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Abstract Odour processing exhibits multiple parallels between vertebrate and invertebrate 
olfactory systems. Insects, in particular, have emerged as relevant models for olfactory studies 
because of the tractability of their olfactory circuits. Here, we used fast calcium imaging to track the 
activity of projection neurons in the honey bee antennal lobe (AL) during olfactory stimulation at 
high temporal resolution. We observed a heterogeneity of response profiles and an abundance of 
inhibitory activities, resulting in various response latencies and stimulus-specific post-odour neural 
signatures. Recorded calcium signals were fed to a mushroom body (MB) model constructed imple-
menting the fundamental features of connectivity between olfactory projection neurons, Kenyon 
cells (KC), and MB output neurons (MBON). The model accounts for the increase of odorant discrim-
ination in the MB compared to the AL and reveals the recruitment of two distinct KC populations 
that represent odorants and their aftersmell as two separate but temporally coherent neural objects. 
Finally, we showed that the learning-induced modulation of KC-to-MBON synapses can explain both 
the variations in associative learning scores across different conditioning protocols used in bees 
and the bees' response latency. Thus, it provides a simple explanation of how the time contingency 
between the stimulus and the reward can be encoded without the need for time tracking. This study 
broadens our understanding of olfactory coding and learning in honey bees. It demonstrates that a 
model based on simple MB connectivity rules and fed with real physiological data can explain funda-
mental aspects of odour processing and associative learning.

eLife assessment
How neural circuits represent sensory signals during and after stimulus presentation is a central 
question in neuroscience. Here, a model of the insect mushroom body, constructed from simple, 
known synaptic connectivity rules, is shown to convincingly explain stimulus discrimination and asso-
ciative memory, even in the presence of variability in the input signals as experimentally measured 
from the antennal lobe of the honeybee. This important study makes testable predictions for the 
role of specific neurons in a neural circuit for associative memory, of relevance to any study of neural 
network design and operation.

Introduction
The logic of olfactory coding and learning has been extensively studied at the behavioural and neural 
levels in various insect models (Adam et al., 2022; Galizia, 2014; Giurfa, 2015; Jefferis et al., 2007). 
Among them, the honey bee Apis mellifera has played a pivotal role in our understanding of these 
processes due to its behavioural accessibility and tractability of its nervous system. In bees, olfactory 

RESEARCH ARTICLE

*For correspondence: 
marco.paoli@sorbonne-​
universite.fr (MP); 
martin.giurfa@sorbonne-​
universite.fr (MG)

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 21

Sent for Review
20 November 2023
Preprint posted
29 November 2023
Reviewed preprint posted
15 February 2024
Reviewed preprint revised
30 July 2024
Version of Record published
05 September 2024

Reviewing Editor: Albert 
Cardona, University of 
Cambridge, United Kingdom

‍ ‍ Copyright Paoli et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.93789
mailto:marco.paoli@sorbonne-universite.fr
mailto:marco.paoli@sorbonne-universite.fr
mailto:martin.giurfa@sorbonne-universite.fr
mailto:martin.giurfa@sorbonne-universite.fr
https://doi.org/10.1101/2023.11.20.567944
https://doi.org/10.7554/eLife.93789.1
https://doi.org/10.7554/eLife.93789.2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Paoli et al. eLife 2024;13:RP93789. DOI: https://doi.org/10.7554/eLife.93789 � 2 of 27

perception and learning have been typically investigated using the proboscis extension reflex (PER; 
Giurfa, 2007; Menzel, 1999), a protocol that relies on pairing a neutral olfactory stimulus (the condi-
tioned stimulus or CS) with a positive reinforcement of sugar solution (the unconditioned stimulus 
or US) (Bitterman et al., 1983; Giurfa and Sandoz, 2012; Takeda, 1961). In the classical version of 
PER conditioning, the CS precedes and partially overlaps US presentation. This results in high levels 
of specific memory for the conditioned odorant. Conversely, when the reward precedes the stimulus 
(backward conditioning), no positive association can be established (Felsenberg et al., 2014; Hell-
stern et al., 1998). It also enables the study of more sophisticated cognitive processes such as trace 
learning (Paoli et al., 2023a; Szyszka et al., 2011) and patterning discrimination (Deisig et al., 2001; 
Devaud et al., 2015). In the former, CS and US are not overlapping but separated by a stimulus-
free temporal gap, whereas in the latter, bees are trained to respond in opposite ways to a two-
odorant mixture compared to its individual components (Deisig et al., 2001; Devaud et al., 2015). 
Overall, the olfactory conditioning of PER provides a robust read-out for investigating the dynamics of 
olfactory memory formation (Giurfa and Sandoz, 2012; Villar et al., 2020) and olfactory perception 
(Guerrieri et al., 2005).

Our understanding of the neural processing subtending olfactory coding and learning relies on 
decades of neuroanatomical and neurophysiological studies performed in honey bees (Paoli and 
Galizia, 2021). Olfactory processing starts at the peripheral level, when volatile chemicals interact 
with the olfactory receptors expressed on the dendritic membrane of the olfactory sensory neurons 
(OSNs). The biochemical nature of odorant-receptor interactions allows for a certain molecule to bind 
to multiple receptors with different affinities, resulting in the activation of an OSNs sub-population 
with odorant-specific response intensities and latencies (Münch and Galizia, 2016). Olfactory sensory 
neurons innervate the first olfactory processing centre, the antennal lobe (AL), where the neurons 
expressing the same olfactory receptor converge onto one of ~160 glomeruli, the anatomical and func-
tional units of the AL (Flanagan and Mercer, 1989). Thus, odorant detection results in the stimulus-
specific activation of a subset of glomeruli, creating a stereotypical map of odour-induced glomerular 
responses (Galizia et al., 1999; Sachse et al., 1999). The signal processed in the AL is forwarded 
by ~800 output neurons – the projection neurons (PNs) – to higher order brain centres: the mushroom 
bodies (MBs), central, paired structures dedicated to multisensory integration, memory storage and 
retrieval (Heisenberg, 2003; Stopfer, 2014), and the lateral horn of the protocerebrum, a diffuse 
bilateral structure involved in valence coding of odorants (Jeanne et al., 2018; Roussel et al., 2014; 
Strutz et al., 2014). The MB architecture is defined by the layout of its ~185,000 intrinsic neurons, the 
Kenyon cells (KCs). Each KC extends its dendritic arborisation within the MB input regions, termed 
the calyces, where it receives input from multiple PNs, and projects its axon to the MB output region, 
termed the pedunculus, where it bifurcates into the vertical (α and γ) and the medial (β) lobes (Mobbs, 
1982; Strausfeld, 2002). Kenyon cells integrate, among others, the excitatory input of olfactory PNs 
and the inhibitory input of recurrent GABAergic feedback neurons (Ganeshina and Menzel, 2001; 
Grünewald, 1999; Rybak and Menzel, 1993; Zwaka et al., 2018). The latter plays a critical role in 
shaping KCs olfactory responsiveness and maintaining a sparse output over a wide range of odorants 
and concentrations (Papadopoulou et  al., 2011; Stopfer, 2014). Antennal lobe, mushroom body 
and lateral horn are innervated by the VUMmx1 neuron (Hammer, 1993), an unpaired octopami-
nergic neuron conveying appetitive reward-related information to the olfactory circuit and mediating 
reward-based olfactory memory formation. The activity in the Kenyon cells is integrated by MB output 
neurons (MBONs). These neurons exhibit which show learning-related plasticity and provide valence-
loaded information to pre-motor areas (Aso et al., 2014b; Okada et al., 2007; Schmalz et al., 2022; 
Strube-Bloss and Rössler, 2018).

The neural representation of odorants in the AL has been extensively described by means of func-
tional calcium imaging (Paoli and Haase, 2018b). In vivo imaging allowed observing that each stimulus 
is represented with a specific pattern of excitatory and inhibitory responses across the glomeruli of the 
AL (Galizia et al., 1999; Sachse and Galizia, 2002; Sachse et al., 1999), and that perceptually similar 
odorants elicit similar glomerular response patterns (Guerrieri et al., 2005). Calcium imaging of AL 
activity has been typically conducted at low temporal resolutions (~100–200ms; Locatelli et al., 2016; 
Mertes et al., 2021; Nouvian et al., 2018; Sachse and Galizia, 2003). This is partially justified by 
the slow dynamics of fluorescent calcium sensors, which resulted – in general – in the compression of 
olfactory representation into a spatial vector of glomerular response intensity, with a concomitant loss 
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of information on neural response dynamics. While calcium signal decay is relatively slow (>100ms), its 
onset is fast (<10ms) (Helassa et al., 2015; Moreaux and Laurent, 2007), and provides the possibility 
for investigating parameters such as glomerular response latency (Junek et al., 2010; Paoli et al., 
2018a), signal frequency components (Paoli et  al., 2016) and interglomerular information transfer 
(Chen et al., 2023; Paoli et al., 2023b). In this study, we significantly improved the temporal resolution 
of calcium imaging recordings of olfactory neurons in the bee brain by means of a resonant scanning 
multiphoton microscope. This allowed us to record calcium activity at a<10 ms resolution, preserving 
temporal information of the olfactory code and yielding a more realistic representation of odour trajec-
tories in the AL. First, we observed that odour representation changes dynamically during and after an 
olfactory stimulation, resulting in specific odour and after-odour images. Then, we showed that most 
glomerular response profiles presented an inhibitory component, suggesting that glomerular activity is 
strongly shaped by local inhibition, with only a minor influence – if any – of local excitatory interneurons.

