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Abstract Predicting the interaction between Major Histocompatibility Complex (MHC) class 
I-presented peptides and T-cell receptors (TCR) holds significant implications for vaccine develop-
ment, cancer treatment, and autoimmune disease therapies. However, limited paired-chain TCR 
data, skewed towards well-studied epitopes, hampers the development of pan-specific machine-
learning (ML) models. Leveraging a larger peptide-TCR dataset, we explore various alterations to 
the ML architectures and training strategies to address data imbalance. This leads to an overall 
improved performance, particularly for peptides with scant TCR data. However, challenges persist 
for unseen peptides, especially those distant from training examples. We demonstrate that such 
ML models can be used to detect potential outliers, which when removed from training, leads to 
augmented performance. Integrating pan-specific and peptide-specific models alongside with 
similarity-based predictions, further improves the overall performance, especially when a low false 
positive rate is desirable. In the context of the IMMREP22 benchmark, this modeling framework 
attained state-of-the-art performance. Moreover, combining these strategies results in acceptable 
predictive accuracy for peptides characterized with as little as 15 positive TCRs. This observa-
tion places great promise on rapidly expanding the peptide covering of the current models for 
predicting TCR specificity. The NetTCR 2.2 model incorporating these advances is available on 
GitHub (https://github.com/mnielLab/NetTCR-2.2) and as a web server at https://services.health-
tech.dtu.dk/services/NetTCR-2.2/.

eLife assessment
This study presents a useful tool for predicting TCR specificity with compelling evidence for 
improvements over prior art. This work/tool will be broadly relevant to computational biologists and 
immunologists.

Introduction
T-cell mediated immune responses play a crucial role in safeguarding the body’s health by identifica-
tion and elimination of pathogen infected and malfunctioning cells. One of the essential steps trig-
gering the T-cell response is the recognition of peptides presented by MHC (Major Histocompatibility 
Complex) at the surface of cells by T cell receptors (TCR). The TCR is heterodimer (most often) formed 
by an α and a β chain. To be able to recognize the extreme variety of peptides presented by the MHC, 
the repertoire of different TCRs expressed by T cells in a given host is immense. This variation is mostly 
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limited to the interacting domains of the TCR, known as the complementary determining regions 
(CDRs) (Davis and Bjorkman, 1988).

The possibility of accurately predicting TCR specificity holds immense immunotherapeutic and 
biotechnological potentials, for instance as a means to rapidly and cost-effectively identify the target 
of relevant T cell populations in the context of antigen discovery, vaccine design and/or T cell therapy.

However, while machine-learning (ML) approaches have allowed to accurately predicts which 
peptides can be presented by the MHC (Nielsen et al., 2020), the scarce data, combined with the 
extreme variability of the TCR, has made it difficult to produce models with broad peptide-HLA 
coverage with similar accuracies for predictions of TCR specificity. Several models ranging from neural 
network models to similarity-based approaches have, however, allowed for development of accurate 
prediction models covering the limited set of peptides, for which sufficient data is available (Hudson 
et al., 2023).

Current ML-based methods for predicting TCR-specificity include convolutional neural network 
(CNN) models, such as ImRex (Moris et  al., 2021), TCRAI (Zhang et  al., 2021) and NetTCR 2.1 
(Montemurro et  al., 2022), auto-encoder-based models such as DeepTCR (Sidhom et  al., 2021) 
decision-tree models such as SETE (Tong et  al., 2020), Gaussian process models such as TCRGP 
(Jokinen et al., 2021), as well as transformer-based models such as TULIP (Meynard-Piganeau et al., 
2023). Furthermore, unsupervised similarity-based methods have been developed, such as TCRdist3 
(Mayer-Blackwell et  al., 2021), GLIPH2 (Huang et  al., 2020) and TCRbase (Montemurro et  al., 
2022; Shen et al., 2012). However, many more models exist, and new models are constantly being 
proposed (refer to Hudson et al., 2023 and Meysman et al., 2023 for recent reviews).

Going back just a few years, the majority of models for TCR specificity predictions were based 
on single chain data, most often CDR3β, since this data was (and still is) much more abundant than 
paired chain data (e.g. comprising both the α- and β-chain). However, with the emergence of single-
cell sequencing techniques, the volume of paired data has started to increase. Recent benchmarks 
have shown that training models on both chains leads to vastly improved predictive performance, 
compared to training on single chain data alone (Meysman et al., 2023). This performance is improved 
even further when also including the CDR1 and CDR2 sequences of the chains, either as amino acid 
sequences or implicitly through annotated V- and J-genes (from which the CDR1 and CDR2 sequences 
are determined).

While similarity-based methods have been shown to perform almost on par with ML-based models 
in cases where high similarity exist between the training and evaluation data and where many positive 
TCR observations are present for a given peptide, these approaches tend to be surpassed by ML 
methods when this similarity is decreased (Montemurro et al., 2022; Meysman et al., 2023).

Earlier work has been estimated that ~150 unique TCRs are required to construct an accurate ML 
prediction model capturing the rules of TCR specificity towards a specific peptide (Montemurro et al., 
2021), and that very limited if any predictive power can be maintained when predicting specificity 
towards peptides, for which no binding TCRs have been recorded (Moris et al., 2021; Grazioli et al., 
2022). This lack of extrapolative power is the single most current challenging factor within the field of 
TCR specificity prediction. In order to predict binding for unseen peptides, models are required to be 
trained in a pan-specific setup, where a model is trained on data covering many different peptides at 
once including the peptide sequence as input to the model. Such a setup has with high success been 
applied for the MHC system where pan-specific models have been developed on data spanning large 
sets of different MHC molecules resulting in high extrapolation power also for molecules not included 
in the training data (Reynisson et al., 2020; Nilsson et al., 2023).

While many of the current day models for TCR specificity predictions are trained in this way, no 
models have so far been able to obtain substantial performance when predicting binding for unseen 
peptides that are not highly similar to already seen peptides. The main problem limiting the power 
of extrapolation for these pan-specific models lies in the scarcity of data available for training, espe-
cially so for paired-chain data, combined with the problem that the current data is highly imbalanced 
towards only a few peptides. Moreover, while the availability of data has increased recently, another 
problem is the high proportion of noise contained within the data produced with the current single-
cell high-throughput sequencing methods (Zhang et al., 2021; Montemurro et al., 2023). Statistical 
denoising methods have been proposed to deal with this problem (Zhang et al., 2021; Povlsen et al., 
2023). However, these methods are naturally challenged when dealing with small T cell populations, 

https://doi.org/10.7554/eLife.93934
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and due to their statistical nature likely share suboptimal sensitivity (i.e. remove true data) and speci-
ficity (i.e. allow false positives to slip through) (Zhang et al., 2021; Montemurro et al., 2023).

