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Abstract Protein kinases (PKs) are proteins at the core of cellular signalling and are thereby 
responsible for most cellular physiological processes and their regulations. As for all intracellular 
proteins, PKs are subjected to Brownian thermal energy that tends to homogenise their distribution 
throughout the volume of the cell. To access their substrates and perform their critical functions, PK 
localisation is therefore tightly regulated in space and time, relying upon a range of clustering mech-
anisms. These include post- translational modifications, protein–protein and protein–lipid interac-
tions, as well as liquid–liquid phase separation, allowing spatial restriction and ultimately regulating 
access to their substrates. In this review, we will focus on key mechanisms mediating PK nanoclus-
tering in physiological and pathophysiological processes. We propose that PK nanoclusters act as a 
cellular quantal unit of signalling output capable of integration and regulation in space and time. We 
will specifically outline the various super- resolution microscopy approaches currently used to eluci-
date the composition and mechanisms driving PK nanoscale clustering and explore the pathological 
consequences of altered kinase clustering in the context of neurodegenerative disorders, inflamma-
tion, and cancer.

Introduction
Protein kinases (PKs) are important enzymes that play critical cellular roles by controlling cell signalling 
and a myriad of associated functions. They act by catalysing the phosphorylation of specific target 
proteins, thereby modulating their activity, subcellular localisation, and function. Through protein 
phosphorylation, kinases orchestrate essential cellular processes such as cell growth, differentiation, 
metabolism, and intricate signal transduction. Their mode of action relies on the catalytic transfer of a 
phosphate group from adenosine triphosphate (ATP) to their selective target proteins (Ubersax and 
Ferrell, 2007). This phosphorylation acts as a switch in their function by initiating a cascade of molec-
ular events controlling selective cellular behaviours (Taylor and Kornev, 2011). Following binding to 
the catalytic domain of the kinase, ATP is converted to adenosine diphosphate (ADP) and an inorganic 
phosphate (Pi) which is covalently transferred to a protein substrate, leading to the modification of its 
activity (Cohen, 2001). PKs exhibit a high degree of diversity, with various ways to classify them (Modi 
and Dunbrack, 2019) based on their specific structural motifs (eukaryotic/atypical) (Kanev et  al., 
2019) and target amino acid residues. The three main classes of PKs are serine/threonine protein 
kinases (STPKs), tyrosine kinases (TKs), and dual specificity protein kinases (DSPKs) (Fabbro et al., 
2015).
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STPKs represent most of the eukaryotic PKs. As indicated by their name, they act by phosphory-
lating serine and threonine residues in their substrate/target protein. These kinases are involved in 
regulating various cellular processes, including cell growth, proliferation, differentiation, and apop-
tosis. STPKs play critical roles in signalling pathways, such as the transforming growth factor- beta 
pathway and the mitogen- activated protein kinase (MAPK) pathway. They can be further subdivided 
into ‘classical’ STPKs and atypical STPKs that are only found in certain cell types.

TKs constitute a distinct class of PKs that selectively phosphorylate tyrosine residues. TKs play 
crucial roles in cellular communication, proliferation, differentiation, and survival. They can be further 
categorised into receptor- associated TKs, which participate in receptor signalling pathways, and non- 
receptor- associated TKs, which interact with DNA in the nucleus. Prominent examples of TKs include 
the epidermal growth factor receptor (EGFR), the insulin receptor, and the JAK, and Src family kinases 
(SFKs).

DSPKs possess the unique ability to phosphorylate both serine/threonine and tyrosine residues. 
These kinases exhibit versatility in their substrate specificity and often participate in complex cellular 
processes. DSPKs are involved in regulating cell cycle progression, DNA damage response, and 
cellular stress signalling.

PKs can also be classified based on their specific functions into signalling PKs, metabolic PKs, and 
housekeeping PKs. Signalling PKs are involved in signal transduction, metabolic PKs regulate cellular 
metabolism, and housekeeping PKs perform essential functions within the cell.

PK nanoclustering: implications for signalling
The subcellular organisation of PKs is of great importance for their signalling function. Our under-
standing of signalling mainly revolves around a vertical integration of the signal, with ligand binding 
to receptor, receptor activation and PK initiation of the signalling cascade (Figure 1). With the super- 
resolution microscopy revolution in cell biology, came the realisation that PKs are organised in clus-
ters with sizes below the diffraction limit of light (Martínez- Mármol et  al., 2023a; Owen et  al., 
2010; Padmanabhan et al., 2019). The mechanism(s) underpinning such clustering and its functional 
outcome for PK activity is/are still open questions, but the emerging concept points to a horizontal 
integration of the signal revolving around the lateral trapping of receptors and associated PKs in nano-
clusters (Figure 1). Upon binding of the ligand, these nanoscale hubs can, in turn, generate hubs of 
PKs and of other downstream effectors raising the possibility that nanoclusters could serve as quantal 
units of signalling function. Such horizontal organisation of receptors and their effectors creates 
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Figure 1. Vertical and horizontal integration of the signal. Protein kinase (PK) activation is classically described as the result of an extracellular ligand 
(red triangle) binding to a plasma membrane receptor (e.g. receptor tyrosine kinase [RTK]) and activating PKs and downstream effectors (orange 
circles). This vertical integration of the signal has recently been refined to include horizontal integration with the realisation that some PKs organise 
into nanloclusters. At the plasma membrane, this horizontal integration occurs via lateral trapping and nanocluster formation of inherently diffusible 
receptors (and their associated PKs), which gives rise to signalling ‘hubs’ or ‘units’. We have exemplified these two concepts using RTKs. Created with 
https://www.biorender.com/.
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dynamic discrete signalling hubs, likely relying on 
structural pro- clustering sequences and interfaces 
leading to dimerisation and oligomerisation. This 
may involve the non- catalytic PK (or association 
of pseudokinases), as well as post- translational 
modifications (PTMs; e.g. phosphorylation) 
controlling these interactions. Understanding 
the modality of PK clustering will require multi-
disciplinary approaches to grasp how the output 
signal is integrated both vertically and horizon-
tally in space and time to generate a downstream 
functions.

Due to the large variety of PKs, this review will 
focus primarily on a limited number of PKs that 
have been studied with super- resolution micros-
copy. We will also attempt to draw a roadmap 
detailing the use of super- resolution microscopy 
to assess the nanoscale organisation of PKs. We 
will first discuss the main advantages of using sub- 
diffraction microscopy to assess the dynamics of 
PK nanoscale organisation, and how this can alter 
protein signalling cascades in health and disease. 
We will also briefly cover the main technologies 
used in these studies. We will then discuss PK 
membrane clustering, cytoplasmic re- organi-
sation of clustering mediated by lipidation and 
biomolecular condensates. The review will finally 
explore the ramifications of alterations in PK clus-
tering in neurodegeneration and cancer.