Calcium imaging analysis was combined with a modelling approach to investigate how odorant 
representation evolves from the AL to the MB. Electrophysiology experiments have provided insight 
on the phasic and sparse activity of Kenyon cells as well as into its oscillatory nature (Laurent and Davi-
dowitz, 1994; Perez-Orive et al., 2002; Stopfer, 2014). However, the unavailability of an imaging 
method allowing the visualisation of olfactory coding in a KC ensemble prevented us from further 
understanding how odorants are represented within the MB, for example how the neural representa-
tion of an odorant is transformed from the AL to the MB or to what extent the similarity among odorant 
representation is maintained in the KC space. One way to address these questions is by using neural 
network models constructed via the abstraction of common features of MBs across insect species (e.g. 
fruit fly, locust, honey bee) to reproduce cognitive tasks such as stimulus discrimination or learning. 
Models can be built by simulating multiple neurons interacting with each other according to physio-
logical rules such as the dynamics of action potentials or Hebbian synaptic plasticity (Eschbach et al., 
2020; Finelli et al., 2008; Gkanias et al., 2022; Huerta et al., 2004; Smith et al., 2008). Other models 
simulate the MB neural network by considering the statistics of connectivity within the neuropil, for 
example the ratio of PNs to KCs, the average number of synaptic connections, the neuronal firing rate 
(Ardin et al., 2016; Buehlmann et al., 2020; Le Moël et al., 2019; Peng and Chittka, 2017; Springer 
and Nawrot, 2021; Wystrach, 2023). Here, we followed the second approach and built a simplified 
but realistic neural network model of the MB based on the neuroanatomical and functional properties 
of the insect’s olfactory circuit. The model comprises three layers of neurons: (1) a MB input layer to 
provide the model experimentally acquired time-series of PN activity; (2) a MB intrinsic layer, where 
the input signal is distributed to a population of modelled KCs based on neuroanatomical and physi-
ological data; (3) a MB output layer, where one appetitive MB output neuron (MBON) receives input 
from the KC layer and can be subject to learning-induced plasticity. Generally, the input for this type 
of model is simulated based on the spatial and temporal statistics of the odour-induced glomerular 
activity (Eschbach et al., 2020; Finelli et al., 2008; Gkanias et al., 2022; Huerta et al., 2004; Le Moël 
and Wystrach, 2020; Peng and Chittka, 2017; Smith et al., 2008; Springer and Nawrot, 2021). 
In this case, we fed the model with the time series of the PN responses recorded via in vivo calcium 
imaging analysis from multiple individuals exposed to three different odorants at the MB working 
frequency of 20 Hz (Cassenaer and Laurent, 2007; Laurent and Naraghi, 1994).

Here, we show that an MB neural network model based solely on three simple connectivity rules 
abstracted from insect studies – sparse connectivity, feedback inhibition, and learning-induced 
synaptic modulation – is sufficient to explain fundamental MB processing features such as improved 
olfactory discrimination and associative learning. The model also predicts that the presence of post-
stimulus inhibitory and excitatory activity leads to the recruitment of a second pool of KC, resulting in 
a distinct after-odour representation in the MB. Additionally, the model’s performance in appetitive 
learning and across-stimuli generalisation was coherent with empirical measurements obtained from 
behavioural protocols. Finally, using real physiological datasets as input, we showed that such a model 
is robust to noise and biological variability across multiple stimulus repetitions.

Results
Response dynamics of projection neurons in high-temporal resolution
Antennal lobe PNs of eight bees were back-filled with the calcium sensor Fura-2 (Paoli and Haase, 
2018b; Sachse and Galizia, 2002) to measure odour-induced glomerular activity of (~25 glomeruli/
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AL) (Figure 1A). Calcium signal was recorded upon stimulation with two monomolecular odorants 
(1-hexanol, 1-heptanol) and a complex fragrance (peppermint oil) on a 5 s/25 s ON/OFF conforma-
tion for 20 trials (Figure 1B–D). Fast calcium imaging revealed the high variability of odorant-elicited 
glomerular response profiles.

First, we assessed the stability of odorant representations across time and trials given the dura-
tion of each imaging session (30 min) and the multiple stimulus repetitions. For each individual, we 
calculated the Pearson’s correlation coefficients across pairs of trials of the glomerular response 
vectors before, during and after olfactory stimulation. Figure 1E, E' show that across-trial correlation 
is elevated during odour arrival and remains around 0.5seconds after stimulus termination. More-
over, a visual inspection of glomerular response profile dynamics confirmed that, with our stimulation 
protocol, the temporal activation and inactivation of each glomerulus appear to be conserved across 
stimulus repetitions (Figure 1—figure supplement 1). This shows that, in our experimental condi-
tions, odour coding was stable throughout the entire imaging period.

All odorant response traces were pooled together (Figure 1F) and clustered according to their 
direction with respect to the pre-stimulus baseline (i.e. excitatory or inhibitory) and duration (Figure 2, 
see Methods), allowing for a statistical description of glomerular responses across individuals and 
odorants, and for the identification of classes of recurrent profiles (Figure  2A and B). The most 
common profiles comprised inhibitory (group 1) and excitatory (group 4) responses lasting the entire 
olfactory stimulations and terminating after odour offset. In some cases, they could result in prolonged 
inhibition (group 2) or excitation (group 6) lasting after stimulus offset or could be followed by a 
post-stimulus excitatory (group 3) or inhibitory activity (group 5). Approximately 15% of responses 
consisted of short phasic excitation followed by prompt signal termination (group 7) or even by an 
inhibitory response (group 8). About 15% of all recorded glomerular traces showed no detectable 
odorant-induced activity (group 9). Of all traces, 48% were excitatory, 37% inhibitory, and 15% unre-
sponsive (Figure 2C and D). Moreover, 251 glomerular responses out of 546 (46%) displayed an inhib-
itory component either during or after olfactory stimulation. Notably, the varied response types were 
evenly distributed across the different combinations of bees and odorants, indicating an absence of 
individual bias (Figure 2—figure supplement 1).

The heterogeneity of PNs response profiles could be due to the diversified temporal pattern of 
the ONSs input (Kim et al., 2023) and to second-order processing mediated by lateral connections 
within the AL (Girardin et al., 2013; Krofczik et al., 2008). We assessed the contribution of these 
two components by measuring the latency of excitatory and inhibitory glomerular responses (i.e., 
the timepoint t at which a response profile exceeds the threshold of one standard deviation from the 
mean pre-stimulus activity). Figure 2E shows that excitatory responses (groups 4–8) all share a similar 
onset (313±22ms, n=263), which is shorter than that of inhibitory profiles (groups 1–3; 351±47ms, 
n=201) (Kruskal-Wallis test, p<0.05, Tukey-Kramer multiple comparison correction). Moreover, the 
latency of short excitatory responses' termination (groups 7 and 8; 346±47ms, n=60) is coherent with 
the onset of inhibitory profiles. These findings indicate that odour representation in the AL is shaped 
initially by the excitatory input delivered by the OSNs and reshaped – approximately 40ms later – by 
local inhibition. Such an olfactory tuning is different from what is proposed in Drosophila, where both 
excitatory and inhibitory local neurons contribute to moulding the neural correlate of an olfactory 
input (Chou et al., 2010; Olsen et al., 2007).