In this manuscript, we seek to address these issues in the context of a large data set of paired TCRs 
with annotated pMHC specificity. We investigate impacts of refining the machine learning model 
architecture and training setup to achieve pan-specific models with improved generalization capa-
bilities. Further, strategies such as data denoising in terms of outlier identification in the training 
data, and inclusion of redundant data during training, is explored. We also investigate a new model 
architecture which combines the properties of a pan- and peptide-specific model, and explore how a 
similarity based approach can be integrated into the framework to boost model performance.

Materials and methods
Training data
The initial data was acquired from IEDB (Vita et al., 2019) and VDJdb (Bagaev et al., 2020) on the 
23rd and 24th of August 2022, respectively, using a query to select only positive T-cell assays for 
MHC class I and Human cells. Additionally, only paired-chain (αβ) data was collected. This resulted in 
a dataset of 21,825 observations across 631 peptides for IEDB and 27,005 observations across 898 
peptides for VDJdb.

This data was subsequently filtered to exclude data originating from 10 X sequencing, which was 
done by manually investigating references with at least 100 observations. Furthermore, filtering was 
conducted to include only observations with annotated V and J genes and fully specified MHC alleles. 
In cases where the V and J genes did not have a fully specified allele, the most common allele (*01) was 
assigned. Furthermore, CDR3 sequences which did not follow the nomenclature of beginning with a 
cysteine and ending with a phenylalanine (F) or tryptophan (W) were modified to follow this nomen-
clature by adding a cysteine to the start of the sequence if missing, and adding phenylalanine to the 
end of the sequence if phenylalanine or tryptophan was not present at the end of the sequence. This 
filtering resulted in 4439 observations across 405 peptides after merging the two datasets together 
and dropping duplicate entries.

Next, a dataset from a 10 x sequencing study (10x Genomics, 2020) which was denoised with 
iTRAP (Povlsen et al., 2023) was included, resulting in a combined dataset of 10,239 observations 
across 435 peptides.

To retrieve the full TCR sequences required for annotating all CDRs, Stitchr (Heather et  al., 
2022) was used. In brief, Stitchr looks up the sequences for the V and J genes in IMGT/GENE-DB 
and attempts to align these sequences with the specified CDR3 amino acid sequence. In case of 
mismatches in the alignment, the CDR3-proximal residues of the V and J gene products, respectively, 
are progressively removed until a match can be found. As the alignment failed on either one chain or 
both for some of the sequences, 9045 full TCR sequences were retrieved in this step.

In cases where Stitchr failed to reconstruct the TCR, a second run of Stitchr was performed where 
tryptophan was added instead of phenylalanine for the CDR3s with the wrong nomenclature. This 
resulted in the rescue of 20 additional TCR sequences, bringing the total number of full TCR sequences 
up to 9065 (88.5% of the inputs given to Stitchr).

Finally, the CDR1, CDR2, and CDR3 amino acid sequences were annotated by submitting the full 
TCR sequences to the ANARCI software (Dunbar and Deane, 2016), which is a tool that is used for 
annotating the sequences according to the IMGT naming scheme (Lefranc et al., 2003). Here, CDR1 
was defined as position 27–38, CDR2 as position 56–65 and CDR3 as position 105–117.

Redundancy reduction
The CDR-annotated data was redundancy reduced in two steps using the Hobohm 1 algorithm 
(Hobohm et al., 1992) based on a summed BLOSUM62 encoded kernel similarity (Shen et al., 2012) 
of CDR3α and CDR3β. In the first step, the dataset was split according to peptides, and a redundancy 
reduction was carried out separately for TCRs belonging to each unique peptide using a 0.95 kernel 
similarity threshold. Here, only peptides with at least 30 unique TCRs after the first redundancy reduc-
tion were kept. This redundancy reduction and filtering resulted in a dataset of 6415 observations 
across 26 peptides.

https://doi.org/10.7554/eLife.93934
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A second redundancy reduction was subsequently carried out also at a 0.95 kernel similarity 
threshold across all remaining observations and peptides, where the data was sorted by peptide 
according to TCR count (least abundant to most abundant) in order to limit the risk of removing obser-
vations from peptides with few observations. This resulted in the further removal of 68 observations, 
resulting in a final dataset of 6,353 positive observations across 26 peptides. The amount of redun-
dant data removed by the redundancy reductions are summarized in Table 1, as well as information 
regarding source organism and MHC allele for each peptide, and number of observations originating 
from 10 X sequencing data. The vast majority of 10 X data comes from the iTRAP filtered dataset, 
with a few observations originating from other 10 X studies that managed to slip through the initial 
manual filtering.

Data partitioning and generation of swapped negatives
To prepare the data for model training, this data was randomly split into five partitions, and negatives 
were generated by swapping the TCRs for a given peptide with TCRs binding to other peptides. 

Table 1. Per peptide overview of the full positive training data.
The source organism for each epitope, as well as the MHC allele which they bind to, are here shown. Additionally, the number of 
observations discarded during each redundancy reduction step, as well as the total remaining number of observations, are also listed, 
along with the number of observations originating from 10 x sequencing.