Advancing PK research with super-
resolution microscopy
Fluorescence microscopy has been instrumental 
in revealing the subcellular localisation of most 
PKs, providing additional information on their 
signalling functions. However, the relatively low 
resolution of fluorescence microscopy limits our 
ability to address critical questions inherent to the 
nanoscale environment in which they operate. The 
resolution of light microscopy is constrained by 
the diffraction limit of light, which depends on the 
wavelength of the illumination light used (typically 
~250  nm). Furthermore, many hundreds, if not 
thousands, of molecules are needed to achieve a 
signalling output in discrete subcellular locations. 
In such inherently crowded nano- environments, 
the fluorescence of so many emitters largely over-
laps, leading to the detection of large blobby 
structures lacking spatial resolution. To some 
extent, super- resolution microscopy can over-
come the diffraction limit of light. There are 
three commonly used types of super- resolution 
microscopy techniques (Figure 2) including stim-
ulated emission depletion (STED) (Heine et  al., 
2018), structured illumination microscopy (SIM) 

Figure 2. Super- resolution microscopy techniques. 
Selective labelling of proteins with antibodies or 
tagging with fluorescent proteins allowed their 
direct visualisation by light microscopy. However, 
the identification of small cellular structures has 
been limited by the diffraction limit of light. Only 
the implementation of super- resolution imaging 
efficiently solved this limitation. There are three main 
super- resolution approaches. In STED microscopy, the 
focused excitation light is combined with a depletion 
doughnut- shaped beam, decreasing PSF size to a 
volume smaller than the diffraction limit. Scanning the 
sample with an excitation light aligned with STED light 
beam allows the creation of super- resolved images. In 
SIM, the sample is imaged with a grid- like pattern of 
light. The interference patterns between the sample 
and the illumination grid create Moiré fringes. Multiple 
images are obtained with varying phase shifts of 
the patterned light, which are used to reconstruct a 
sub- diffraction image. In SMLM, the precise position 
of individual emitting molecules is obtained by fitting 
their intensity profile to a Gaussian model of the PSF. 
Acquisition of single localisations depends on the low 
density and stochastic excitation of emitters. Single 
localisations are then combined to reconstruct the 
super- resolved image. In live cells, SPT, single- molecule 
trajectory reconstructions can be achieved by tracking 

Figure 2 continued on next page
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(Gustafsson, 2008), and single- molecule locali-
sation microscopy (SMLM) (Betzig et  al., 2006; 
Rust et al., 2006; Heilemann et al., 2008).

Common SMLM approaches include, stochastic 
optical reconstruction microscopy (STORM), 
photo- activated localization microscopy (PALM) 
as well as point accumulation for imaging in 
nanoscale topography (PAINT). Regardless of the 
methods used, the output of SMLM is a list of 
co- ordinates of each single- molecule’s detection. 
Spatially separated localisations are achieved for 

each approach by either imaging organic dyes in a reducing buffer to induce blinking (STORM), by visu-
alising photoconvertable/switchable proteins applying targeted lasers (PALM), or by incubating with 
fluorescent binding probes that can bind reversibly or at sparse concentrations (PAINT) (Godin et al., 
2014). SMLM uses the point spread function (PSF) of single fluorescence emitters to fit a Gaussian 
function and establish the Cartesian coordinates of each emitter with sub- pixel precision, depending 
on the method used. The PSF is usually circular in the two dimensions (x, y) and elliptical in depth (z), 
and its size depends on the wavelength of the light and the numerical aperture of the objective lens. 
By fitting a Gaussian function to the PSF, the localisation of the fluorophore can be estimated with rela-
tively high accuracy. Many excellent reviews describe the pros and cons of each super- resolution tech-
nique (Valli et al., 2021; Mahecic et al., 2019; Cox, 2015). One of the key advantages of SMLM is that 
it can be used both in fixed and live cells (Manley et al., 2008) and is amenable to tracking endog-
enous proteins via a range of methods including intrabody expression of selective single- chain anti-
bodies (e.g. camelid nanobodies) (Gormal et al., 2020) or CRISPR/Cas9- based endogenous tagging 
(Willems et al., 2020). They require specialised tags and rely on the activation of a photoswitchable 
fluorophore that emits sufficient photons for reliable localisation before becoming bleached or going 
into a dark state (Lelek et al., 2021). When this is used to track molecules over several consecutive 
images, it is called single- particle tracking (SPT) and can be used to derive mobility measurements 
such as the diffusion coefficient (Gormal et al., 2020). Since SPT computes the mobility of molecules 
as they perform their actions, some important temporal metrics can be obtained. Applying special-
ised analysis methods to SPT data can capture single- molecule dynamics, including diffusion, active 
transport, and spatiotemporal clustering (Cho et al., 2016; Wallis et al., 2023). One of the drawbacks 
of photoactivatable, photoswitchable, and photoconvertible tags is that the trajectories generated 
are relatively short. Depending on the requirement of the experiments, other techniques based on 
self- labelling enzymatic tags can be used, such as SNAP tags and Halo tags that are also genetically 
fused to the target protein. They covalently bind their bright fluorescent cell- permeant ligands (Lelek 
et  al., 2021). The sparse labelling obtained with these techniques can be used in fixed and live 
cells. In the latter case, long trajectories can be generated with high localisation precision. Classically, 
SMLM techniques have relatively good localisation precision in the range of 10–40 nm (Figure 2), 
but new technologies can achieve higher spatiotemporal resolutions (Fujiwara et al., 2023; Deguchi 
et  al., 2023). STED microscopy uses a different approach to achieve improved localisation preci-
sion by reducing the size of the PSF. STED employs two super- imposed laser beams with different 
excitation patterns, that raster- scan the entire sample, pixel by pixel. Since the second laser beam 
can de- excite the periphery of the excited fluorophore, the resulting emission is much smaller (Hell 
and Wichmann, 1994; Vicidomini et al., 2018). For live imaging experiments, SIM provides a direct 
approach that can achieve super- resolved images with conventional fluorescent microscopy sample 
preparation. By applying the light to the sample through known patterns at different lateral positions 
(rotating), emissions from out of focus light can be removed during post- processing, achieving super- 
resolved images with an improved lateral resolution of ~150 nm (Gustafsson, 2000). Since both SIM 
and STED both remove photons from the imaging sample, it is critical that the samples are sufficiently 
bright to achieve the best results. Overall, a range of super- resolution techniques are well suited to 
the study of PKs, providing a better understanding of the relationship between their spatiotemporal 
localisation and the signalling generated. These sub- diffractional methods provide an opportunity to 
characterise the organisation of PKs into discrete clusters, to varying degrees, by applying tailored 
analytical approaches (Chenouard et al., 2014; Khater et al., 2020). For instance, fixed STED and 