A mushroom body neural network model: Key principles
We constructed a simple but realistic MB neural network model based on the known connectivity of 
this structure in the insect brain. The model architecture relies on three main principles (Figure 3): First, 
in each brain hemisphere, ~800 AL projection neurons (PNs) diverge onto ~185,000 KCs (Strausfeld, 
2002). Neuroanatomical studies in bees (Szyszka et al., 2005) and flies (Litwin-Kumar et al., 2017; 
Caron et al., 2013) suggest that each KC is randomly innervated by approximately 7–10 PNs. Thus, 
we generated a MB network where ~ 25 PNs (i.e., the average number of glomeruli imaged during 
a calcium imaging experiment) diverge onto 1000 KCs, with each KC being innervated by ~8 PNs. 
Second, recurrent inhibitory neurons such as the A3 feedback neurons in the bee (Mobbs, 1982; 
Rybak and Menzel, 1993; Szyszka et al., 2005; Zwaka et al., 2018), the APL neuron in fly (Lin et al., 
2014), and the giant GABAergic neuron in the locust (Papadopoulou et al., 2011), modulate MB 
KCs firing rate so that less than 20% of KCs are active upon olfactory stimulation, and only ~5% are 
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Figure 1. Projection neurons calcium imaging analysis. (A) For each AL, the odour response maps for the three stimuli were merged into an RGB image 
to highlight glomerular structures: 1-hexanol was set as the red channel, 1-heptanol as the green, and peppermint as the blue. Glomeruli were hand-
labelled for time-series extraction. V, ventral; L, lateral. (B) Exemplary AL odorant responses during olfactory stimulation with three odorants. Colour bar 
indicates the relative change of activity during olfactory stimulation with respect to the pre-stimulus baseline. Circular areas indicate identified glomeruli 
according to (A).  (C, D) Temporal profiles of the glomerular regions identified in (A) for the three odorants. Each line in (C), labelled from 1 to 28, refers 
to the glomerular ID in (A). Temporal profiles represent the average activity of 20 stimulations. Dashed lines in (C, D) limit the begin and the end of the 
olfactory stimulation. (E, E') Pearson’s correlations between pairs of glomerular response vectors across repetitions. (left) The upper right part of the 
matrix shows correlation scores among glomerular activity during olfactory stimulation (t=1–5 s after odorant onset, ON vs ON) across trials; the bottom 
left part shows correlation scores among glomerular activity before stimulation (t = –1–0 s, PRE vs PRE) across trials. (right) The upper right part of the 
matrix shows correlation scores among glomerular activity after olfactory stimulation (t=1–4 s after odorant offset, POST vs POST) across trials; the 
bottom left part shows correlation scores among glomerular activity during and after stimulation (ON vs POST) across trials. (E') Mean (± s.e.m.) across-
trial correlation of the four combinations presented in the matrices in (E). (F) All glomerular responses from eight ALs to three odorants were pooled 
together to provide an overview of the complexity of response profiles (n=546).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Sample of glomerular response profile dynamics across trials.

https://doi.org/10.7554/eLife.93789
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stimulus-specific (Honegger et al., 2011; Turner et al., 2008). Hence, we enriched the model with 
a winner-takes-it-all feedback inhibition mechanism by forcing that only 10% of KCs receiving the 
largest summed input generate an action potential. Third, as in bees and locusts, MB have a 20 Hz 
oscillatory cycle (Cassenaer and Laurent, 2007; Laurent and Naraghi, 1994; Popov and Szyszka, 
2020), we fed the model with experimentally recorded calcium signals resampled at a 20 Hz-sampling 
frequency. This approach allowed testing if a simple neural architecture – so far challenged with simu-
lated datasets (Ardin et al., 2016; Buehlmann et al., 2020; Peng and Chittka, 2017) – could be used 
for understanding how real odour activity recorded at the level of PNs is transformed in the MB, and 
if the rules governing the model were sufficient to support appetitive olfactory conditioning.
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Figure 2. Clustering of projection neurons' response profiles. (A) All glomerular responses were clustered with supervision according to their activity 
(excitatory, inhibitory, non-responsive) during and after stimulus arrival. (B) Mean ± s.e.m. of all curves of the relative groups in (A). The green patch 
indicates the stimulus delivery interval. (C) Average curves of all response groups from (B) are superimposed. The grey patch indicates the stimulus 
delivery interval. (D) Relative amount of all response categories. (E) Latency of glomerular responses for excitatory and inhibitory profiles (groups 
1–8). For groups 7 and 8, the latency of short excitatory response’s termination was calculated. Letters refer to significative groups after Kruskal-Wallis 
statistical test and Tukey-Kramer correction. On the left side, exemplary traces of phasic and tonic excitatory responses and an inhibitory response are 
shown. The orange line indicates the latency of response onset or termination.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Odorant response profiles for each bee and stimulus.

https://doi.org/10.7554/eLife.93789
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Figure 3. A simple neural network model for olfactory coding and learning. (A) The synaptic connectivity between AL PNs and KCs is built as a 
pseudorandom logic matrix where each column represents KC dendritic arborisation and each row PN axon terminals. Each KC receives synaptic 
contact – here represented as a white circle – from 30% of the PN population. (B) For each timepoint t of a calcium imaging recording, the measured 
activity level for each glomerulus (represented by a PN in the model) is projected onto all its synaptic connections with the KC population. Each KC, 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.93789


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Paoli et al. eLife 2024;13:RP93789. DOI: https://doi.org/10.7554/eLife.93789 � 8 of 27

Model input and output: Simulating olfactory coding in the mushroom 
body
For each recorded individual AL (n=8), an MB simulation was generated and fed with the time 
series of the recorded glomerular activity obtained for that individual. Thus, for each odorant and 
individual, we simulated the time course of the firing of a virtual KC ensemble (Figure 4A). The 
analysis of KC population turnover (Figure 4B) showed that, before odorant onset, the population 
varies randomly between adjacent time points while it stabilises during olfactory stimulation, with 
a turnover rate of ~10%. The dynamics of KC recruitment across bees and odorants (Figure 4C) 
indicates that two odorant-specific sets of cells are recruited during an olfactory stimulation: the 
first one at stimulus onset, the second one at odour termination (see Figure  4C, t=5  s). Both 
populations are rather stable, with a turnover rate below the pre-stimulus baseline for up to 15 s 
after stimulus offset (turnover ratepre-stim=0.61 ± 0.14; turnover rateON_0-5s=0.17 ± 0.05; turnover 
rateOFF_5-10s=0.25 ± 0.04; turnover rateOFF_10-15s=0.33 ± 0.08). Correlation analysis of stimulus-induced 
responses (Figure 5D and E) showed a high correlation of neural activity across time points during 
olfactory stimulation and during the post-odour window both in the recorded PN population and 
in the simulated KCs. This indicates that the neural representation of an odorant is sufficiently 
stable to provide a neural image, which is coherent with itself during a 5 s stimulation window and 
during a~10 s post-stimulation window. Furthermore, the across-odorants correlation is rather high 
in the PN space (Pearson’s correlation coefficient, r=0.4), but proximal to zero in the KC space, 
supporting the notion that the MB network increases stimulus discriminability, not only during but 
also after odour offset.

To further corroborate this idea, we compared the temporal relative trajectories obtained for the 
three odorants in the measured PN space and in the modelled KC space (Figure 4F). In both cases, 
response trajectories diverged at stimulus onset and returned to the centre of space after stimulus 
termination. However, the principal component analysis showed that odorants are better separated 
from each other and that they remained separated for a longer time in the KC space compared to the 
PN space. This indicates improved and prolonged stimulus discriminability in the MB with respect to 
the AL (Figure 4—figure supplement 1).

We next investigated the discriminatory power of the system across a larger set of odour response 
profiles. For this, we pooled together all response profiles acquired during the calcium imaging anal-
ysis (Figure 1F) and we artificially combined them to simulate 100 odorant response vectors, each 
comprising 30 different glomerular profiles (see Methods). Using these artificially combined odorant 
response profiles, we simulated the relative KC response time series and measured the correlation 
across all response vectors in the PNs (experimental data) and KCs spaces (modelled data Figure 4G). 
Notably, while response vectors calculated from PN data were highly correlated (r=0.71 ± 0.08), such a 
correlation significantly decreased in the modelled KC space (r=0.52 ± 0.10; Student’s t-test between 
r distributions of PN and KC data: p‍ ‍ 0, n=4774), indicating that the signal transformation operated 
by the proposed MB neural architecture induces a strong decorrelation among odour signatures.

Overall, the proposed MB network can process experimentally acquired input data and produce 
physiologically plausible KC response patterns coherent with in vivo KC activity measurements (Lüdke 
et al., 2018). Moreover, it accounts for the expansion of the coding space from the AL to the MB (Lin 
et al., 2014; Papadopoulou et al., 2011; Stopfer, 2014), enhancing inter-stimuli decorrelation and 
confirming previous theoretical works based on artificial datasets (Olshausen and Field, 2004; Peng 
and Chittka, 2017). Importantly, these emergent properties of the model architecture are based on 
the known neuroanatomy and physiology of the insect brain and have been obtained without any 
optimisation aiming at reproducing specific features of olfactory coding.

that is each column in the scheme, integrates all excitatory post-synaptic potentials. Finally, recurrent inhibitory feedback is simulated by imposing that 
only the 10% most active KCs will generate an action potential (AP) (red cells), while all others remain silent (grey cells). (C) A single appetitive MBON 
receiving input from all KCs was modelled. Based on a synaptic plasticity threshold parameter, all synapses from KCs to MBON that are activated with 
a frequency greater than allowed by the defined threshold during the learning window will be switched off. This phenomenon results in a decrease AP 
probability in the modelled MBON upon stimulation with the learned stimulus. Abbreviations: action potential, AP; antennal lobe, AL; excitatory post-
synaptic potential, ePSP; Kenyon cells, KC; mushroom body, MB; mushroom body output neuron, MBON; projection neurons, PN.