Peptide Organism MHC
Pre reduction 
count

Removed in first 
reduction

Removed in second 
reduction

Post reduction 
count Not 10 X 10 X

GILGFVFTL Influenza A virus HLA-A*02:01 1897 645 127 1125 426 699

RAKFKQLL Epstein Barr virus HLA-B*08:01 1065 114 17 934 0 934

KLGGALQAK Human CMV HLA-A*03:01 912 8 2 902 0 902

AVFDRKSDAK Epstein Barr virus HLA-A*11:01 725 5 4 716 0 716

ELAGIGILTV
Melanoma 
neoantigen HLA-A*02:01 435 6 3 426 55 371

NLVPMVATV Human CMV HLA-A*02:01 384 43 11 330 154 176

IVTDFSVIK Epstein Barr virus HLA-A*11:01 323 13 2 308 0 308

LLWNGPMAV Yellow fever virus HLA-A*02:01 322 72 21 229 229 0

CINGVCWTV Hepatitis C virus HLA-A*02:01 231 4 1 226 75 151

GLCTLVAML Epstein Barr virus HLA-A*02:01 278 59 7 212 95 117

SPRWYFYYL SARS-CoV2 HLA-B*07:02 158 4 5 149 149 0

ATDALMTGF Hepatitis C virus HLA-A*01:01 128 21 4 103 0 103

DATYQRTRALVR Influenza A virus HLA-A*68:01 100 4 3 93 93 0

KSKRTPMGF Hepatitis C virus HLA-B*57:01 115 14 12 89 0 89

YLQPRTFLL SARS-CoV2 HLA-A*02:01 69 6 1 62 54 8

HPVTKYIM Hepatitis C virus HLA-B*08:01 60 5 2 53 0 53

RFPLTFGWCF HIV-1 HLA-A*24:02 58 7 0 51 51 0

GPRLGVRAT Hepatitis C virus HLA-B*07:02 51 3 0 48 0 48

CTELKLSDY Influenza A virus HLA-A*01:01 48 0 0 48 48 0

RLRAEAQVK Epstein Barr virus HLA-A*03:01 47 0 0 47 0 47

RLPGVLPRA AML neoantigen HLA-A*02:01 43 0 0 43 0 43

SLFNTVATLY HIV-1 HLA-A*02:01 38 0 0 38 0 38

RPPIFIRRL Epstein Barr virus HLA-B*07:02 40 2 2 36 24 12

FEDLRLLSF Influenza A virus HLA-B*37:01 31 0 0 31 31 0

VLFGLGFAI T1D neoantigen HLA-A*02:01 32 1 0 31 31 0

FEDLRVLSF Influenza A virus HLA-B*37:01 36 0 13 23 23 0

https://doi.org/10.7554/eLife.93934
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Here, such TCRs were only samples from peptides which had a Levenshtein distance greater than 3, 
to reduce the risk of generating false negatives. For each positive observation, five negative observa-
tions were generated using this approach, except for the GILGFVFTL peptide, where all TCRs from the 
other peptides were used as negatives, since there was not enough data to allow for a 1:5 positive to 
negative ratio for this peptide (a 1:4.647 ratio was achieved here). The generation of swapped nega-
tives was done separately within each partition, in order to reduce the risk of data leakage.

Baseline model
TCRbase (Montemurro et al., 2022), a distance-based model, was used as the baseline model. For a 
given peptide, TCRbase calculated the similarity between sets of CDRs found in the test partition to 
all positive CDR sets found in the remaining partitions. In short, the similarity is calculated per CDR 
as the mean kernel-similarity of BLOSUM62-encoded kmers ranging from size 1–30 between the two 
sets of CDRs that are compared (Shen et al., 2012). The weighting for the CDRs was set to 1,1,3,1,1,3 
for CDR1α-, CDR2α-, CDR3α-, CDR1β-, CDR2β-, and CDR3β, respectively, in line with earlier recom-
mendations (Montemurro et al., 2022).

CNN architecture
The CNN architecture for NetTCR 2.1 (Montemurro et al., 2022) was reconstructed in Keras (Chollet, 
2015), in preparation for further updates to the architecture. In brief, the original architecture consists 
of a set of convolutional 1D layers for each input feature, where each layer has 16 filters of kernel size 
of 1, 3, 5, 7, and 9, respectively, which are activated by a sigmoid activation function. Each layer is 
then max-pooled, concatenated, and fed to a dense layer of size 32 followed by a linear output layer 
of size 1, representing the final prediction score. The outputs of both linear layers are activated by a 
sigmoid activation function.

Except for the first models referred to as NetTCR 2.1 (which ran in PyTorch Paszke et al., 2019), 
the version 2.2 CNN models described in this paper used a slightly modified architecture compared 
to NetTCR 2.1. Here, the activation function for the max-pooling layer was replaced with a rectified 
linear unit (previously sigmoid), a dropout layer was introduced for the concatenated max-pooling 
output, and the size of the dense layer was doubled to 64 neurons. For the models utilizing dropout, 
a dropout rate of 0.6 was used. The models referred to here as NetTCR 2.1 uses the original pan-
specific NetTCR 2.1 architecture (Montemurro et al., 2022), which also includes convolutional filters 
for the peptide-sequence.

Embedding
The input features for the CNN models consisted of peptide-, CDR1α-, CDR2α-, CDR3α-, CDR1β-, 
CDR2β-, and CDR3β-amino acid sequence. These were each represented using a BLOSUM50-
embedding (calculated using a normalization factor of 5) and right-padded to the maximum length 
observed for that feature in the dataset, by assigning a vector of 20 times –1 for each missing residue. 
For reference, the maximum length observed was 12, 7, 8, 22, 6, 7, and 23 residues for the peptide-, 
CDR1α-, CDR2α-, CDR3α-, CDR1β-, CDR2β-, and CDR3β-amino acid sequences, respectively.

Training setup and early stopping
All CNN models were trained in a nested cross-validation setup with four folds in the inner loop and 
fivefolds in the outer loop. Here, three partitions were used for training, one was used for validation, 
while the remaining partition was used as a test partition to evaluate the performance of the model. 
For all CNN models, Binary Cross Entropy was used as the loss function, and the Adam optimizer 
(Kingma and Ba, 2014) was used for updating the weights during training. A learning rate of 0.001 
was used for training of all models.

A patience of 200 epochs was used for the early stopping for the peptide-specific CNNs, whereas 
for the pan-specific CNNs, a patience of 100 epochs was used. The increased patience for the peptide-
specific models was introduced to allow the models to escape local minima imposed by small training 
set sizes. For the NetTCR 2.1 models (PyTorch) (Paszke et al., 2019), the validation loss was used as 
a stopping criterion for early stopping, and validation AUC 0.1 was used as the stopping criterion for 
the updated models in Keras.

https://doi.org/10.7554/eLife.93934
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For the pan-specific models, a batch size of 64 was used together with shuffling. For the peptide-
specific models, an adaptive batch size was used, which ensured that no batch ended up having less 
than 32 observations. Here, it was first tested if it was possible to use a batch size of 64 while still 
having at least 32 observations for the final batch. If not, the default batch size of 64 was progressively 
increased by 1, until it was ensured that the final batch had at least 32 observations.

Performance evaluation
The cross-validation setup results in four models generated in the inner loop. The test set predictions 
were then calculated from the average over the four predictions for each entry. The performance was 
evaluated on the five concatenated test sets in terms of AUC and AUC 0.1 on a per-peptide basis, as 
well as the unweighted and weighted average performance across all peptides:

	﻿‍
Munweighted =

∑
peptide Mpeptide

Nunique peptides ‍�

	﻿‍
Mweighted =

∑
peptide

Mpeptide ·
Npeptide
Ntotal ‍�

where Munweighted and Mweighted is the unweighted and weighted average metric, respectively, Mpeptide 
is the metric for a given peptide, Npeptide is the number of positive observations for a given peptide, 
Nunique peptides is the number of unique peptides, and Ntotal is the total number of positive observations 
across all peptides.

A summary of the per-peptide performance of all models is found in Supplementary file 1.

Performance comparisons
To assess the difference in performance between models, bootstraps were performed by sampling 
with replacement from the model predictions 10,000 times and calculating the weighted and 
unweighted performance metrics for each subsample as described above. The same seed for subsa-
mpling and order of predictions was used for all bootstraps, to ensure that performance within a given 
subsample could be compared between models. The p-value for the null hypothesis that two models 
had equal performance was then calculated as the number of times that the first model had a higher 
performance than the second model within the same subsample, normalized by the total number of 
subsamples.