the individual detections of a single fluorophore across 
the acquisition window in living samples. Abbreviations: 
STED, stimulated emission depletion; PSF, point spread 
function; SIM, structured illumination microscopy; 
SMLM, single- molecule localisation microscopy; STP, 
single- particle tracking. Created with https://www.
biorender.com/.
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SMLM approaches can identify metrics such as cluster size and density, whereas SPT approaches can 
provide information on other temporal aspects such as mobility and time spent immobilised within 
hotspots.

Thermodynamic considerations on PKs localisation and their signalling 
output
Many PK- mediated signalling processes depend on their ability to phosphorylate their substrates. 
How they access their substrate in a timely fashion is therefore critical to the efficiency and timing 
of the phosphorylation process. One of the main hindrances to the timely access of PK to substrate 
comes from Brownian thermal energy, which generates a chaotic nanoscale environment tending 
to homogenising both PK and their substrates in the entire volume of the cell. The diffusion of an 
average- sized protein in cellulo is approximately 10 μm2/s. This means that cytosolic proteins can 
navigate the entire length of a cell within a few seconds bouncing against other proteins randomly 
(Elowitz et al., 1999). The ability of PKs and their substrates to efficiently react in space and time 
must require some level of immobilisation. This is a critical factor to consider in the timing and inte-
gration of the output signal. In this context, it is not surprising that PK have been found to be immo-
bilised in small sub- diffractional clusters. Nanoclustering of plasma membrane receptors by transient 
lateral trapping is emerging as a novel mechanism for efficient and selective signalling (Liang et al., 
2018; Harding and Hancock, 2008). The affinity and accessibility of PKs to their target substrates are 
enhanced by their concentration, and therefore the mechanism(s) controlling the nanoscale organisa-
tion of PKs in clusters and that of their substrate is of great interest to the field. In addition, the role of 
receptor–ligand binding on transphosphorylation, hetero-/homo- dimeric/oligomeric re- organisation 
as well as allosteric competition between downstream effectors likely further specialises the down-
stream response as recently shown (Chhabra et al., 2023). It is important to note that kinase signalling 
is not solely reliant on phosphorylation of substrates (Jacobsen and Murphy, 2017). For instance, 
pseudokinases, which have little to no catalytic activity and make up about 10% of the kinome, are 
integral components of many signalling pathways (Kung and Jura, 2016; Patel et al., 2020).

Several mechanisms are therefore hypothesised to mediate PK and pseudokinase immobilisation 
into hubs that influence downstream signal propagation. This includes the ‘fences and pickets’ plasma 
membrane model. In this model, receptor PKs are compartmentalised by actin- based membrane- 
skeleton ‘fences’ and anchored transmembrane protein ‘pickets’, clustering them in space and time 
at the plasma membrane (Kusumi et al., 2014). Protein nanodomains can also be driven by intra- and 
inter- molecular interactions including oligomerisation (Sieber et al., 2006). Prior to super- resolution 
approaches, the examination of PK organisation and its effect on cellular signalling mainly relied upon 
spatial techniques (Owen et al., 2010) leaving the temporal aspect of clustering unresolved. As such, 
the contribution of clustering and the role that lateral trapping plays in the activity of cell- surface 
receptors and other PKs, remains to be elucidated.

Dynamics of RTK clustering at the plasma membrane
Unique to PK- linked receptors is that their intracellular catalytic activity can be triggered in response 
to an external ligand (Figure 3A). Receptor dimerisation or clustering was proposed to be sufficient 
to initiate the catalytic activity of many RTKs. This is supported by the finding that antibody- mediated 
clustering (two epitope IgG binding to two receptors) of some RTKs was sufficient to promote their 
activation (Davis et al., 1994). However, it is becoming increasingly evident that the precise control 
of signalling cascades is likely to be multifaceted. For instance, there are a large number of RTKs 
containing pseudokinase domains that lack conventional catalytic activity. The organisation of pseu-
dokinases into homo- dimers or heterodimerisation with other PKs can regulate their active counter-
parts (Mace and Murphy, 2021). In addition, there are ‘bona- fide’ catalytically active kinases that have 
regulatory functions independent of their kinase activity (Shaw et al., 2014).

With the exception of kinase- associated receptors, the other four members (outlined above) are 
able to sense external stimuli through intrinsic catalytic activity/transactivation. Alternatively, kinase- 
associated receptors act through ligand/effector downstream pathways, including activation by non- 
receptor tyrosine kinases (NRTKs). The RTK family of ‘receptor’ kinases is the largest superfamily (20 
classes) and contains a range of receptors that regulate cell differentiation, proliferation, survival, 
metabolism, and migration. RTKs utilise several signalling pathways, including MAPK/ERK, PI3K/Akt/

https://doi.org/10.7554/eLife.93902
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Figure 3. Protein kinase (PK) clustering mechanisms. (A) Receptor tyrosine kinases (RTKs) with intrinsic kinase activity exist at the membrane as both 
monomers and dimers. Upon ligand binding, trans- phosphorylation of the receptor initiates downstream signalling cascades. The formation of receptor 
kinase clusters (by lateral trapping) also promotes associated hubs of ligands (red triangles) and effectors (orange circles) that amplify the signal. 
(B) Kinase- associated receptors (e.g. cytokine receptors) rely on non- receptor PKs to associate to their intracellular domains and activate signalling 
cascades. Many act through dimerisation (1 ligand:2 receptor) and induced conformational change within their intracellular domain (ICD) allowing 
PK transphosphorylation (grey 'inactive’, blue 'active’) and subsequent effector recruitment. (C) RTKs undergo receptor- mediated endocytosis and 