Figure 3 continued
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Figure 4. Olfactory representation in modelled Kenyon cells (KCs). (A) The first row displays the recorded PN responses of one honey bee to three 
odorants. The second row shows the transformation of the PN activity operated by the model to simulate the activity of 1000 KCs. In each plot, KCs 
are ordered for response strength during the onset and offset to better visualise activity clusters. (B) Turnover rate of recruited KCs across adjacent 
time points. Light blue traces refer to individual bees (mean of 10 MB simulations). Thick, dark blue traces indicate average curves across bees. (C) 
Cumulative recruitment of KC shows two main recruitment events at stimulus onset and offset. To observe odorant-related KC recruitment dynamics, the 
cumulative sum was initiated at stimulus onset. Light blue traces refer to individual bees (mean of 10 MB simulations). Thick, dark blue traces indicate 
average curves across bees. (D, E) Correlation matrix among time points of measured PN activity (C) and simulated KC activity (E). Mean responses 
to the three odorants were concatenated to allow observing within and across odorant correlations. (F) PCA of odorants' trajectories in the measured 
PN space (top) and in the modelled KC space (bottom) for four exemplary bees. Trajectories comprise a 10 s interval, ranging from odour onset (t=0 s, 
light) to 5 s after offset (t=10 s, dark). (G) The raster plot shows a set of 100 artificially combined glomerular responses (top), each simulating the neural 
representation of 100 similar odorants in the PN space. A second raster plot (middle) shows the representation of the same odorants in the modelled 

Figure 4 continued on next page
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The neural network model predicts appetitive behaviour
Appetitive classical conditioning relies on the coincidental activation of the neural elements repre-
senting the conditioned stimulus (CS) and the unconditioned stimulus (US). The latter is mediated by 
various neuromodulators, such as specific dopaminergic, as shown in the fly (Burke et al., 2012; Liu 
et al., 2012), or octopaminergic neurons, as demonstrated in the honey bee (Hammer, 1993).

The coincidental activation of CS and US neural elements induces plastic modulations in the MB 
output neurons (MBONs; Hige et  al., 2015; Okada et  al., 2007; Owald et  al., 2015). Here, we 
assessed if the proposed MB model could reproduce empirical measurements of appetitive learning 
by introducing a time window, during which the weights of the recruited KC-to-MBON synapses 
could be downregulated from 1 to 0 (Ardin et al., 2016). This rule reflects MBON learning-induced 
plasticity, according to which they display a broadly tuned response, which is reduced in presence of 
a learned stimulus (Amin and Lin, 2019; Aso et al., 2014b; Aso et al., 2014a; Cognigni et al., 2018; 
Cohn et al., 2015; Hige et al., 2015; Lyutova et al., 2019; Okada et al., 2007; Owald et al., 2015). 
To implement such a rule, we introduce a synaptic plasticity threshold (spt) parameter, which defines 
the number of firing events of a given KC upon which its synaptic output weight is reduced from 1 to 
0. In other words, it determines how active a synapse should be during the learning window before 
being switched off.

It is well known that the inter-stimulus interval (ISI) – that is the time elapsed from CS to US onsets 
– can influence the efficiency of Pavlovian learning (Domjan, 2015; Holland, 1980). The calcium signal 
dynamics and modelling analysis presented here (Figure 4A–F) suggest that such an ISI-dependent 
effect is the consequence of the strong temporal dynamics of the odorant neural representation. 
As the neural representation of the CS changes in time, a reward system recruited at different time 
points will interact with a different population of CS-recruited KCs. Because learning results from the 
coincidental activation of CS and US elements (Pavlov, 1927), an individual should respond to the 
different time points of an olfactory stimulation with different strengths, depending on the US arrival 
time experienced during conditioning. To test this hypothesis, learning-related MBON plasticity was 
modelled for four different CS/US temporal contingencies reflecting four conditioning paradigms, 
well-studied in honey bee (Giurfa and Sandoz, 2012; Figure  5A). Having a fixed CS stimulation 
interval from t=0–5  s, and a learning window (US) of 3  s, we simulated MBON learning with the 
following ISIs: backward pairing occurred when the US initiated at t = –2 s (i.e. 2 s before CS onset), 
early pairing when it started at t=1 s (1 s after CS onset), delay pairing when it started at t=4 s (4 s 
after CS onset), and trace pairing when the US started at t=7 s (2 s after CS offset). First, we trained 
the model with the experimental PN response profile recorded for either 1-hexanol or peppermint 
oil (see Figure 1). One odorant was used as CS and the other as a novel odorant to test the speci-
ficity of the learning obtained under these experimental conditions. After learning, we modelled the 
MBON action potential (AP) probability upon the presentation of the CS (e.g., 1-hexanol) and the 
novel odorant (e.g., peppermint), and repeated this operation for the response profiles of all individ-
uals. To account for the biological variability in the neural activities elicited by repetitions of the same 
stimulus, learning was assessed against the KC response profiles resulting from five CS and five novel 
odorant presentations, which were not included in the training dataset. As expected, we found that 
a trained MBON showed a larger decrease in firing probability when presented with the CS than with 
the unfamiliar stimulus, demonstrating learning (Figure 5B). Interestingly, the model predicts weak 
learning in the case of backward pairing – that is when US and CS are partially overlapping, but the 
US begins before the CS – whereas both early and delay conditioning predict strong learning, that 
is, a large CS-specific down-regulation of MBON firing probability (Figure 5B). Finally, in the case of 
trace conditioning, the model also produced a down-modulation of the MBON response. However, 

KC space. Note that odorant representation was considered as the mean activity of PN (or KC) during stimulus arrival (0.5–5 s). The histogram shows the 
distributions of between-odorant correlations computed among all pairs of odour vectors in the PN and KC space. A significant difference between the 
two distributions was tested with a Student’s t test (p 0, n=4774).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Odorant-specific activity lasts longer in the Kenyon cells space.

Figure supplement 2. Dependence of Simulated MBON Activity on Synaptic Plasticity Threshold.

Figure 4 continued

https://doi.org/10.7554/eLife.93789
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Figure 5. Modelled mushroom body output neurons can predict behavior. (A) Four experimental protocols differing for CS/US inter stimulus interval (ISI) 
were used for training the model (B–D) and for behavioural measurements of the proboscis extension reflex (PER) conditioning (E, F). Trained simulated 
MBONs, as well as conditioned honey bees were tested against the conditioned stimulus (CS, blue) and a novel odorant (NOd, green). (B) Time course 
of action potential (AP) probability of a trained MBON upon stimulation with the CS (blue) or with the novel odorant (green). Olfactory learning was 
modelled according to backward, early, delay, and trace conditioning protocols. Glomerular responses for eight bees to 1-hexanol and peppermint oil 
were used alternatively as CS and NOd. Data for responses to CS and NOd were pooled together (n=16 traces for each protocol). Thick trace: average 
AP probability profile; dotted vertical lines: stimulus onset/offset; grey bar: modelled learning window. (C) Distribution of the mean values of traces in 
(B) during CS and NOd stimulation. Because appetitive learning produces a decrease in MBON firing rate, the complementary value of the probability 
fraction provides a proxy for a learned appetitive response (Kruskal-Wallis statistical test: pbackward = 0.0545; pearly = 1.42*10–6; pdelay = 1.04*10–5; ptrace = 
0.0595; n=16). (D) Latency of 90% of minimal MBON activity in response to the CS for early and delay conditioning protocols (Wilcoxon test early vs 

Figure 5 continued on next page
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this learnt response was shifted in time: it appeared only after the CS offset, that is, around the US 
expected arrival time (Figure 5B).

In addition, according to the model, high synaptic plasticity sensitivity (low spt values) facilitates 
non-specific learning, resulting in a strong generalisation effect. Conversely, MBON plasticity under 
high spt values requires a robust and stable KC activation. This scenario is not compatible with a 
learning interval that is only partially overlapping with the stimulation window (note that measure-
ments are provided at 20 Hz, and in this context, a spt = 40 requires a synapse to be activated during 
two whole seconds – although not continuously – to be switched off) (Figure 4—figure supplement 
2).

Stimulus representation is dynamic (see Figures  1 and 2). Hence, our model predicts that an 
MBON exposed to an early protocol should learn to identify the early components of the stimulus 
neural signature. Indeed, the model shows that the learned response (a down-regulation of MBON 
firing probability) occurs earlier in the early than in the delay contingency (Wilcoxon test for non-
parametric paired data, p<0.001; n=16) and with lower response latency variability (Barlett’s test early 
vs delay, p<0.011; Figure 5D). At the same time, it predicts that trace conditioning should rely on the 
identification of post-stimulus neural activity (Figure 5B). As such, the learned response occurs after 
odour offset and with a variability comparable to the one detected for the delay protocol (Barlett’s 
test delay vs trace, p=0.1808; Figure 5D).