Weighted loss
A weighted loss was implemented for the pan-specific CNN model to allow the model to focus more 
on the observations from the less abundant peptides in the training dataset. Here, the binary cross 
entropy loss for observations from each peptide was weighted according to the formula:

	﻿‍
lossweighted =

log2
(

Ntotal
Npeptide

)

c ‍�

where Ntotal is the total number of observations, Npeptide is the number of observations for the given 
peptide, and c is a constant that is used to scale the loss, so the overall loss becomes close to that of 
the unweighted approach. The value of c was set to 3.8 to ensure that the overall weighted loss was 
comparable to the training done without sample weighting. For the peptide-specific models, a weight 
of 1 was used for all samples.

Redundant training dataset
A dataset was constructed based on the primary training dataset, where redundant data from the 
first redundancy reduction (see Table 1) was added back by assigning them to the partition of the 
data point that they were redundant to. Only positive data was added back in this way, and additional 
swapped negatives were not generated for this dataset to keep it as similar to the original as possible. 
Models trained on this dataset were evaluated on the original test datasets without redundant data.

https://doi.org/10.7554/eLife.93934
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Limited training dataset
Using the prediction scores for the validation partitions of the updated peptide-specific CNN model, 
additional datasets were constructed by removing observations that consistently received a poor 
prediction score in relation to their designated label. That is, positive observations were removed if 
they received a validation prediction score of less than the nth percentile of the negative prediction 
scores for the given peptide for all four models that were not trained on that partition, while negative 
observations were removed if they received a validation prediction score of more than the (1 – n)th 
percentile of the positive validation prediction scores for all four models that were not trained on that 
partition. Thresholds of n=50, 60, 70, 80, 85, 90, and 95 were tested in this way.

Pre-trained models
A modified version of the NetTCR 2.2 architecture was made to combine the properties of the pan- 
and peptide-specific models, as shown in Figure 1. This architecture consists of a pan-specific and a 
peptide-specific CNN block. The pan-specific CNN block consists of 32 1D convolutional filters of size 
1, 3, 5, 7, and 9, respectively for each of the peptide-, CDR1α-, CDR2α-, CDR3α-, CDR1β-, CDR2β-, 
and CDR3β embeddings. The peptide-specific CNN block consists of 16 1D convolutional filters, also 
of size 1, 3, 5, 7, and 9, respectively, for the same feature embeddings, except the peptide embed-
ding, as this information is redundant when trained on a single peptide. The outputs from each CNN 
block are max-pooled with a rectified linear unit activation function, concatenated, and fed to two 
dropout layers with a dropout rate of 0.6, one for each output of a CNN block.

Each of the two resulting tensors are fed separately to dense layers with 64 units and sigmoid acti-
vation, both of which are connected to a second dense layer with 32 units and a sigmoid activation. 
The output of the second dense layer is finally connected to an output layer of size 1, which is also 
activated by a sigmoid activation function, to give a prediction score between 0 and 1.

These models are trained in two rounds. During the first round of training, a pan-specific training is 
performed. Here the weights in the peptide-specific CNN block are kept frozen, as shown in Figure 1. 
This pre-trained model is then used as the starting point for a second round of training performed in 
a peptide-specific setup, where the weights in the pan-specific CNN block are frozen, while those in 
the peptide-specific CNN block are unfrozen. During both training rounds, a patience of 100 is used 
and the maximum number of epochs is set to 200.

Figure 1. Architecture of the pre-trained model. The pan-specific CNN block consists of the layers shown in blue, whereas the peptide-specific CNN 
block consists of the layers shown in red. During the pan-specific training, the weights and biases for the peptide-specific CNN block are frozen, 
whereas the opposite is the case during the peptide-specific training. The layers shown in purple are kept unfrozen during both training steps.

https://doi.org/10.7554/eLife.93934
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CNN – TCRbase ensemble
The pre-trained CNN model was combined with the sequence similarity based TCRbase model 
(Montemurro et al., 2022; Shen et al., 2012). The predictions for this new ensemble were calculated 
using the following formula:

	﻿‍ PTCRbase ensemble = PCNN · Pα
TCRbase‍�

where PTCRbase ensemble is the prediction of the combined ensemble, PCNN is the prediction of the CNN 
model, PTCRbase is the prediction from TCRbase, and α is a scaling factor used to give TCRs with low 
similarity to known binders a harsher penalty. This ensemble was tested on the validation partitions of 
the full dataset, where α was varied from 0 to 40.

The Pearson correlation coefficients between the α resulting in the best performance in terms of 
AUC and AUC 0.1, respectively, and the corresponding performance metric for the TCRbase and pre-
trained model without scaling, was calculated using the pearsonr function from ​scipy.​stats (Virtanen 
et al., 2020). Five samples were used for each peptide, as there were five different validation parti-
tions to consider, resulting in a total of 130 samples for calculating the Pearson correlation coefficients. 
p-Values for the null hypothesis that there was no correlation was also reported using this function.

Percentile-rank rescaling
Prediction scores were rescaled to a percentile rank by comparing the score to the score distribution 
obtained for 15,957 negative controls paired to the corresponding peptide. These negative controls 
were obtained from the IMMREP 2022 workshop dataset (Meysman et al., 2023). Here, the percen-
tile rank score for a given TCRs was calculated as the percentage of negative controls which had a 
score above the score of that of the TCR.

Peptide specificity test
To evaluate the models’ ability to correctly identify which peptide is most likely to bind a given TCR, 
all TCRs were paired with all peptides present within each partition, and predictions were performed 
by the models which had not seen the given partition during training. The specificity was then calcu-
lated per peptide as the number of times that the true peptide-TCR complex was given the highest 
prediction score, compared to the total number of positive observations in the original dataset for 
the given peptide. The test was performed on the limited dataset, where the peptides KLGGALQAK, 
AVFDRKSDAK, NLVPMVATV, CTELKLSDY, RLRAEAQVK, RLPGVLPRA, and SLFNTVATLY were 
discarded, due to low performance of the full model (AUC 0.1<0.65).

Leave most out
To test the models’ ability to learn from small data sets, models were re-trained on small subsets of the 
original data. For each of the peptides with at least 100 positive observations in the limited training 
dataset except for KLGGALQAK, AVFDRKSDAK, and NLVPMVATV (e.g. GILGFVFTL, RAKFKQLL, 
ELAGIGILTV, IVTDFSVIK, LLWNGPMAV, CINGVCWTV, GLCTLVAML and SPRWYFYYL were included), 
new training datasets were constructed by subsampling 5, 10, 15, 20, 25, 50, and 100 positive 
peptides, respectively, per partition, as well as five negative observations per positive. KLGGALQAK, 
AVFDRKSDAK, and NLVPMVATV were excluded from this analysis, due to low performance of the full 
model (AUC 0.1<0.65). All models trained here were evaluated on the full dataset (not limited).

As a baseline, TCRbase was used to perform predictions on the test partitions, using the positives 
from the four remaining partitions as the positive database for similarity inference.