Figure 3 continued on next page
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mTOR, PLCG1/PKC, JAK/STAT, Ras/Raf, Rac/MEK, and NF-κB. Interestingly, RTK signalling occurs 
in endosomes and at the cell surface, with different signalling pathways recruited depending on 
the location of the receptor. For kinase- associated receptors to propagate a signalling cascade, it is 
thought that several distinct processes must occur: (1) ligand binding, (2) activation of the intrinsic 
kinase domains, and/or (3) binding and activated NRTK to cell signalling (potentially through effec-
tors). Despite the structural differences between kinase- associated receptors (e.g. cytokine receptors) 
and other intrinsically activated RTKs, the mechanism of ligand binding and re- organisation appears 
to be somewhat conserved. There are two major, distinct concepts to explain the activation of trans-
membrane and cell- surface receptors. Ligand binding induces either (1) dimerisation of receptors or 
(2) rearrangement of constitutively preformed dimeric receptors. A recent study seeking to investigate 
how two pseudokinases in the Eph family (EphB6 and EphA10) regulate signalling despite lacking 
kinase activity, found key intracellular residues that mediated the interaction of the kinases with SH2 
domains of effectors for downstream signalling (Liang et al., 2021). The role of kinases extends far 
beyond phosphorylation, and non- catalytic activity, such as allosteric regulation, effector binding and 
scaffolding roles, are fundamental to biological mechanisms and signal transduction (Kung and Jura, 
2016). The catalytic activity of EGFR receptors (human protein often referred to as ‘HER1/2’) is regu-
lated by their interaction with the pseudokinase family member HER3. In a study combining the SMLM 
method dSTORM with protein cluster analysis, lapatinib- bound HER2 was found to form a complex 
with HER3 via a non- canonical kinase dimer structure that induced the formation of higher- order 
oligomers (Roberts et al., 2018).

PK clustering via association with plasma membrane receptors
The cytokine receptor, growth hormone receptor (GHR) has recently been shown to form nanoclusters 
at the plasma membrane (Chhabra et al., 2023; Figure 4A). This clustering has been shown to be 
highly dependent on the competitive binding of two PKs with distinct downstream signalling (Chhabra 
et al., 2023). It is unclear whether these clusters are fostering the formation of dimers (Brooks et al., 
2014), which is needed for effective signalling (Figure 1B). In the absence of ligand, GHR- ICD is in 
an inactive conformation. Structural changes in the GHR extracellular domain (ECD) induced by the 
ligand results in altered ratio of JAK2/STAT5 to ERK1/2 signalling, which has also been shown for other 
receptors, including the prolactin receptor (PRLR) and erythropoietin receptors (EpoR) (Rowlinson 
et al., 2008; Liu et al., 2009; Moraga et al., 2015; Zhang et al., 2015). The impact of the competitive 
binding of PKs for the GHR receptor nanoscale organisation and two alternative signalling pathways 
have recently been demonstrated (Chhabra et al., 2023). Upon growth hormone (GH) addition and 
Lyn binding/activation (ERK1/2 pathway), the GHR redistributes into larger clusters on the plasma 
membrane. Conversely, the activation of the JAK2/STAT pathway did not alter the distribution of the 
GHR within clusters. A recent study using single- molecule imaging to co- track the movement of mono-
meric GHR and its effectors showed that JAK2 was important in contributing to GHR dimerisation at 
the membrane (Wilmes et al., 2020). GHR is able to signal through at least two divergent NTRK path-
ways, (1) the JAK2/STAT and (2) the LYN/ERK1/2 pathway (Chhabra et al., 2021). Since the activation 
of GHR through the LYN/ERK pathway correlates with increased GHR endocytosis and degradation, 
its overall membrane organisation may be a key determinant by which a signalling cascade is initiated. 
In a similar line of research, the cytokine receptor interleukin- 2 receptor gamma (IL- 2Rγ) rarely exist 
as monomers, and cluster membership increased in response to IL- 2 ligand stimulation. In addition, 
three distinct cluster sub- populations have been described: small ‘active’ clusters, medium clusters 
associated with endocytosis, and large ‘static’ clusters (Salavessa et al., 2021). Perturbation of either 
lipid rafts or F- actin increased the size of clusters to a similar level, but differentially affected signal-
ling. Cholesterol depletion promoted assembly and sustained STAT5 and ERK signalling, whereas 

endocytic trafficking. Signalling endosomes can continue to signal during transport thereby transferring the ‘signalling hub’ to its subcellular destination. 
(D) Non- receptor tyrosine kinases (NRTKs) can be post- translationally modified via lipidation (myristoylated or palmitoylated) allowing association with 
membranes. Many of these PKs are allosteric in nature and require a signal (such as Ca2+) to alter their conformation and allow subsequent interaction 
with their substrates. For many, N- terminal myristylation mediates PK association to lipid rafts where they are more active. (E) Cytosolic PKs can also 
compartmentalise into biomolecular condensates (BMCs) which are membraneless compartments, formed via liquid–liquid phase separation (LLPS). 
Created with https://www.biorender.com/.
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Figure 4. Examples of cellular nanoscale organisation of protein kinases. re(A) Representative sptPALM images of 
growth hormone receptor tagged with mEos2 fluorescent protein (GHR-Δ1(FL)- mEos2) expressed in HEK293 cells. 
Cells were incubated with human growth hormone (hGH) during the imaging. The panels show the high- resolution 
intensity map (Intensity), the diffusion coefficient map (Diffusion coefficient), where warmer colours represent lower 

Figure 4 continued on next page
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F- actin disruption blocked signalling all together. However, a live cell single- molecule imaging study 
on the cytokine receptor for thrombopoietin (TpoR) identified that in the absence of Tpo the ratio of 
monomer–dimer receptors was in equilibrium, and the presence of Tpo did not significantly perturb 
this ratio, but prolonged the stability of dimers. This study did not extend to investigate the clustering 
of TpoR (Sakamoto et al., 2016). Another single- molecule tracking study indicated that EGFRs reside 
outside lipid rafts in the absence of ligand but move into raft microdomains upon EGF binding (Lin 
et al., 2016). The pseudokinases PEAK1/3 are important scaffolding regulators for the EGFR signal-
ling (Paul et al., 2022). A recent study investigating the PEAK3 interactome revealed that it acts as a 
dynamic scaffold together with essential adaptor proteins to regulate signal transduction (Roy et al., 
2023). Lipid raft environment has been shown to enhance LYN kinase activity (Young et al., 2003). It 
is, therefore, likely that the presence of clusters, their size and sub- membrane distribution in regions 
with different lipidic composition, such as cholesterol- enriched microdomains, jointly act to mediate 
a tight control over the initiation and duration of signalling events. Pseudokinases likely play an inte-
gral role in the organisation and propagation of signalling hubs, yet it is a field that has not been fully 
explored using super- resolution approaches.

