (Aslett et al., 2010) or using hmmsearch using manually prepared 
hmm profiles (HMMER, version 3.0; Eddy, 1998). The top hit in each organism was considered as a 
true ortholog only if the reciprocal BLAST search returned the query protein as a top hit in T. brucei. 
Multiple sequence alignment was performed with MAFFT (L-INS-i method, version 7) (Katoh et al., 
2019) and visualized with the Clustalx coloring scheme in Jalview (version 2.10) (Waterhouse et al., 
2009).
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Appendix 1

Appendix 1—key resources table 
Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Cell line 
(Trypanosoma brucei 
brucei)

TREU 927/4 procyclic cells expressing T7 RNA 
polymerase and the tetracycline repressor to allow 
inducible expression Poon et al., 2012 SmOxP9

Background strain 
used for derivation of 
cell lines described in 
Supplementary file 1

Cell line 
(Trypanosoma brucei 
brucei)

TREU 927/4 expressing T7 RNA polymerase, 
tetracycline repressor, and the Cas9 nuclease Beneke et al., 2017 PCF1339

Background strain 
used for derivation of 
cell lines described in 
Supplementary file 1

Strain, strain 
background 
(Escherichia coli) Rosetta 2(DE3)pLysS Novagen 71403

Strain, strain 
background 
(Escherichia coli) BL21(DE3) Novagen 69450

Recombinant DNA 
reagent

pEnT5-Y,
endogenous YFP tagging, hygromycin Kelly et al., 2007 pEnT5-Y (pBA1)

See Supplementary file 
1 for construction details 
on all plasmids used in 
this study

Recombinant DNA 
reagent

pBA148,
endogenous tdTomato tagging, blasticidin Akiyoshi and Gull, 2014 pBA148

See Supplementary file 
1 for construction details 
on all plasmids used in 
this study

Recombinant DNA 
reagent

pMig96 (pBA152),
256 LacO, integrate at rDNA

Landeira and Navarro, 
2007 pMig96 (pBA152)

See Supplementary file 
1 for construction details 
on all plasmids used in 
this study

Recombinant DNA 
reagent

pJ1339 (1173+Cas9), for CRISPR-Cas9 gene 
editing Beneke et al., 2017 pJ1339

See Supplementary file 
1 for construction details 
on all plasmids used in 
this study

Recombinant DNA 
reagent

p2T7-177, inducible expression of RNAi constructs 
(head to head), integrate at 177 bp Wickstead et al., 2002 p2T7-177 (pBA3)

See Supplementary file 
1 for construction details 
on all plasmids used in 
this study

Recombinant DNA 
reagent

pRSFDuet-1, expression of one or two target 
proteins in bacteria Novagen

pRSFDuet-1, catalog 
number 71341-3

See Supplementary file 
1 for construction details 
on all plasmids used in 
this study

Recombinant DNA 
reagent

pBA310, inducible expression vector, integrate 
at 177 bp

Nerusheva and Akiyoshi, 
2016 pBA310

See Supplementary file 
1 for construction details 
on all plasmids used in 
this study

Recombinant DNA 
reagent

pBA795, inducible GFP-NLS-LacI expression 
vector, integrate at 177 bp Ishii and Akiyoshi, 2020 pBA795

See Supplementary file 
1 for construction details 
on all plasmids used in 
this study

Recombinant DNA 
reagent

pPOTv7 (pBA1919), (eYFP, Hygromycin) vector 
for PCR only tagging (POT) of target genes in 
Trypanosoma brucei Dean et al., 2015 pPOTv7 (pBA1919)

See Supplementary file 
1 for construction details 
on all plasmids used in 
this study

Recombinant DNA 
reagent

pEnT6-Y (pBA191),
endogenous YFP tagging, G418 Kind gift from Dehua Lai pEnT6-Y (pBA191)

See Supplementary file 
1 for construction details 
on all plasmids used in 
this study

Recombinant DNA 
reagent pMig75, Tet inducible GFP-LacI, SAT, ClonNAT

Kind gift from Miguel 
Navarro pMig75 (pBA150)

See Supplementary file 
1 for construction details 
on all plasmids used in 
this study

Recombinant DNA 
reagent pMig96, rDNA targeting, 256LacO, Phleo

Kind gift from Miguel 
Navarro pMig96 (pBA152)

See Supplementary file 
1 for construction details 
on all plasmids used in 
this study
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Recombinant DNA 
reagent