In addition, a set of peptide-specific models were also trained on these datasets, using the same 
hyperparameters as the best (non-pre-trained) peptide-specific model, when evaluated on the full 
dataset.

A set of pre-trained models were also re-trained on these datasets, where the first training round 
of the pan-specific CNN was conducted on the leave one out dataset. For each peptide and each 
number of positives, the pan-specific CNN block was fine-tuned by training for 30 epochs in a pan-
specific setup, where observation for the leave-most-out peptide was assigned a sample weight of 
1, while the observations for the remaining peptides were assigned a weight of 0.1. Swapped nega-
tives assigned to other peptides than the one the models were trained for were removed for this 
training, if they originated from an observation belonging to the peptide in question. Following this, 

https://doi.org/10.7554/eLife.93934
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the pan-specific CNN block was frozen, and the peptide-specific CNN block was trained on the obser-
vations for the peptide of interest.

Finally, an ensemble consisting of the pre-trained models scaled by the TCRbase prediction (α=10) 
were evaluated (see CNN - TCRbase ensemble).

Due to the low number of positives for some of the leave-most-out datasets, the default batch size 
was set to 32 for the peptide-specific training, while the criteria for early stopping and model saving 
was changed from validation AUC 0.1 to a custom metric taking both validation AUC 0.1 and binary 
cross entropy loss into account. This custom metric was calculated as:

	﻿‍ CMval = AUC 0.1val − Lossval · 0.1‍�

and the model was saved when this value was maximized. A patience of 100 was used for early stop-
ping during the peptide-specific training.

IMMREP 2022 training and evaluation
The labeled training and test data for the IMMREP 2022 workshop (Meysman et  al., 2023) was 
collected from GitHub (GitHub - viragbioinfo/IMMREP_2022_TCRSpecificity; viragbioinfo et  al., 
2022) on the 5th of July 2023. The training data was randomly split into five partitions, and models 
were trained in the same cross-validation as described above, for example nested cross-validation for 
the neural network models and a fivefold cross-validation for TCRbase. To make the data compatible 
with our models, the labels for the negative observations were changed from –1 to 0. The perfor-
mance of each model was then evaluated on the separate test dataset, using the average in prediction 
score given by all models resulting from the cross-validation.

A separate redundancy reduced dataset was created based on the IMMREP dataset following the 
strategy described above. An overview of the number of observations removed by this redundancy 
reduction is shown in Table 2.

Table 2. Overview of number of TCRs for each peptide in the IMMREP 2022 training dataset before and after redundancy reduction.
The redundancy reduction was performed using a kernel similarity threshold of 95%.

Peptide Pre reduction count Post reduction count Percent redundant

All 2445 1960 19.8%

GILGFVFTL 544 301 44.7%

NLVPMVATV 274 242 11.7%

YLQPRTFLL 267 227 15.0%

TTDPSFLGRY 193 187 3.1%

LLWNGPMAV 188 175 6.9%

CINGVCWTV 183 179 2.2%

GLCTLVAML 146 91 37.7%

ATDALMTGF 104 78 25.0%

LTDEMIAQY 100 94 6.0%

SPRWYFYYL 92 92 0.0%

KSKRTPMGF 85 63 25.9%

NQKLIANQF 56 53 5.4%

HPVTKYIM 48 41 14.6%

TPRVTGGGAM 45 44 2.2%

NYNYLYRLF 44 42 4.6%

GPRLGVRAT 40 37 7.5%

RAQAPPPSW 36 14 61.1%

https://doi.org/10.7554/eLife.93934
https://github.com/viragbioinfo/IMMREP_2022_TCRSpecificity
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Swapped negatives were generated within each partition, by randomly sampling TCRs binding to 
other peptides with a Levenshtein distance of at least three, until a 1:3 ratio of positives to negatives 
were achieved. Negative controls were first subjected to a redundancy reduction at a 95% similarity 
threshold, followed by random partitioning. Within each partition, negative controls were sampled in 
a 1:2 ratio of positive to negatives for each peptide, bringing the total positive to negative ratio up 
to 1:5.

Models were then trained on this training dataset using nested cross-validation (or fivefold cross-
validation for TCRbase), while the performance was evaluated on the test-partitions, which were 
not seen during training. The average prediction score of the four cross-validation models per test 
partition was used as the final prediction score for this performance evaluation. A summary of the 
per-peptide performance of all models trained and tested on the IMMREP 2022 dataset is found in 
Supplementary file 2.

Results
Here, we seek to demonstrate step by step how improved low complexity models with state-of-
the-art performance for the prediction of TCR specificity can be obtained by dealing with the essential 
issues related to data imbalance, low data accuracy and data volume. We do this on a large set of data 
obtained from the public domain covering paired full length TCR sequences with specificity annotated 
towards a set of 26 unique peptides (for details refer to Materials and methods). The machine learning 
framework applied is a low complexity max-pooled CNN architecture inspired by the original NetTCR 
model (Montemurro et al., 2021). This model makes use of 80 convolutional filters for the peptide 
and each of the 6 CDRs. Due to the limited number of peptides (and HLAs), HLA is not included in 
the model.

Figure 2. Per peptide performance of the peptide-specific and pan-specific NetTCR 2.1 in terms of AUC, when trained and evaluated on the new 
dataset. The peptides are sorted based on the number of positive observations from most abundant to least abundant, with the number of positive 
observations listed next to the peptide sequence. The unweighted (direct) mean of AUC across all peptides is shown furthest to the left, while the 
weighted mean is shown second furthest to the left. The weighted mean is weighted by the number of positive observations per peptide and puts 
more emphasis on the peptides with the most observations. The models included in this figure corresponds to model 1 (NetTCR 2.1 - Pan) and model 2 
(NetTCR 2.1 - Peptide) in Supplementary file 1.

https://doi.org/10.7554/eLife.93934
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The NetTCR framework has so far performed best in a peptide-specific setup where separate 
models are trained for individual peptides (Montemurro et  al., 2022). Ideally, one would like to 
construct pan-specific models trained across multiple peptides at once, since this should allow the 
model to leverage shared information resulting in boosted predictive power, especially for peptides 
characterized with few or even no positive TCR observations. However, for NetTCR 2.1, the opposite 
tendency was observed. This work was however limited to only 6 peptides, and we therefore first 
investigated if this conclusion still held true in the context of our data set with increased peptide 
coverage. The result of this analysis can be seen in Figure 2 and demonstrates that peptide-specific 
models also here are superior to the pan-specific model.

Improving the pan-specific model
Updating the model architecture for pan-specific predictions
One potential source of the low performance for the pan-specific model is the high imbalance in the 
number of observations per peptide resulting in the model focusing/overfitting on the more abundant 
peptides. To investigate this, we first introduced a dropout-layer with a dropout rate of 0.6 to the 
architecture for the concatenated output of the max-pooling layer, while also doubling the number of 
neurons for the dense layer from 32 to 64 to allow for sufficient flow of information. Additionally, this 
model was rebuilt in Keras (Chollet, 2015) and the stopping criterion was changed from validation 
loss to validation AUC 0.1. As shown in Figure 3, this resulted in a highly significant increase in perfor-
mance (bootstrap test resulting in p<0.0001 for all tested metrics).