Compartmentalisation of PKs in cellular organelles
Endosomal trafficking is critical for a multitude of cellular functions and includes transport of various 
RTKs such as EGFR and platelet- derived growth factor receptor and PKs associated with receptors 
such as GHRs (Sandilands and Frame, 2008). Importantly, upon cell activation, Src kinases were 
shown to translocate from the perinuclear region to the plasma membrane region on endosomes. 
An interesting concept is emerging, posing that RTK- containing endosomes could act as signalling 
units (or ‘quanta’), delivering their information to other subcellular destinations (Figure 3C). This has 
also been described as a form of analogue- to- digital conversion. This was demonstrated with the 
EGFR in fibroblasts (Villaseñor et al., 2015) and with the tyrosine receptor kinase B (TrkB) in hippo-
campal neurons (Wang et al., 2016a). The function of this type of endosomal signalling can differ. For 
instance, in neurons, axonal retrograde transport of signalling endosomes from the nerve terminal to 
the soma underpins neuronal survival. Each signalling endosome therefore carries a quantal amount 
of activated receptors, and it is the frequency of these retrogradely transported endosomes reaching 
the soma that determines the scale of the neurotrophic signal (Wang et al., 2016a). Notably, this 
study demonstrated that pharmacological and genetic inhibition of TrkB activation interfered with 
the coupling between synaptic activity and retrograde flux of signalling endosomes, suggesting that 
TrkB activity encodes for the level of synaptic activity experienced distally at nerve terminals and 
‘digitalises’ it as a flux of retrogradely transported signalling endosomes. The ability of endosomes 
to signal is not limited to PKs and has also been shown for G- protein- coupled receptors (Irannejad 
et al., 2013). Therefore, endocytic trafficking of PKs likely represents a general mechanism inherent to 
the ability of endosomes to generate discrete signalling output (Murphy et al., 2009). Furthermore, 
PKs action is not limited to signalling through endocytic pathways. Indeed, the Src kinase has been 

mobility, and the trajectory map (Trajectories) where warmer tracks appear later in the acquisition. Images modified 
from Figure 6R- T of Chhabra et al., 2023. (B) Representative sptPALM images of Fyn- mEos2. The panels show 
the low- resolution epifluorescence image of a hippocampal neuron expressing Fyn- mEos2 (green) and mCardinal 
(red) acquired before the photoconversion of mEos2 molecules. The inset is shown at higher magnification 
in the right panel, where trajectories of single Fyn- mEos2 molecules can be observed. SptPALM imaging and 
analysis was performed in Martínez- Mármol et al., 2023b. (C) Representative sptPALM images of Fyn- mEos2 
(left panel) or Fyn- Y531F- mEos2 (right panel) forming nanoclusters in dendritic spines. NASTIC analysis was used 
for the spatiotemporal distribution of single Fyn- mEos2 trajectories into nanoclusters. Individual trajectories 
were coloured based on their instant diffusion coefficients (Deff), with more immobile trajectories depicted in 
light colours and more mobile trajectories in dark colours. Panel modified from Figure 3B and C in Martínez- 
Mármol et al., 2023b. (D) Representative sptPALM images of CamKIIα-mEos2 in neurons. Single CamKIIα-mEos2 
localisations were plotted into a diffusion coefficient map (Deff) where warmer colours represent higher mobility. 
The inset shows a dendritic spine at higher magnification in the left panel.

© 2014, Lu et al. Panel D is reproduced with permission from Figure 3A of Lu et al., 2014 (published under a CC 
BY-NC-SA 3.0 license). It is not covered by the CC- BY 4.0 license and further reproduction of this panel would 
need permission from the copyright holder.

Figure 4 continued
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shown to be critically involved in the anterograde pathway by controlling the recruitment of secretory 
vesicles to the cortical actin network in neurosecretory cells via direct anchoring of Myosin VI (Papa-
dopulos et al., 2013; Tomatis et al., 2013).

Subcellular membrane localisation of NRTKs via lipidation
One of the most studied mechanisms to control the organisation and function of kinases is modulating 
their binding affinity to biological membranes. NRTKs are unique, in that their subcellular location is 
heavily reliant on their conformation, which can be further influenced by a range of PTMs. NRTKs are 
categorised into nine subfamilies based on sequence similarities, primarily within the kinase domains. 
These include ABL, FES, JAK, ACK, SYK, TEC, FAK, CSK, and the SFKs. SFKs are active mediators of 
signal transduction pathways that influence cell proliferation, differentiation, apoptosis, migration, and 
metabolism. The SFKs members include Src, Lck, Hck, Blk, Fgr, Lyn, and Yrk. All SFKs contain modular 
Src homology domains (SH2, SH3, and SH4) at their N- terminus, a tyrosine kinase domain (SH1) and an 
intrinsically disordered region (IDR) at their C- terminus (Figure 3D). The intramolecular interaction of 
SFKs SH domains has been shown to mediate two main protein conformations: (1) open and (2) closed 
(when interacting). PTMs identified to influence these cytoplasmic receptors include ubiquitination, 
phosphorylation, and lipidation (Ortiz et  al., 2021). Lipidation is essential to facilitate membrane 
attachment to those peripheral kinases that do not contain membrane- spanning domains. Lipidation 
consists of the covalent binding of specific lipid moieties to the protein body. Kinase lipidation can be 

Table 1. Lipidation types of protein kinases.

Kinase Type of phosphorylation Role Type of lipidation Ref.

cAMP- dependent kinase (PKA)
Serine/threonine 
phosphorylation Multiple roles in metabolism. Myristoylation Carr et al., 1982

AMP- activated protein kinase 
(b subunit) (AMPK)

Serine/threonine 
phosphorylation Cellular energy (regulatory subunit). Myristoylation

Oakhill et al., 
2010

cGMP- dependent kinase II 
(PKGII)

Serine/threonine 
phosphorylation

Regulation of ion transport systems and 
nitric oxide levels. Myristoylation

Vaandrager 
et al., 1996

P21- activated kinase 2 (PAK2)
Serine/threonine 
phosphorylation

Cytoskeleton re- organisation and nuclear 
signalling. Myristoylation Vilas et al., 2006

Casein kinase 1g (CK1g)
Serine/threonine 
phosphorylation

Antero- posterior patterning during 
development. Myristoylation

Kinoshita- Kikuta 
et al., 2020

Protein serine kinase H1 
(PSKH1)

Serine/threonine 
phosphorylation Compartmentalisation of splicing factors.