To test the model’s predictions, we measured the timing of real behavioural responses (i.e. the 
proboscis extension) of bees trained under the same CS/US conditions and tested 1 hr later with 
the CS and a novel odorant. Because the model’s predictions were generated based on the odour 
response maps elicited in the AL by 1-hexanol and peppermint oil, the same odorants were used 
for the behavioural experiments. In agreement with the model’s predictions and previous reports 
(Felsenberg et al., 2014), backward conditioning led to scarce and unspecific responses (Figure 5E). 
In contrast, positive ISIs of 1 or 4 s (early and delay protocols) induced specific memory formation 
(McNemar test, pbackward = n  .s., pearly = 0.003, plate = 0.004), with  ~90  to 70% of the trained bees 
showing conditioned responses to the CS and ~40% showing a generalised response to the unfa-
miliar stimulus during the test. Video tracking of the proboscis extension response showed that bees 
receiving the reward 1 s after CS onset extended the proboscis earlier and with less variability than 
those that received the reward towards the end of CS delivery (Kruskal-Wallis test, p=0.036; Barlett’s 
test for data variance comparison, p=5e10–6; nearly = 26, ndelay = 20; Figure 5F). Finally, bees exposed 
to trace conditioning (ISI = 7 s) showed weak and aspecific learning - highlighting the complexity of 
the task (Dylla et al., 2013; Ito et al., 2008; Paoli et al., 2023a; Szyszka et al., 2011). However, in 
opposition to the model’s prediction, the learners showed a PER latency comparable to the delay 
group (Kruskal-Wallis test, p=0.992) but with a broader distribution (Barlett’s test for data variance 
comparison, p=0.007; ndelay = 20, ntrace = 31).

Relative contribution of glomerular response dynamics to conditioned 
response latency
Early excitatory responses are confined to the initial part of the stimulus, while inhibitory responses 
– with a slower and delayed onset – show a delayed onset with respect to the excitatory responses. 
As such, they both contribute to the creation of an early (<1.5 s) and a delayed/stable (>1.5 s) odour 
signature (Figure 2). Such a temporal structure might provide the neural basis for the difference in 
response latency observed upon early and delay conditioning both in behavioural and modelled data. 
If so, the absence of such dynamics might increase odour response stability and prevent the differen-
tial response observed in MBONs subject to the two conditioning protocols.

delay, p=0.0015; delay vs trace, p=0.0005. Letters indicate statistical groups according to the Wilcoxon test. Barlett’s test for variance difference early 
vs delay, p=1.73*10–6; delay vs trace, p=0.1808; early vs trace p=1.29*10–8). (E) Memory retention test of honey bees 1 hr after absolute conditioning. 
Bars indicate the percentage of individuals showing proboscis extension reflex (PER) when presented with the conditioned (blue) or the novel odorant 
(green). Error bars indicate 95% confidence intervals. (Responses to the CS/NOd were compared with a McNemar test for binomial distribution; pearly = 
0.003, pdelay = 0.004). (F) Latency of the PER to the conditioned stimulus at the 1 hr memory retention test (Kruskal-Wallis statistical test: early vs delay, 
p=0.036; early vs trace. p=0.041; delay vs trace, p=0.992. Letters indicate statistical groups according to the Kruskal-Wallis test. Barlett’s test for variance 
difference across protocols: early vs delay, p=5.19*10–6; early vs trace. p=0.020; delay vs trace, p=0.007; nearly = 26; ndelay = 20; ntrace = 31).

Figure 5 continued
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To test this hypothesis, we used the glomerular response database (Figure 1F) to generate a set of 
simulated odorant responses, each comprising 32 glomerular response profiles selected among the 
different response groups (Figure 2A and B) based on the average occurrence of each group across 
all recorded odour response maps (see Methods section). As we did with real odorants (Figure 5), 
we used the simulated odorant responses to train modelled MBONs with early and delay protocols. 
Then, we assessed MBONs' firing rate upon stimulation with the conditioned and a novel stimulus. 
As with real odorant responses (Figure 5), also when using artificially generated odorant response 
profiles, MBONs showed an anticipated response when trained with the early protocol (Figure 6A–C, 
first row).

Next, we evaluated the relevance of the different glomerular response types in determining the 
different MBON response latency occurring upon training with the different CS/US contingencies. 
We selectively removed from the generated odorant response profiles all stable excitatory responses 
(groups 4–6; Figure 6A–C, second row), inhibitory responses (groups 1–3; Figure 6A–C, third row), 
short excitatory responses (groups 7 and 8; Figure 6A–C, fourth row), and both short excitatory and 
inhibitory responses together (groups 1–3, 7, 8; Figure  6A–C, fifth and last row). These modified 
versions of the simulated odorants were used to model MBON response dynamics upon early and 
delay conditioning. Interestingly, removing stable excitatory or inhibitory response profiles or short 
excitatory responses alone did not affect the difference in response timing between protocols. On the 
contrary, the removal of stable components such as long excitatory and inhibitory profiles seemed to 
enhance such difference in response latency (Figure 6D). Conversely, the combined removal of inhib-
itory and short excitatory responses from the odorant response patterns prevented the difference in 
MBON response latency between protocols.

In conclusion, reducing the richness in glomerular response dynamics by removing early excitatory 
responses and delayed inhibition increases the temporal stability of the neural representation of an 
olfactory stimulus and prevents the differential response latency observed between early and delay 
conditioning protocols.

Discussion
Our results show that a simple but biologically realistic MB neural network model simulating essential 
aspects of MB connectivity can process real neurophysiological input and generate robust predictions 
that agree with empirical observations. Our model was fed with experimental PN responses acquired 
at high temporal resolution (Bestea et al., 2022; Paoli and Haase, 2018b). This approach provided 
a better description of the temporal dynamics of olfactory coding and a more realistic modelling of 
odour signal transformation and learning.

Olfactory trajectories in the glomerular space are shaped by local 
inhibition
Because of the high temporal resolution of the functional imaging recordings, we could reliably 
measure odorant-induced latencies of excitatory and inhibitory PN responses. Excitatory responses 
occurred earlier than inhibitory ones and exhibited a smaller temporal variability. This suggests that 
excitation of PNs occurs in a single wave upon cholinergic input from the OSNs to the glomeruli of the 
antennal lobe, with a minor contribution – if any – of second-order excitatory local interneurons within 
the AL, which have been reported for Drosophila (Chou et al., 2010; Olsen et al., 2007) but so far not 
for honey bees (Girardin et al., 2013; Krofczik et al., 2008; Schäfer and Bicker, 1986). This finding 
also advocates that odour responses of OSNs may not display onset-latency variability as shown in the 
locusts (Kim et al., 2023). On the other hand, inhibitory PN responses and the termination of early 
excitatory PN responses occurred within the same time window, approx. 40 ms after the onset of 
excitatory responses, suggesting that lateral inhibition within the AL is responsible for triggering PN 
inhibition and terminating early excitatory responses (see Figure 2, groups 7 and 8). This is consistent 
with a significant presence of GABAergic local interneurons in the AL (Schäfer and Bicker, 1986), 
which reshape the olfactory message conveyed to higher order brain structures such as the MBs and 
the lateral horn (Paoli and Galizia, 2021). Notably, we observed that almost 50% of PN responses 
recorded contain an inhibitory component (see Figure 2A, groups 1–3, 5, 7, 8), underlining the domi-
nant role of inhibitory AL interneurons in shaping odour trajectories in the glomerular space. These 
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Figure 6. Relative contribution of glomerular response types to MBON response latency. (A) Two instances of odorant responses generated by 
artificially combining 32 glomerular response profiles from all response groups from Figure 2 (first row). Response profiles were manipulated eliminating 
stable excitatory responses (second row), inhibitory responses (third row), short excitatory responses (fourth row), and short excitatory and inhibitory 
responses together (last row). Dotted lines indicate stimulus onset and offset. (B) Time course of action potential (AP) probability of a trained MBON 
upon stimulation with the conditioned stimulus (CS, blue) or with the novel odorant (NOd, green). Olfactory learning was modelled according to early 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.93789


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Paoli et al. eLife 2024;13:RP93789. DOI: https://doi.org/10.7554/eLife.93789 � 15 of 27

observations are in contrast with previous calcium imaging analyses, where only 2–10% of responses 
had an inhibitory nature (Krofczik et al., 2008; Szyszka et al., 2005), but coherent with electrophys-
iological recordings showing a rich response diversity and prominence of inhibitory activity (Wilson 
et  al., 2004). Differently from Drosophila, where both local inhibitory and excitatory interneurons 
contribute to the olfactory tuning (Chou et al., 2010; Huang et al., 2010; Shang et al., 2007; Yaksi 
and Wilson, 2010), our analysis indicates that, in the honey bee AL, glomerular responses are modu-
lated mainly by a local inhibitory network. This conclusion is supported by a previous study showing 
that pharmacological activation of a single glomerulus by topical acetylcholine application provokes 
inhibitory but not excitatory responses in other glomeruli (Girardin et al., 2013). Indeed, while the 
presence of excitatory local interneurons has been predicted (Malaka et al., 1995), such prediction 
has never been supported by experimental evidence. A population analysis suggests that the varied 
response profiles are equally distributed across individuals and can be triggered by different olfactory 
stimuli. Still, it remains to be understood to what extent the response profiles for each odour/glomer-
ulus combination are conserved across individuals.

Overall, these findings highlight possible differences between the ALs of bees and fruit flies 
regarding the nature of the local interneuron populations modulating glomerular activity. Thus, they 
cast caution in prioritising a single species as a representative general model of insect olfaction.