Figure 3. Boxplot of AUC of the pan- and peptide-specific NetTCR 2.1 and 2.2 models, respectively. The NetTCR 2.2 models include the updates 
to the model architecture, with the primary change being the introduction of dropout for the concatenated max-pooling layer (dropout rate = 0.6). 
Both the introduction of dropout and sample weights are shown to result in considerably improved performance for the pan-specific model. Separate 
boxplots are shown for all peptides, as well as separately for peptides with at least 100 positive observations and peptides with less than 100 positive 
observations, to highlight the effect of introducing dropout and sample weight for the least abundant peptides. The models included in this figure 
corresponds to model 1 (NetTCR 2.1 - Pan), model 3 (NetTCR 2.2 - Pan +Dropout), model 4 (NetTCR 2.2 - Pan +Dropout + Sample Weight), model 2 
(NetTCR 2.1 - Peptide) and model 5 (NetTCR 2.2 - Peptide +Dropout) in Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Boxplot of AUC 0.1 of the pan- and peptide-specific NetTCR 2.1 and 2.2 models, respectively.

https://doi.org/10.7554/eLife.93934
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To further deal with the imbalance problem, we next introduced a peptide specific sample weight 
so that the loss was increased for peptides with a low number of positive observations (for details refer 
to Materials and methods). This is based on the notation that the model then would focus more on 
the less abundant peptides when updating the weights. As demonstrated in Figure 3, this approach 
resulted in a further increase in performance for the less abundant peptides, whereas the performance 
for the more abundant peptides was largely unaffected. Here, a significant increase in performance 
was observed for the unweighted mean AUC (p=0.0026) and AUC 0.1 (p<0.0001).

Moreover, when only considering the peptides with less than 100 positive observations, the 
improvement in performance was significant across all metrics (p=0.0101, p=0.0035, p<0.0001 and 
p<0.0001 for AUC, weighted AUC, AUC 0.1 and weighted AUC 0.1, respectively).

Next, the impacts of the updates to the model architecture and training strategy on the perfor-
mance of peptide-specific models was investigated. As expected, these results (Figure  3 and 
Figure 3—figure supplement 1) demonstrated a limited gain in performance compared to NetTCR-
2.1 - Peptide, which was however significant for all metrics (p=0.0337 for AUC, and p<0.0001 for AUC 
0.1 and weighted AUC/AUC 0.1). Interestingly, the updated pan-specific model significantly outper-
formed the updated peptide-specific models in terms of both unweighted (p<0.0001) and weighted 
AUC (p=0.0004), and the performance gain was especially observed for the less abundant peptides. 
However, in terms of AUC 0.1, the updated peptide-specific model (NetTCR-2.2 - Peptide) maintained 
a superior performance (see Figure 3—figure supplement 1) (p=0.0008 and p<0.0001 for AUC 0.1 
and weighted AUC 0.1, respectively). We will later address how to get the best of the two models 
later in the Pre-training section.

Reusing redundant data does not lead to better performance
The results until now have been generated based on redundancy reduced data. That is data where 
redundant data have been removed based on a Hobohm-1 like redundancy reduction algorithm (for 

Figure 4. Mean AUC of the pan-specific and peptide-specific NetTCR 2.2 models, when training on the original redundancy reduced training data, and 
with redundant observations back. The AUC is reported in terms of weighted and unweighted mean across all peptides, as well as unweighted mean 
when the data is split into peptides with at least 100 positive observations, and less than 100 positive observations. The models included in this figure 
corresponds to model 4 (NetTCR 2.2 - Pan), model 6 (NetTCR 2.2 - Pan - Add Redundant), model 5 (NetTCR 2.2 - Peptide), and model 7 (NetTCR 2.2 - 
Peptide - Add Redundant) in Supplementary file 1.

https://doi.org/10.7554/eLife.93934
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details see Materials and methods). However, as data is very sparse, one could argue that a better 
approach would be to reuse redundant data, either by performing clustering when making the data 
partitions, or by adding back redundant data to the same partition as the data that it was redundant 
to. To test how such a strategy would affect the performance of the model, a new dataset was created 
using the latter approach. To keep the performance evaluation fair, redundant data were only re-in-
troduced to the training dataset while the original dataset without redundant observations was used 
for testing and performance evaluation. The total number of redundant observations for each peptide 
from the first redundancy reduction is shown in Table 1 (note that those from the second reduction 
are not added back).

As shown in Figure 4, neither the peptide- nor the pan-specific model benefitted from reusing the 
redundant data. In fact, the performance of the pan-specific model was significantly reduced in terms 
of unweighted AUC (p=0.0041) and weighted AUC 0.1 (p=0.0395). This is likely caused by the larger 
imbalance in observations per peptide introduced by the redundant data, as a large proportion of 
these observations came from the already abundant GILGFVFTL peptide.

Removing potential outliers from training leads to better performance
During the testing of our models, we observed that several peptides consistently had a performance 
much lower compared to other peptides characterized with similar amounts of data. One thing shared 
by these peptides is that 10 X sequencing made up the vast majority of the experimental source of the 
recorded TCRs, as shown in Table 1. For most of the peptides with poor performance (KLG, AVF, IVT, 
RLR, RLP, SLF), only 10 X sequencing data was available. On the other hand, not all 10 X data are bad, 
as illustrated by RAKFKQLL which is a high performing peptide only covered by 10 X data (see for 
instance Supplementary file 1). Further, when comparing the predicted score distributions between 
positive and negative TCRs, we observe examples of outliers with low scoring positive TCRs and high 
scoring negative TCRs across all peptides (see Figure 5—figure supplement 1). These observations 
strongly suggest that the data contain a certain degree of wrongly labeled entries, and that these 
could be a source to limit the performance of the models. Inspired by the plot in Figure 5—figure 
supplement 1, outliers were identified by scoring TCRs using the NetTCR-2.2 peptide-specific model, 
and positive and negative TCR outliers assessed based percentile scores estimated from the contrary 
TCR pool (for details refer to Materials and methods). Using this approach, TCRs were removed from 
the training data based on percentile thresholds of 50%, 60%, 70%, 80%, 85%, 90%, and 95% respec-
tively. That is, for a threshold of 70%, a positive TCR was identified as an outlier if it had a predicted 
score below the lower 70% percentile score range of the negative TCRs for all models predicting 
on the validation data (four models per partition). Next, pan-specific models were trained using the 
“limited” data for training and validation, while evaluating the models based on the full dataset.