Myristoylation
and palmitoylation

Brede et al., 
2003

Adenylate kinase 1 (AK1)
Adenosine diphosphate 
(ADP) phosphorylation

Cellular energy and homeostasis of adenine 
nucleotide ratios. Myristoylation

Tomasselli et al., 
1986

Blk (B lymphocyte kinase) Tyrosine phosphorylation
B- cell receptor signalling and development; 
insulin synthesis and secretion. Myristoylation Resh, 1994

Fgr (Gardner- Rasheed feline 
sarcoma viral oncogene 
homolog) Tyrosine phosphorylation Cell migration and adhesion.

Myristoylation and 
palmitoylation Resh, 1994

Hck (hematopoietic cells 
kinase, p59) Tyrosine phosphorylation

Inflammatory response (cell survival and 
neutrophil migration).

Myristoylation and 
palmitoylation Resh, 1994

Src Tyrosine phosphorylation
Regulation of embryonic development and 
cell growth. Myristoylation Resh, 1994

Fyn (p59) Tyrosine phosphorylation

T- cell differentiation; oocyte maturation; 
neuronal migration; myelination; synaptic 
function.

Myristoylation and 
palmitoylation

Koegl et al., 
1994

Lck (T- cell- specific kinase, p56) Tyrosine phosphorylation
Initiation of TCR signalling; T- cell 
development and homeostasis.

Myristoylation and 
palmitoylation

Koegl et al., 
1994

Lyn (lymphocytes) Tyrosine phosphorylation
Myeloid lineage proliferation; liver 
regeneration; osteoclast differentiation.

Myristoylation and 
palmitoylation Resh, 1994

Yes (Yamaguchi sarcoma 
homolog, p61) Tyrosine phosphorylation

T- cell migration; cancer cell proliferation and 
invasion.

Myristoylation and 
palmitoylation

Koegl et al., 
1994

https://doi.org/10.7554/eLife.93902
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performed co- or post- translationally, where at least two types of lipids have been described attached 
to kinases, including different forms of fatty acids and lipid- derived electrophiles (LDEs).

PK localisation and biological function can be regulated by the addition of two types of saturated 
fatty acyl chain, either the 14- carbon myristic acid (C14:0) or the 16- carbon palmitic acid (C16:0). 
Depending on the type of lipid incorporated, the fatty acylation can be classified as N- myristoylation 
or S- palmitoylation, respectively.

N- Myristoylation is an irreversible co- translational protein modification catalysed by N- myristoyl 
transferases (NMTs), where the fatty acid myristate is covalently attached to the N- terminal glycine 
of a protein. Both human NMT isozymes, NMT1 and NMT2, are expressed in most tissues, and have 
been implicated in the development and progression of diseases including cancer (Selvakumar et al., 
2007), epilepsy (Selvakumar et al., 2005), Alzheimer’s disease (Su et al., 2010), and Noonan- like 
syndrome (Cordeddu et al., 2009). Examples of myristoylated kinases and their function can be found 
in Table 1, being SFKs some of the most studied lipid- modified kinases. In fact, all members of the 
SFK family are co- translationally myristoylated at the second glycine (Resh, 1994). Myristoylation is 
essential to anchor kinases in the cytoplasmic face of the plasma membrane and regulate their enzy-
matic activities, with significant consequences for the organism. A high- fat diet favours myristoylation 
and overactivation of the c- Src kinase, which accelerates xenografted prostate tumour growth in mice 
in vivo (Kim et al., 2017). Myristoylation also regulates kinase protein levels. Mutant c- Src lacking 
myristoylation showed reduced kinase activity but had enhanced stability, as its degradation by ubiq-
uitination was diminished. This effect could be associated with the ability of the myristate group to 
facilitate the targeting of c- Src to the membrane, or to an intrinsic requirement for the myristate lipid 
in promoting ubiquitination and degradation by the E3 ligase Cbl (Patwardhan and Resh, 2010). 
Whereas myristoylation positively regulates most c- Src kinase activity, there are exceptions, such as 
the blockade of c- Abl tyrosine kinase by the addition of a myristoyl group. Under resting conditions, 
c- Abl is in an inactive state, which is maintained by the binding of the N- terminal myristoyl group to a 
hydrophobic pocket in the C- lobe of the kinase domain (Hantschel et al., 2003).

S- Palmitoylation (or S- acylation) is another type of fatty acylation, in which the fatty acid palmitate 
is covalently attached to cysteine residues. Contrary to myristoylation, protein palmitoylation happens 
post- translationally and is a reversible process catalysed by a large family of enzymes known as protein 
acyl transferases (DHHC- PATs) (Rana et  al., 2019). The labile nature of the thioester bond makes 
palmitoylation a reversible and very dynamic process, where deacylation is performed by acyl protein 
thioesterases (APTs) or by lysosomal palmitoyl protein thioesterases (PPTs). The regulated activity of 
DHHC- PATs and APTs or PPTs facilitates a rapid turnover of membrane- bound palmitoylated proteins 
that can undergo cycles of acylation and deacylation in response to upstream signals (Rocks et al., 
2005). Palmitoylation can also modulate the trafficking of the kinases. Mutant forms of Fyn lacking 
two palmitoylatable cysteines (cysteines 3 and 6) showed altered neuronal distribution, being unable 
to reach the dendritic arbour (Xia and Götz, 2014). Palmitoylation is usually found in combination 
with other lipid modifications. Several SFKs, including Fyn, Lyn, Lck, and Yes undergo both myristoy-
lation and palmitoylation (Table 1). Whereas myristoylation alone facilitates the targeting of proteins 
to discrete membrane compartments, plasmalemma association of sole- myristoylated proteins is 
only transient with very short half- lives. The combination with palmitoylation mediates a stronger 
and longer membrane association. A peptide probe comprising the amino- terminal myristoylated 
and palmitoylated heptapeptide of the Fyn kinase showed an anterograde transport with initial Golgi 
accumulation before reaching the plasma membrane. Whereas palmitoylation was detected only on 
the Golgi, accelerating the anterograde transport of acylated targets, depalmitoylation occurred 
everywhere in the cell. The plasma membrane localisation of the peptide probe at steady state was 
more pronounced than other probes due to lower palmitate turnover kinetics (Rocks et al., 2010). 
Similarly, newly synthesised myristoylated Lyn and Yes initially enter the Golgi system, where they 
become palmitoylated, providing necessary access to the membrane secretory transport pathway 
en route to the plasma membrane, where Rab11 is involved (Sato et al., 2009). Deletion of three 
base pairs in the Zdhhc21 gene resulted in the ‘depilated’ phenotype (dep), characterised by a vari-
able hair loss, with thinner and shorter hairs remaining. This single mutation resulted in the loss of 
a highly conserved phenylalanine at position 233, causing the mislocalisation and loss of catalytic 
activity of the ZDHHC21 acyl transferase. Reintroducing wildtype ZDHHC21 into the mice rescued the 
shiny and smooth coat phenotypes. Fyn is a substrate for ZDHHC21, and the lack of palmitoylation 
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caused altered Fyn localisation and downstream signalling activity, which resulted in reduced levels 
of Lef1, nuclear β-catenin, and Foxn1, altering keratinocyte differentiation, leading to hair loss (Mill 
et al., 2009). Overall, these results indicate that modulation of de- Acylation/re- Acylation cycles is an 
important mechanism that controls spatially and temporally the activity of SFKs, hence regulating a 
multitude of downstream signalling cascades with direct consequences in vivo.