Smell and aftersmell: An odorant-specific afterimage
Almost 50% of all PN responses in our database displayed either a prolonged post-stimulus activity 
(see Figure 2, groups 2 and 6) or a change in response direction after stimulus termination (groups 3, 
5, 7, 8). This results in the recruitment of an offset-specific population of KC – both in our model and 
in the literature (Ito et al., 2008; Lüdke et al., 2018) – that creates a neural image of the post-odour 
in the MB. Thus, the post-odour representation is different from the neural image of the odorant itself 
and provides a stable, slowly decaying after-image, which is stimulus-specific and temporally associ-
ated with the neural correlate of the odorant itself. This is in agreement with the analysis conducted 
by Patterson et al., 2013 on the olfactory representation in M/T cells in mice, which shows that the 
post-odorant activity is rather conserved and stimulus-specific even across concentrations and for 
about a 10 s window. Our modelling analysis predicts that the after-stimulus signature of an odorant is 
more distinct and stable across time in the MB than in the AL (Figure 4—figure supplement 1). This 
could occur because the activity across the KC population is normalised by the MB feedback neurons 
operating a gain control, which stabilises odorant-responses signature in the MB – including the post-
odorant activity – while the input signal in the PN is fading.

The existence of a post-odour signature has important implications for understanding the neuro-
biological basis of trace learning (Dylla et al., 2013; Paoli et al., 2023a), a conditioning protocol in 
which a stimulus-free time window separates CS and US. Previous studies reported that an odorant 
cannot be predicted by its post-odour signature (Lüdke et al., 2018; Szyszka et al., 2011). Never-
theless, as shown in previous studies (Galili et al., 2011; Lüdke et al., 2018; Patterson et al., 2013; 
Szyszka et al., 2011), the neural activity associated with the OFF response is stimulus-specific and 
reproducible, suggesting that the post-odour could be physiologically similar to the onset of a second 
odorant (in the same way as the back-taste of wine could remind us of an unrelated ingredient). If so, 
the odour/post-odour pattern could be processed as an individual neural object, effectively extending 
the duration of the nominal, conditioned odour. Alternatively, it is also possible that the stimulus spec-
ificity of the after-smell signature and its temporal contiguity with the CS may enable some form of 
second-order conditioning. Certainly, the behavioural analysis within this study indicates that honey 
bees subjected to trace conditioning display the conditioned reflex already during odour arrival. This 
indicates that bees do not form simply the association between the after-smell (as CS) and the sugar 
reward (US). Conversely, it supports the idea that trace learning requires some form of prolongation 

and delay conditioning protocols and with the balanced (first row) and modified simulated odorants (second to last row). Conditioned stimulus and 
novel odorant are in blue and green, respectively (n=16). Thick trace: average AP probability profile; dotted vertical lines: stimulus onset/offset; grey 
bar: modelled learning window. (C) Latency of 90% of minimal MBON activity in response to the CS for early and delay conditioning protocols (Wilcoxon 
signed rank test early vs delay; n=16). (D) Distribution of Wilcoxon signed rank test p-values of 100 simulations of (C). The red dashed line indicates a 
significance level of 0.05; letters indicate significance groups.

Figure 6 continued
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of the neural trace of the CS until US arrival (Dylla et al., 2013; Paoli et al., 2023a). Interestingly, 
the duration of the post-odour neural signature reported by us and by previous studies (Galili et al., 
2011; Patterson et al., 2013; Szyszka et al., 2011) is about 10–15 s. As such, it is compatible with 
the duration of the CS/US gap in trace learning experiments (Galili et al., 2011; Paoli et al., 2023a; 
Szyszka et al., 2011; Wystrach et al., 2020), suggesting the possibility of its implication in this form 
of learning.

Mushroom body modelling predicts associative learning scores and 
response latency for different conditioning protocols
To investigate if the proposed neural network model explains the temporal features of associative 
learning, we simulated CS delivery by feeding the model with experimental PN calcium imaging time 
series and applied a learning rule based on the downregulation of recurrently recruited synapses in the 
MB. A learning time window of 3 s was defined according to four well-studied protocols for associa-
tive conditioning, which correspond to four different ISI situations (–2 s,+1 s,+4 and+7 s) (Bitterman 
et al., 1983; Giurfa and Sandoz, 2012). A simulation of the action potential probability of an MBON 
after olfactory conditioning revealed that differentiation between the CS and a novel odorant was 
observable whenever the CS anticipated the US (ISIs of +1 s and +4 s) but less successful in the back-
ward (ISI of –2 s) and trace protocols (ISI of 7 s). Generalisation errors were also observed in a similar 
way as in behavioural experiments. Notably, in this study, we adopted a backward contingency with 
a 1 s overlap between the US and the CS (Figure 5A). This differs from the more traditional config-
uration, where the CS is delivered after US termination, that is, without any temporal overlap. In this 
case, the model would predict no learning at all, as observed in honey bee behavioural experiments 
(Felsenberg et al., 2014; Hellstern et al., 1998). Hence, we tested the model’s prediction in the form 
of backward conditioning where US and CS are partially overlapping. In this case, the model predicts a 
weak appetitive association (see Figure 5B, C and E). This result is coherent with a previous behavioural 
report, where bees subject to a similar protocol showed a weak response to the conditioned odorant 
(Felsenberg et al., 2014). In the early and delay configurations, a CS-specific associative memory was 
formed, both in the model (Figure 5C) and in the behavioural tests (Figure 5E). However, the model 
predicts a difference in response latency and latency variability depending on relative CS/US arrival 
(ISI of +1 or+4 s): a learning window placed closer to stimulus onset (early protocol) resulted in early 
and temporally precise MBON responses, whereas a delayed learning window produced a similar 
learning score, but with higher response latencies and temporal uncertainty.

Experimental results based on the same odorants that were fed to the model confirmed the 
model’s predictions. They showed that early and delay protocols yielded comparable results in terms 
of learning score and CS-specificity while differing in terms of CS latency and precision (Figure 5C–F). 
These observations support the idea that associative learning occurs upon coincident detection of the 
CS and US neural elements. In fact, because the CS neural representation changes dynamically during 
the olfactory stimulation, a positive association with the initial odour signature will trigger an earlier 
and temporally precise conditioned response. Conversely, the association with the later part of the 
olfactory signature will elicit a delayed response with greater temporal variability.

Finally, both the model and data (Figure 5C and E) show that trace conditioning yields lower and 
less specific learning scores. However, while the model predicts that learners should respond around 
the expected US arrival time (i.e., during the after-smell component, Figure 5D), empirical data show 
that the individuals who learned the association extend their proboscis during (and not after) the 
olfactory stimulation. Such a discrepancy in measured and predicted response latencies suggests 
that trace conditioning cannot be explained by the simple temporal coincidence of a reward system’s 
activation and a pool of KC recruited at odour offset. In order to trigger a conditioned response antic-
ipating the expected reward time, the network must have learned the nominal CS stimulus and not 
simply its after-smell. Thus, a higher order cognitive process, possibly involving attention mediated by 
the serotonergic system, could contribute in prolonging the memory trace of the conditioned stimulus 
(Paoli et al., 2023a; Zeng et al., 2023).

Vrontou et al., 2021 showed that activation of the fruit fly dopaminergic system at the end of a 
stimulus or after odour offset can, in certain cases, regulate the MBON spiking rate already at odour 
onset (Vrontou et al., 2021). This suggests that delayed reward system activation can modulate an 
olfactory stimulus’s early neural coding. Consequently, the CS/US temporal contingencies used in 
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studies on delay and trace protocols may trigger an earlier-than-expected behavioural response by 
inducing learning-related neural plasticity in the early components of a CS response.

Encoding time without encoding time
Pavlov, 1927 proposed that the timing of a conditioned response could be adjusted to coincide with 
the expected arrival of the unconditioned stimulus (Pavlov, 1927). In his view, this capability involved 
two cognitive processes: learning to suppress the responses to the earlier phases of the conditioned 
stimulus and – at the same time – learning to delay the conditioned response until the US onset. Drew 
et al. showed that in goldfish, the timing of the conditioned response is influenced by the CS/US inter-
stimulus interval, and its precision improves across learning trials (Drew et al., 2005). Importantly, 
this improvement was due to increased accurately timed responses rather than decreased off-time 
ones. Unlike in Pavlov’s hypothesis, these findings suggested that timing acquisition during associa-
tive conditioning relies on learning to respond at the correct moment rather than to avoid responding 
at the wrong time. Experimental evidence in mammals indicates that their ability to adjust the latency 
of the conditioned response based on the US/CS relative onset depends on the cerebellar neural 
network (Perrett et al., 1993; Garcia-Garcia et al., 2024). Targeted lesions to the cerebellar cortex 
significantly impair this ability, suggesting that the adaptive timing of conditioned responses relies 
on a different mechanism than the one supporting the association. Although the neural mechanisms 
governing timing in the cerebellum are not yet fully understood, the involvement of this brain area 
in sensory-motor timing is well-established (Kirkpatrick and Balsam, 2016; Paton and Buonomano, 
2018).