An overall increase in performance for the models trained on the limited datasets was observed up 
until the 70th percentile datasets, after which the performance gain stagnated (see Figure 5—figure 
supplement 2). Since the difference in performance between the 80th and 70th percentile model 
was statistically insignificant for any of the bootstrap metrics (p>0.08 in all of weight and unweight 
performance metrics), the 70th percentile dataset for removing outliers from training was selected, 
since this filtering removed the least amount of data. As seen in Figure 5—figure supplement 3, 
more observations were, as expected, removed for the peptides with poor performance, indicating a 
higher presence of outliers for these peptides. The average performance of the model trained on the 
70th percentile dataset was significantly higher than the model trained on the full dataset (p=0.0001, 
p<0.0001, p=0.0054 and p<0.0001 for AUC, weighted AUC, AUC 0.1 and weighted AUC 0.1, respec-
tively). As shown in Figure 5, a higher performance was also consistently observed for the peptides 
which originated from 10 X sequencing, apart from the RLP peptide, which obtained a slightly lower 
AUC (–0.0066). While most peptides benefitted from the removal of potential outliers, some peptides 
did receive a substantially lower performance. It should however be noted that the performance 
evaluation was conducted on the full dataset, meaning that if a peptide has many actual outliers, the 
performance may be underestimated, since these outliers are included in the evaluation.

https://doi.org/10.7554/eLife.93934
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Improving the peptide-specific models
Pre-training
As described earlier, the pan-specific model was generally observed to excel in terms of AUC, whereas 
the peptide-specific model was better in terms of AUC 0.1.

To benefit from the strengths of both of these models, a new model architecture was investigated. 
In brief, this architecture consists of two blocks of CNNs; one which is used for training on a pan-
specific dataset to learn a general representation of binding, while the other block is used to train 
on a peptide-specific dataset to better learn the pattern of binding specific to a certain peptide (for 
details refer to Materials and methods). The pan-specific CNN block was trained first, with frozen 
initial weights and biases in the peptide-specific CNN block. After pre-training the pan-specific CNN 
block, these pan-specific CNN layers were frozen, whereas the layers for the peptide-specific CNN 
were allowed to update during the peptide-specific training.

As shown in Figure 6, this pre-trained model outperformed both the pan- and peptide-specific 
models. This improvement was found to be highly significant (p<0.0001) across all metrics, when 
compared to the bootstrap of the pan-specific model, which was also the case when comparing to 
the peptide-specific model (p<0.0001, p<0.0001, p=0.0008 and p=0.0021 for AUC, weighted AUC, 
AUC 0.1 and weighted AUC 0.1, respectively). Furthermore, this pre-trained model had higher perfor-
mance across all metrics than a simple ensemble of the pan-specific and peptide-specific models (data 
not shown).

Figure 5. Difference in AUC between pan-specific CNN trained on the limited dataset (70th percentile) and full dataset. Peptides with TCRs originating 
solely from 10 x sequencing are highlighted in red. The performance was in both cases evaluated per peptide on the full dataset. A positive ΔAUC 
indicates that the model trained on the limited dataset performs better than the model trained on the full dataset. The performance differences are 
based on the performance of model 10 and model 4 in Supplementary file 1, with model 4 being the baseline.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Prediction values on the full test data for each peptide when predicted using the NetTCR 2.2 - Peptide model.

Figure supplement 2. Mean AUC of the pan-specific NetTCR 2.2 models when trained on datasets with potential outliers removed.

Figure supplement 3. Percentage of observations discarded for the 70th percentile limited dataset, as a result of the removal of potential outliers.

https://doi.org/10.7554/eLife.93934
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TCRbase ensemble
Earlier work has demonstrated a high performance of simple similarity-based models for prediction of 
TCR-specificity (Meysman et al., 2023). We therefore wanted to investigate if the predictive power 
could be further improved by integrating the sequence-similarity based predictions of TCRbase 
(Montemurro et al., 2022) into our modeling framework. In short, TCRbase makes predictions by 
calculating a similarity between a given TCR and the positive TCRs for a given peptide in terms of a 
sum over the paired similarities over the 6 CDR loops (Montemurro et al., 2022). TCRbase was inte-
grated in terms of a simple scaling factor so that the pre-trained CNN model predictions were multi-
plied by the TCRbase predictions lifted to a power of α>0. The optimal value of α was here estimated 
based on the validation partitions, and the test partitions were removed from the positive database 
given to TCRbase, to avoid overfitting and performance overestimation.

As shown in Figure 7a, the use of TCRbase predictions as a scaling factor resulted in a consistent 
increase in performance across both unweighted mean AUC and AUC 0.1. Although the mean AUC 
was only affected slightly by this scaling (maximum increase of 0.00212 at α=14), a greater increase in 
performance was observed in terms of AUC 0.1 (maximum increase of 0.00723 at α=8). Overall, the 
integration of TCRbase led to a significant improvement in performance for all metrics (p<0.0001). 
It should however be noted that while the use of the TCRbase scaling generally improved perfor-
mance, the optimal α factor varied between each validation partition and cross-validation model 
(see Figure 7b). Nevertheless, the median of the optimal α across the cross-validation models was 

Figure 6. Per peptide performance of the updated peptide-specific, pan-specific, and pre-trained CNN in terms of AUC, when trained on the limited 
training dataset and evaluated on the full dataset. The peptides are sorted based on the number of positive observations from most abundant to least 
abundant, with the number of positive observations listed next to the peptide sequence. The unweighted (direct) mean of AUC across all peptides is 
shown furthest to the left, while the weighted mean is shown second furthest to the left. The weighted mean is weighted by the number of positive 
observations per peptide and puts more emphasis on the peptides with the most observations. The models included in this figure corresponds 
to model 10 (NetTCR 2.2 - Pan), model 15 (NetTCR 2.2 - Peptide), model 16 (NetTCR 2.2 - Pre-trained) and model 17 (TCRbase ensemble) in 
Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Per peptide performance of the updated peptide-specific, pan-specific, and pre-trained CNN in terms of AUC 0.1, when trained 
on the limited training dataset and evaluated on the full dataset.

https://doi.org/10.7554/eLife.93934
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10 in the case of AUC 0.1, which strengthened our confidence in using this α as the base scaling 
factor. Despite these variable observations, we for the sake of consistency stick to an α of 10 for the 
remaining analysis in this paper. The performance per peptide when using the α=10 scaling is shown 
in Figure 6 (AUC), as well as Figure 6—figure supplement 1.

We also observed that the optimal value for α varied between peptides, with a slight positive 
correlation to the performance of TCRbase for the given peptide (see Table  3), suggesting the 
peptides with high TCRbase performance benefit more from the α rescaling.