Other types of lipidation can also occur, such as LDE modification of the ZAK kinase. LDEs are 
reactive lipid metabolites generated by lipid peroxidation when cells are under oxidative stress condi-
tions. One important example of LDE is 4- hydroxy- 2- nonenal (4- HNE), which is formed as a secondary 
intermediate by- product of lipid peroxidation (Ayala et al., 2014). 4- HNE is a reactive molecule that 
participates in multiple physiological processes as a nonclassical secondary messenger and can be 
covalently attached to numerous proteins, including the ZAK kinase (Wang et al., 2014b). This kinase 
is a member of the mitogen- activated protein kinase kinase kinase (MAP3K) family of signal transduc-
tion proteins, activating all three major MAPK pathways in mammalian cells (ERK1/2, JNK1/2/3, and 
p38 MAPK) (Yang et al., 2010b). The ZAK kinase is involved in the cellular response to UV radiation 
(Wang et al., 2005) and to chemotherapeutic agents (Wong et al., 2013). 4- HNE binds to ZAK in 
the conserved cysteine 22. The proximity of this position to the ATP- binding loop of ZAP, resulted 
in a 4- HNE- dependent blockade of ATP binding and loss of kinase activity. This creates a negative 
feedback mechanism that suppresses the activation of JNK apoptotic pathways induced by oxidative 
stress.

Biomolecular condensates: a new frontier in PK organisation
Cytosolic PKs can also be organised in small clusters occurring outside the context of the plasmalemma 
or organellar membranes, within subcellular structures commonly referred as biomolecular conden-
sates (BMCs) (Martínez- Mármol et al., 2023b). This type of membraneless compartmentalisation is 
characterised by the ability to concentrate charged and highly disordered molecules such as proteins 
and nucleic acids that undergo liquid–liquid phase separation (Banani et al., 2017). BMCs are stabi-
lised by weak interactions between or IDRs of constituent molecules, creating a unique environment 
for the proteins contained inside. Since the probability of binding between two interacting molecules 
increases with the square of the binding density (Lagerholm and Thompson, 1998), BMCs are ideally 
positioned to host and/or initiate highly efficient cellular signalling. These phase- separated conden-
sates are increasingly viewed as critical in a multitude of biological contexts. BMCs can also interface 
with the plasma membrane and generate hybrid systems, formed through the interplay between 
condensates and membrane constituents, such as transmembrane surface receptors. The Src kinase 
Fyn was recently shown to form nanoclusters in dendritic spines (Figure 4B, C) that are controlled by 
the ability of Tau to form BMCs (Martínez- Mármol et al., 2023b). As Fyn kinase binds to a number 
of post- synaptic proteins critically involved in synaptic plasticity, it is tempting to speculate that the 
integration of the signalling and plastic response could be regulated by nanoscale BMCs. Further 
protein phosphorylation and dephosphorylation can, in turn, modulate the fabric of these conden-
sates, thereby generating multi- layered signal regulation. A recent study mapped a large number of 
phosphosites enriched within purified condensates, finding certain phosphosites modulate their ability 
to populate their condensates (Longfield et al., 2023). Ca2+/calmodulin- dependent protein kinase II 
(CaMKII) is a postsynaptic kinase that acts as a protein cross- linker, segregating synaptic molecules 
through Ca2+- dependent liquid–liquid phase separation formation (Hosokawa et al., 2021). CaMKII 
forms nanodomains in dendritic spines (Figure 4D; Lu et al., 2014). These nanodomains are essential 
for the establishment of trans- synaptic nanocolumns (Tang et al., 2016), which may be involved in 
establishing an optimal spatial arrangement between postsynaptic receptors and the location where 
neurotransmitters are released, a key mechanism for neuronal communication and synaptic plasticity. 
The composition, structure, formation, and role in signalling of BMCs are the subject of intense scru-
tiny. It is interesting to note that most in cellulo works involve large BMC structures amenable to fluo-
rescent recovery after photobleaching. Classically, recovery from photobleach BMC is much slower 
than from the cytosol. In most cases, these studies have been performed in the context of protein 
overexpression. Whether kinase residency within BMCs is physiologically relevant is under debate. 
Recent studies suggest that BMCs can affect the clustering of PKs in the nanoscale range (Martínez- 
Mármol et al., 2023b).

https://doi.org/10.7554/eLife.93902
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Implications of altered PK clustering in pathologies
Dysregulated receptor and kinase signalling is a common mechanism driving cancer progression 
(Brooks and Putoczki, 2020; Du and Lovly, 2018). Both cholesterol content and modification of 
phosphoinositide lipids affect transmembrane receptor clustering and signalling (Salavessa et  al., 
2021; McGraw et al., 2014; Wang et al., 2014a; Yang et al., 2010a; Rahbek- Clemmensen et al., 
2017; Heidbreder et al., 2012; Murphy et al., 2013). Clinical observations provide support for the 
importance of cholesterol in regulating cytokine receptor signalling. For example, hypercholestero-
laemia is associated with the development of leukaemia and has been shown to amplify cytokine 
signalling in leukaemia cells and alter SFK activation (Oneyama et al., 2009; Wang et al., 2016b). In 
addition, chronic lymphocytic leukaemia patients show a survival benefit from cholesterol- lowering 
with statin drugs (McCaw et al., 2017). Cholesterol levels have also been implicated in regulating 
other diseases for which cytokine signalling plays a major role, such as rheumatoid arthritis, where 
elevated LDL cholesterolaemia correlates with increased disease progression. Treatment with statins 
shows anti- inflammatory effects and reduced disease symptoms (Li et al., 2018; Park et al., 2013). 
Depletion of membrane cholesterol, with the consequent perturbation of lipid raft microdomains, 
inhibits JAK activation by ligand binding to GHR and IL- 7R (Tamarit et al., 2013; Sandoval- Usme 
et al., 2014).