BAG164 (shRNA against KIN-A 5’ UTR) in pMK-RQ 
plasmid

Life Technologies Ltd 
(Invitrogen Division) NA

See Supplementary 
file 1 for sequence 
information

Recombinant DNA 
reagent

BAG165 (shRNA against KIN-A 3’UTR) in pMK-RQ 
plasmid

Life Technologies Ltd 
(Invitrogen Division) NA

See Supplementary 
file 1 for sequence 
information

Recombinant DNA 
reagent

BAG157 (shRNA against CPC1 5’ UTR) in pMK-RQ 
plasmid

Life Technologies Ltd 
(Invitrogen Division) NA

See Supplementary 
file 1 for sequence 
information

Recombinant DNA 
reagent

BAG158 (shRNA against CPC1 3’ UTR) in pMK-RQ 
plasmid

Life Technologies Ltd 
(Invitrogen Division) NA

See Supplementary 
file 1 for sequence 
information

Recombinant DNA 
reagent

BAG159 (shRNA against CPC2 5’ UTR) in pMK-RQ 
plasmid

Life Technologies Ltd 
(Invitrogen Division) NA

See Supplementary 
file 1 for sequence 
information

Recombinant DNA 
reagent

BAG160 (shRNA against CPC2 3’ UTR) in pMK-RQ 
plasmid

Life Technologies Ltd 
(Invitrogen Division) NA

See Supplementary 
file 1 for sequence 
information

Recombinant DNA 
reagent

BAG62 (shRNA against KKT16 CDS) in pMK-RQ 
plasmid

Life Technologies Ltd 
(Invitrogen Division) NA

See Supplementary 
file 1 for sequence 
information

Recombinant DNA 
reagent

BAG80 (shRNA against KKT12 3’UTR) in pMK-RQ 
plasmid

Life Technologies Ltd 
(Invitrogen Division) NA

See Supplementary 
file 1 for sequence 
information

Antibody Mouse monoclonal anti-GFP Roche 11814460001

For immunoprecipitation 
experiments: 12 μg 
of antibodies 
preconjugated with 
60 μl slurry of Protein-G 
magnetic beads

Antibody Rabbit polyclonal anti-GFP OriGene TP401
Dilution for western blot 
1:5000

Antibody
Mouse monoclonal TAT1 (anti-trypanosomal-
alpha-tubulin)

kind gift from Keith Gull 
Woods et al., 1989 TAT1

Dilution for western blot 
1:5000

Antibody IRDye 680RD goat anti-mouse LI-COR 926-68070
Dilution for western blot 
1:20,000

Antibody IRDye 800CW goat anti-rabbit LI-COR 926-32211
Dilution for western blot 
1:20,000

Commercial assay, kit Protein-G magnetic beads Thermo Fisher Scientific 10004D

Chemical compound, 
drug RapiGest Waters 186001860

Peptide, recombinant 
protein Trypsin Promega V5111

Chemical compound, 
drug BS3 (bis(sulfosuccinimidyl)suberate) Thermo Fisher Scientific 21580

Commercial assay, kit TALON metal affinity resin TAKARA BIO EUROPE 635503

Commercial assay, kit Zeba spin desalting columns Thermo Fisher Scientific 89883

Commercial assay, kit SimplyBlue SafeStain
Life Technologies Ltd
(Invitrogen Division) LC6060

Peptide, recombinant 
protein Porcine tubulin Cytoskeleton T-240

Software, algorithm TriTrypDB
http://tritrypdb.org/​
tritrypdb/ RRID:SCR_007043

Software, algorithm MaxQuant (version 2.0.1) Cox and Mann, 2008 RRID:SCR_014485

Software, algorithm pLink2 Chen et al., 2019 RRID:SCR_000084

Software, algorithm AlphaFold2-Multimer-v2
Evans et al., 2022; Jumper 
et al., 2021

Appendix 1 Continued
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm ColabFold Mirdita et al., 2022

Software, algorithm hmmsearch
https://www.ebi.ac.uk/Tools/​
hmmer/search/hmmsearch

Software, algorithm MAFFT
https://mafft.cbrc.jp/​
alignment/server/index.html RRID:SCR_011811

Software, algorithm Fiji Schneider et al., 2012 RRID:SCR_002285

Software, algorithm Python https://www.python.org/ RRID:SCR_008394

Software, algorithm xiView
Graham et al., 2019, 
https://xiview.org/index.php
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