While the influence of the inter-stimulus interval on learning is well documented also in inver-
tebrates (Giurfa and Malun, 2004; Szyszka et  al., 2011; Vogt et  al., 2015), the ability of rela-
tively small insect brains to time the conditioned response based on the expected reward arrival 
remains unclear. Previous studies have shown that the duration of the inter-stimulus interval experi-
enced during learning can influence the conditioned response’s latency in bumble bees (Boisvert and 
Sherry, 2006) and honey bees (Szyszka et al., 2011). Both studies indicate that bees trained with 
a longer ISI exhibited a larger latency in their response to the conditioned stimulus. This provided 
clear evidence that CS-related information can modulate response timing. However, the appetitive 
response largely anticipated the expected reward time, and a clear interpretation of time tracking in 
insect brains is still missing.

Our model shows that this time contingency can be naturally encoded simply because the olfac-
tory representation in the KCs evolves through time in a deterministic fashion. Thus, what is learnt 
during the US presentation is the KC configuration of the CS at this particular time. In other words, 
the MBON learns which subpopulation of KC is active during reward arrival rather than the expected 
reward time. Interestingly, because the KC representation of the CS does not evolve linearly with time 
(Figure 4A–C), the CS/US time contingency is not encoded perfectly. Remarkably, the model captures 
the experimental measurements of the proboscis response latency in bees, which indeed tend to 
respond earlier than the expected reward (Figure 5D and F). However, such reasoning may not apply 
to trace conditioning protocols – when a temporal gap separates CS offset and US onset. In this case, 
higher order neural processes that are not captured by our model may contribute to extending the 
stimulus-related information required for associative learning (Paoli et al., 2023a).

As often in insect research, heuristics can provide simple solutions to apparently complex cognitive 
problems. In this case, a mechanism based on the temporal dynamics of the conditioned stimulus, 
explains the bees' systematic errors at encoding proper CS/US contingency. Whether, in addition to 
this process, other mechanisms enable bees to track time contingencies remains to be seen.

Conclusive remarks
In this study, we adopted a fast calcium imaging approach to investigate the dynamical representation 
of odorants in the antennal lobe. Our findings revealed that about 50% of glomerular responses had 
an inhibitory component and that local inhibition played a crucial role in shaping the initial PN activity 
and defining odour trajectories in the glomerular space. We observed that half of the PN response 
profiles prolonged their activity or changed response direction after stimulus termination, generating 
a stable, odorant-specific after-smell. Although the after-smell might be very different from the odour 
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signature, it is specific and temporally contiguous, thus providing the means to prolong the neural 
representation of the stimulus itself.

To investigate the logic of olfactory transformation and learning in the mushroom body, we 
constructed an MB neural network model based on the known connectivity in the insect brain. We 
showed that the model can process experimentally acquired input data and produce realistic KC 
response patterns. Our analysis suggests that the mushroom bodies enhance olfactory discrimination 
ability and stabilise the olfactory after-image, effectively prolonging the stimulus signature after odour 
offset.

Finally, we implemented a learning rule to modulate MB output neurons firing rate based on asso-
ciative learning. We verified the model’s predictions with behavioural measurements on real honey 
bees subjected to different learning protocols. The coherence between measured and predicted 
behavioural scores suggested that the rules behind this neural model – that is random connectivity, 
feedback inhibition, and MBON plasticity – are sufficient to generate relevant predictions for associa-
tive learning upon different learning protocols. In addition, by testing the model against physiological 
recordings of different stimulations, we showed that the model’s predictions are robust to noise and 
biological variability.

Because the model incorporates not only neural assumptions pertaining to the honey bee olfactory 
system but also to the fruit fly and locust olfactory systems, similar principles may guide odour signal 
transformation at the level of the MB in appetitive associative learning across insects. This generality 
does not apply, however, to the nature of odour reshaping by local interneurons observed in the AL 
of bees, which seems to differ from that occurring in flies, thus highlighting the fact that convergence, 
but also differences, can characterise the functional architectures of olfactory systems in different 
insect species.

Methods
Experimental model
Experiments were performed on honey bees Apis mellifera reared in outdoor hives at the experi-
mental apiary of the Research Centre on Animal Cognition (CNRS, Toulouse, France) situated in the 
campus of the University Paul Sabatier. In all cases, honey bee foragers (>3 week old) were used. No 
institutional permission is required for experimental research on honey bees.

Projection neurons labelling
Honey bee foragers were collected the day before the experiment at an artificial feeder, to which 
they were previously trained, and projection neurons were labelled for calcium imaging analysis as 
previously described (Paoli et al., 2017; Sachse and Galizia, 2002). Shortly, bees were fixed in a 
3D-printed holder with soft dental wax, antennae were blocked frontally with a drop of eicosane 
(Sigma Aldrich, CAS: 112-95-8). A small window was opened in the head cuticle, and glands and 
tracheas were displaced to expose the injection site. The tip of a borosilicate glass needle coated with 
Fura-2-dextran (Thermo Fisher Scientific Inc) was inserted between the medial and lateral mushroom 
body calyces, where medial (m-ACTs) and lateral antenno-cerebral tracts (l-ACTs) cross. After dye 
injection, the head capsule was closed to prevent brain desiccation, and bees were fed ad libitum with 
a 50% sucrose/water solution. On the following day, antennal lobes were exposed to allow optical 
access, and the brain was covered in transparent two-component silicon (Kwik-Sil, WPI). Although 
the injection procedure may result in variable levels of PN labelling, the reproducibility of response 
amplitudes and the lack of labelling bias for specific glomeruli indicate that the loading procedure is 
reproducible.

Calcium imaging analysis and signal processing
Undiluted solutions of 1-hexanol (Sigma-Aldrich, CAS:111-27-3, 7.98 M), 1-heptanol (CAS:111-70-6, 
7.05 M) and peppermint oil (CAS: 8006-90-4, 898 g/L) were delivered to the bees using an Arduino 
Uno-controlled automated olfactometer (Bestea et al., 2022; Raiser et al., 2017). Briefly, 1 mL of 
pure odorant was placed in a 20 mL glass vial. During an olfactory stimulation, the headspace concen-
tration of volatile odorants is injected into a clean airflow, where it is diluted approximately 10 times 
before reaching the honey bee antennae. The odorous flow exiting the olfactometer is weak but 
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detectable by a human nose, in the range of honey bee olfactory sensitivity (Carcaud et al., 2015; Gil-
Guevara et al., 2022; Wright and Smith, 2004). Odorants were alternated and presented 20 times 
on a 5/25 s ON/OFF configuration. Calcium imaging recordings were conducted with a straight Leica 
SP8 scanning microscope (Leica Microsystems, Germany) equipped with a SpectraPhysics InSight X3 
multiphoton laser tuned at 780 nm for Fura-2 excitation. All images were acquired with a water immer-
sion 16 x objective (Leica HC FLUOTAR 16 x/0.6 IMM CORR, Leica Microsystems, Germany), at 64x64 
pixel resolution and ~127 Hz.

Calcium imaging data were analysed with custom-made MATLAB (MathWorks Inc) scripts. The 
baseline signal, calculated as the mean fluorescence during the one second before stimulus onset, was 
used to calculate baseline-subtracted and normalised stimulus-induced glomerular activity (∆F/F). The 
normalised activity was multiplied by –1 to display excitatory/inhibitory responses as positive/negative 
relative changes (-∆F/F). Time series of glomerular activity were averaged across stimulus repetitions 
for response profile clustering analysis. Glomeruli were hand-selected based on a morphological and 
functional map. To facilitate glomerular identification, the odour response maps for the three stimuli 
were merged into an RGB image: 1-hexanol was set as the red channel, 1-heptanol as the green, and 
peppermint as the blue. Thus, glomeruli excited only by peppermint appear in blue, glomeruli excited 
only by 1-hexanol appear in red, and glomeruli excited by a combination of the three channels will 
result in different colour shades. Glomerular response profiles were calculated as the mean intensity 
of an area of 5-by-5 pixels around the centre of the glomerulus across time. Stimulus representation 
stability (Figure 1E) was assessed with a Person’s correlation analysis between vectors of the mean 
glomerular response of different trials. Glomerular response vectors' stability was calculated before, 
during and after olfactory stimulation.

Mushroom body modelling
We used MATLAB R2018a to investigate how the recorded PN activity would affect KC responses of 
a MB network model.