Interactions of receptors with phosphatidylinositol- 4,5- bisphosphate (PtdIns(4,5)P2) have been 
shown to be an important mediator of receptor clustering and signalling. For example, EGFR forms 
significantly larger and more abundant nanoclusters in the membrane of lung cancer cells, compared 
to normal lung epithelial cells. EGFR clusters are mediated by their interaction with PtdIns(4,5)P2, as 
PtdIns(4,5)P2 depletion disrupts EGFR plasma membrane clustering, impairing EGFR signalling. Resi-
dues in the EGFR juxtamembrane (JM) region mediate the interaction with PtdIns(4,5)P2 and mutation 
of these JM residues similarly disrupts clustering and EGFR signalling (Wang et  al., 2014a). The 
cytokine receptors GHR and prolactin receptor (PRLR), as well as the associated JAK2, are known 
to have specific interactions with PtdIns(4,5)P2. Mutations of residues in the PRLR that interact with 
PtdIns(4,5)P2 impair receptor signalling (Araya- Secchi et al., 2023; Haxholm et al., 2015). Further-
more, Ras (small GTPase) nanoclustering has been shown to be important in oncogenic signalling 
and attempts to disrupt Ras nanoclusters are being explored as a potential therapeutic strategy (Van 
et al., 2021). Several studies have identified Ras interaction with phosphatidylserine in membrane 
clustering, and a recent super- resolution microscopy study defined the nanoscopic spatial membrane 
association between Ras and phosphatidylserine (Koester et al., 2022).

SFKs are aberrantly activated in cancer, particularly in solid tumours (Martinsen et al., 2022). SFKs 
have been shown to play important roles in the clustering and mobility of receptors, such as nicotinic 
acetylcholine receptors, GPI- anchored receptors, B- cell receptors, and cytokine receptors (Chhabra 
et al., 2023; Flynn and Syed, 2020; Sohn et al., 2008; Suzuki et al., 2007; Stone et al., 2017). 
Increased membrane- saturated fatty acids induce c- Src activation and clustering within membrane 
subdomains. This was postulated to be a contributing mechanism that associates obesity with the 
development of type 2 diabetes (Holzer et al., 2011). Increased membrane cholesterol suppresses 
the ability of SFKs to induce cell transformation in fibroblasts, by redistributing these enzymes into 
cholesterol- enriched membrane microdomains, and sequestering them away from transforming signal-
ling pathways (Oneyama et al., 2009). Proliferation of myeloproliferative neoplasms is commonly due 
to constitutive signalling of the cytokine receptor TpoR (MPL) (Murphy et al., 2013).

Since PKs play a major role in so many biological functions, alterations in these proteins play a 
particularly significant role in the progression of cancer, infectious diseases, and neurological disor-
ders. The dysregulation of RTKs has been proposed for almost all forms of human cancer since they 
play such a major role in cell division. The tight regulation of these catalytically active receptors is key 
to regulating unwarranted cell division and tumourigenesis (Casaletto and McClatchey, 2012). In 
addition, the JAK/STAT signalling pathway is an intrinsic driver for metastasis (Brooks and Putoczki, 
2020).

PK nanoclustering for optimal output signal
The binding affinity of ligands to their targets, such as a ligand to a cell- surface receptor, or a PK 
to its substrate is an important metric that ultimately controls signalling strength and duration. 
However, there are other factors that can make a substantial contribution to the signal output, such 
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as local concentrations, protein conformational states, and molecular crowding. The terms affinity 
and avidity are often used in the context of antibody binding, but the principles of avidity/multiv-
alency have also been applied to characterise several other types of interactions (Erlendsson and 
Teilum, 2020), such as inter- molecular interactions (allosteric proteins and IDPs) (Tompa, 2014), and 
interactions associated with short linear motifs (Bugge et al., 2020). Since receptors and associated 
PKs and pseudokinases can potentially participate in more than one signalling cascade, the mecha-
nism by which they can favour one over the other is still mostly elusive. Other factors in determining 
the nature and strength of the output signal are (1) the probability of ligand/binding, activation 
and dissociation (Vauquelin and Charlton, 2010), (2) their multimeric state (Chhabra et al., 2023; 
Brooks et al., 2014), and (3) their diffusive and clustering properties (Small et al., 2020), and the 
local concentration (Caré and Soula, 2011; Figure  5). It has therefore been proposed that the 
residence of proteins within subcellular compartments, such as lipid rafts or BMCs, likely serves to 
modulate their activity through dynamic clustering mechanisms (Erlendsson and Teilum, 2020). 
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Figure 5. Forming protein kinase clusters. (A) PK clustering occurs via lateral trapping in nanoclusters that restrict 
their diffusion. In addition, the concentration of both ligand and receptor/substrate availability and the dissociation 
metrics of their interaction have been described to play a key role in determining the signalling strength of this 
biological event. (B) The regulation of both the size and location of clusters is therefore likely to determine the 
signalling duration through the creation of a nano- environment (circular areas containing a higher density of slow 
diffusing PKs) conducive for fast re- binding of proteins with their substrates and regulated signalling amplification 
through the creation of hubs that allow efficient effector association.
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More experimental and in silico work are needed to elucidate the precise cellular organisation of 
PKs to optimally amplify and locally control signalling. Since the precise organisation of PKs can 
now be explored using various super- resolution microscopy methods, much can be learnt about the 
mechanistic details of PK signalling. For instance, how the discrete signalling hubs at the membrane 
are formed and maintained, and how they are affected by various ligands and effectors. Further-
more, by applying SPT, some key questions in PK biology will begin to be answered, such as (1) is 
PK organisation affected during cancer progression and metastasis; (2) how do protein effectors 
modulate signalling strength; and (3) how do PKs differentiate alternative down- stream signalling 
pathways. Furthermore, the nanoscale distribution of pseudokinases (or ‘kinase- dead’ variants), 
and their effect on binding partners and effectors (including active PK binders) will require further 
investigation. The ability of a single type of receptor to activate numerous signalling responses 
likely relies upon these biophysical properties to modulate RTKs, kinase- associated receptors, non- 
receptor PKs, and pseudokinases.
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