Projection neurons to KC connectivity
Real projection neurons' activity acquired via calcium imaging analysis provided the input to a simple 
model of the mushroom body neural circuits. For each experimentally measured honey bee, approx-
mately 26 glomeruli were detected. Considering that each glomerulus hosts multiple PNs, for each 
glomerular signal, we modelled 3 PNs, each with its own independent connections with a subset of the 
1000 modelled KCs. Connections between PNs and KCs were modelled as pseudo-random, with each 
KC receiving connections 30% of the input PN population, as observed in bees (Szyszka et al., 2005) 
and flies (Litwin-Kumar et al., 2017; Caron et al., 2013). PN-to-KC connections were assumed to be 
binary: either 0 (not connected), or 1 (connected), and the connectivity scheme is stable in a given 
MB model and not subject to plastic changes. This was implemented as a logic connectivity matrix 
(W_PN_to_KC) of size number_of_PNs ×number_of_KCs. Experimental PNs activity (PNactivity) was 
resampled at 20 Hz for modelling analysis (50ms temporal resolution) to match the 20 Hz oscillatory 
cycle detected in the MB (Cassenaer and Laurent, 2007; Laurent and Naraghi, 1994; Popov and 
Szyszka, 2020). For every time step t, the integrated input to each KCs (KCepsp) was calculated as 
the matrix product of the input neuron activity vector (PNactivity) and the logical connectivity matrix. 
Notably, we considered that a glomerulus is completely silent only at minimal inhibition. For this 
reason, at any time point, also glomeruli with negative ΔF/F values contribute to determining a KC 
integrated input. This integrated input of each KC is analogous to its excitatory post-synaptic poten-
tial (EPSP).

KCepsp(t) = PNactivity(t) × W_PN_to_KC.

Winner-takes-it-all inhibitory feedback element
Whether a KC will fire an action potential depends not only on the sum of its input signals but also on 
the inhibitory activity of the MB feedback neurons (Rybak and Menzel, 1993; Zwaka et al., 2018). 
These neurons act on the whole KC population, providing that the KCs receiving the highest summed 
input will produce an action potential (AP). To account for such effect, and based on known MB 
neurophysiology (Honegger et al., 2011; Peng and Chittka, 2017; Turner et al., 2008), we imposed 
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that only the 10% most active KCepsp (i.e., receiving the strongest summed input) will fire an action 
potential.

If KC(i)epsp(t) > 10h percentil of KCepsp(t), then KC(i)activity(t) = 1; else KC(i)activity(t) = 0.
This outputs a binary vector of firing pattern across the whole KC population (KCactivity), where 

ones correspond to action potential and zeroes to silent KC. This operation is repeated for all epochs 
to obtain the time course of the activity of the KC population before, during and after odour arrival. 
To ensure the robustness of the model and account for the variability of the initial parameters, the MB 
simulation was run 10 times for each experimental AL input dataset. The results were then averaged 
over the 10 MB network simulations. An exemplary data subset and the main MATLAB scripts used 
to model KC activity and MBON learning have been uploaded to GitHub and are freely accessible at 
GitHub (copy archived at Paoli, 2024).

KC-to-MBON model and learning-induced plasticity
Evidence in Drosophila and in the honey bee suggests that the default state of an appetitive MBON – 
that is, an MBON departing from an MB lobe innervated by a dopaminergic neuron conveying reward 
information – is to be broadly responsive to neutral stimuli (Okada et al., 2007; Owald et al., 2015). 
Under the assumption that similar principles are highly conserved among insects, we modelled an 
MBON receiving connections from all KCs and with all connections having an initial synaptic weight = 
1 to reflect a generalised odour tuning. This provides a broadly-tuned MBON that responds equally to 
any pattern of KC activity. Upon learning, MBON synapses that are repeatedly recruited are switched 
off (=0). As a consequence, a trained MBON retains a high AP probability in the presence of an unfa-
miliar stimulus but a lower one in response to the conditioned odorant (or to an odorant that is repre-
sented by a similar KC population). Two parameters guide learning: a synaptic plasticity threshold (spt) 
and a learning window. The variable spt defines the number of firing events needed for a given KC to 
induce its output synaptic depression (i.e., KC(i)_to_MBON synaptic weight switch from 1 to 0). For 
the learning tests, a spt value of 15 was adopted. This value falls in the middle of the range tested in 
our simulations (from 1 to 40). It is stringent enough to hinder plastic modulation of rarely recruited 
KCs, while still requiring repetitive activation (i.e., a synapse must be active at least 750ms during a 3 s 
learning window) before allowing learning-induced plasticity.

The learning window provides a temporal restriction of such a learning rule, analogous to the 
reward/US delivery window in an appetitive conditioning protocol. Different CS/US contingencies 
were tested. Inter-stimulus intervals (ISI) of –2, 1 and 4 were used, where such values indicate the onset 
of a 3 s US window with respect to the onset of a 5 s CS window. Throughout the manuscript, we 
referred to the three learning protocols as backward (ISI = –2), early (ISI = 1), and delay (ISI = 4). The 
training was modelled using the mean glomerular responses to the first five stimulations of 1-hexanol 
or peppermint oil; memory retention was tested against the next 5 stimulations of both odorants (one 
acting as the conditioned stimulus, the other one as the novel odorant).

Odorant response profiles simulation
The response profile database (Figure  1F) was repeatedly subsampled to generate 100 odorant 
response maps, each comprising 30 glomerular responses. The proportion of response types (inhib-
itory, excitatory, non-responsive, etc.) was maintained constant and equal to the mean proportions 
across the entire population to generate a batch of similar glomerular response maps (representing 
perceptually similar odorants Guerrieri et al., 2005; Figure 4G). Projection neurons (or KC) response 
vectors used for the Pearson correlation analysis are constituted by the average response for each 
PN (or KC) during olfactory stimulation (t=1–4  s). For Figure  6, 16 odour response profiles were 
generated by assembling 32 glomerular response profiles from the database. Each simulated odorant 
contained the same number of glomerular profiles for each type: 5 inhibitory responses (group 1); 3 
long inhibitory responses (group 2); 3 inhibitory-then-excitatory (group 3); 7 excitatory (group 4); 1 
excitatory-then-inhibitory (group 5); 2 long excitatory (group 6); 2 short excitatory (group 7); 1 short 
excitatory then inhibited (group 8); 4 unclassified (group 9); 4 unresponsive profiles.

Proboscis extension response latency
Bees were collected in the afternoon at the institute’s outdoor beehives, kept in custom-printed plastic 
cages in groups of 16 individuals, and provided with 240 µl of 50% sugar/water solution (an average 
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of 15 μl for each individual). On the next morning, they were harnessed in plastic tubes, blocked in 
place with tape, and fed 3 μl of sugar solution. Three hours later, they were exposed to an absolute 
olfactory conditioning protocol (Villar et al., 2020). During conditioning, bees were placed in front of 
the odour delivery device (the same one used for the calcium imaging analysis) and exposed to clean 
air for 15 s (familiarisation phase), to the odorant for 5 s, and to clean air again for another 20 s. Three 
different intervals were selected for delivering the sugar reward: either from 2 s before odour onset 
to 1 s after (backward conditioning), from 1 to 4 s from odour onset (early conditioning), from 4 to 7 s 
from odour onset (delay conditioning), or from 7 to 10 s from odour onset (trace conditioning). Bees 
were exposed to four rewarded trials, with a 10 min inter-trial-interval. Memory was tested 1 hr after 
the last conditioning trial. During the memory test, videos were acquired with a commercial video 
camera at 30 fps. A LED connected to the odour delivery device and in synch with the olfactory stim-
ulation was used as a marker for the starting timepoint for the measurement of proboscis extension 
latency. Peppermint oil and 1-hexanol were used as olfactory stimuli. They were used non-diluted and 
their role as conditioned stimulus (CS) or novel odorant (NOd) was balanced between bees. During 
the test, half of the bees were exposed first to the CS and then to the NOd, while the remaining half 
was tested in the opposite order. A 50% sugar/water solution (w/w) was used as unconditioned stim-
ulus (US).

Statistical analysis
For MBON learning simulations, a total of 16  MB networks were generated and trained with the 
PN response profiles to 1-hexanol (n=8) or peppermint oil (n=8) (Figure 5), or with computationally 
assembled odorant profiles (Figure 6). After training, each MBON was tested against the response 
profiles of the CS and of the novel odorant to assess AP firing probability to the learned and the 
unfamiliar stimulus. For each simulated MBON, five memory tests against the five repetitions of the 
CS and of the NOd were performed. To quantify stimulus response to the conditioned/novel stimulus, 
the mean firing probability during the time-window of stimulus arrival was calculated. The difference 
between the responses to the CS and to the NOd was tested with a Kruskal-Wallis statistical test 
(Figure 5C). The latency of MBON response to the CS was calculated as the latency to reach the 90% 
of minimal firing probability upon stimulation. The difference in latency between protocols was tested 
with a Wilcoxon signed rank test (Figures 5D and 6C); the difference in latency variance was assessed 
with a Barlett’s test (Figure 5D).

Proboscis extension response was used to assess memory retention 1 hr after the last absolute 
conditioning trial. Conditioned stimulus specificity was tested with a McNemar test. The latency of 
CS-specific PER was measured as the first frame after stimulus onset, where the proboscis trespasses 
the imaginary line between the open mandibles (Figure 4E). Differences between response latencies 
after early and delay conditioning were assessed with a Kruskal-Wallis test as well as with Barlett’s test 
for difference in variance among datasets (Figure 4F).
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