Figure 7. Performance of TCRbase ensemble as a function of α along with boxplot of optimal alpha in terms of AUC and AUC 0.1 for the validation 
partitions. (A) The predictions of the pre-trained model ensemble (trained on the limited dataset) on the test partitions (full data) were scaled by the 
kernel similarity to known binders, as given by TCRbase with a weight of (1,1,3,1,1,3), to a power of α. The performance is given as the unweighted mean 
performance across all 26 peptides, in terms of AUC and AUC 0.1. The dashed line shows the performance when α is set to 10, which strikes a good 
balance between AUC and AUC 0.1. An α of zero corresponds to the model ensemble without the TCRbase scaling. (B) Boxplot of the optimal alpha 
scaling factor per cross-validation model, when evaluated in terms of AUC and AUC 0.1, respectively, on the validation partitions. The models used for 
calculating the performance of the ensembles in this figure are model 16 (NetTCR 2.2 - Pre-trained) and model 21 (TCRbase) in Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Difference in true positive rate (TPR) between TCRbase ensemble (pre-trained +TCRbase models) and pre-trained models as a 
function of false positive rate (FPR).

Table 3. Pearson Correlation Coefficients (PCC) between the optimal α scaling factor and 
performance per peptide in terms of AUC and AUC 0.1 of the pre-trained CNN model and TCRbase 
model, respectively, for the validation partitions.
Each partition was considered as a separate sample. p-Values for the null hypothesis that the 
performance and optimal α are uncorrelated are also shown.

Metric PCC to optimal alpha p-Value

CNN AUC –0.1101 0.2123

TCRbase AUC 0.3056 0.0004

CNN AUC 0.1 –0.0809 0.3602

TCRbase AUC 0.1 0.2068 0.0183

https://doi.org/10.7554/eLife.93934
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To investigate further how the integration of TCRbase predictions benefitted the performance, 
we in Figure 7—figure supplement 1 plotted the difference in true positive rates at different false 
positives rates between the TCRbase ensemble and the pre-trained CNN alone. This figure demon-
strates that the benefit from TCRbase mainly consist of increasing the discrimination between 
binders and non-binders at thresholds corresponding to low FPRs (0 ≤ FPR <= 0.15), whereas the 
predictions may become slightly worse than without scaling when the threshold for binders are set 
to that of an FPR higher than 0.3. This result thus suggests that scaling the predictions of neural 
network models based on similarity to known binders is mostly beneficial when a high specificity is 
desired.

Figure 8. Boxplot of direct prediction scores and percentile ranks per peptide of the full test dataset for the TCRbase ensemble. Peptides with 
100% of positive observations coming from 10 X sequencing are highlighted in red. The model used in this figure is model 17 (TCRbase ensemble) in 
Supplementary file 1.

https://doi.org/10.7554/eLife.93934
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Percentile rank rescaling
The prediction scores of the final CNN + TCRbase model ensemble fall between 0 and 1 but display 
substantial score distribution variations between peptides (see Figure  8), which makes it hard to 
directly compare prediction scores between peptides. A common approach to resolve this is to apply 
percentile rank scores (Montemurro et  al., 2022). Here, we used the CNN + TCRbase model to 
predict scores for a set of 15,957 negative TCRs for each peptide, which was obtained from the 
dataset for the IMMREP 2022 workshop (Meysman et al., 2023), and used these scores to calculate 
a percentile rank for each observation in our test data. Here, the percentile rank is defined as the 
proportion (in percentage) of negative controls, which scored higher than the given observation. 
As shown in Figure  8, the percentile ranks for binders between peptides are more similar when 
compared to the direct prediction scores.

Peptide specificity test
The performance evaluations performed so far have focused on the ability to predict whether or 
not a TCR can bind to a given peptide. Another important aspect is the ability to predict the correct 
peptide target of a given TCR. To investigate the performance in this context, each positive TCR 
was scored against all peptides, and a performance metric was estimated in terms of how often the 
correct TCR-peptide pair was given the highest score (or lowest percentile rank). The result of this 
analysis is shown in Figure 9, which was conducted on the limited dataset, while excluding observa-
tions for low performing peptides with an AUC <0.8 and AUC 0.1<0.65 for the TCRbase ensemble 
(see Figure 6 and Figure 6—figure supplement 1). This dataset thus consists of 21 peptides, and a 
random predictor is expected to obtain a performance of 1/19~0.05. The results show that the model 

Figure 9. Percentage of correctly chosen true peptide-TCR pairs for each peptide in the limited dataset. This was evaluated using the direct prediction 
score (blue) and the percentile rank (orange) of the TCRbase ensemble. KLGGALQAK, AVFDRKSDAK, NLVPMVATV, CTELKLSDY, RLRAEAQVK, 
RLPGVLPRA, and SLFNTVATLY were excluded from this analysis due to low predictive performance for these peptides (AUC 0.1<0.65). The numbers 
next to the peptides indicate the number of positive TCRs in the filtered dataset, and the dashed line indicates the expected value for a random 
prediction. The predictions are based on model 17 (TCRbase ensemble) in Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Boxplot of average rank per peptide for the final updated models.

https://doi.org/10.7554/eLife.93934
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clearly outperforms this random baseline for all peptides. Also, a higher performance is observed for 
the three most abundant peptides in this analysis (GILGFVFTL, RAKFKQLL and ELAGIGILTV). Further-
more, it is seen that there is a slight tendency for a lower percentage of correctly chosen peptide-TCR 
pairs, as the number of positive TCRs for the training becomes lower. Interestingly, the percentage of 
correctly chosen pairs correlates very strongly with the AUC and the AUC 0.1 of the peptides. In the 
case of ranks when using direct prediction, the PCC of the percentage of correct predictions to AUC 
and AUC 0.1 were 0.740 and 0.830, respectively (sample size of 19 peptides). This high correlation was 
also observed for percentile ranks, with a PCC of 0.706 and 0.873 to AUC and AUC 0.1, respectively.

Furthermore, a tendency of lower average ranks for the pre-trained and TCRbase ensemble models 
compared to the other models was observed (see Figure 9—figure supplement 1). However, while 
the application of percentile rank widened the range of average rank per peptide, it generally resulted 
in a decrease of the median rank for most peptides.

To better understand why the models sometimes failed to predict the correct peptide-TCR pair, we 
looked at the distribution in percentile rank of the top scoring pairs. As Figure 10 shows, the binding 
TCRs for the peptides with a high proportion of correctly chosen pairs (GILGFVFTL and RAKFKQLL) is 
characterized by having a low percentile rank of around 0.1 (see ‘Top TP’).

Peptides which had poor predictive performance (mainly those excluded in Figure 9) generally 
had a poor specificity with less than 20% peptide-TCR pairs chosen correctly. These peptides are 
characterized by having a much higher percentile rank for the true peptide:TCR pair, as exemplified 
by AVFDRKSDAK in Figure 10, which again indicates the presence of potential outliers for these 
peptides.

Interestingly, the percentile ranks for the TCR pairs of two of the peptides FEDLRLLSF and FEDL-
RVLSF are characterized by having a very low percentile rank for the second highest scoring pair. This 
appears to be at least partially due to a high shared similarity between these two peptides, causing 
the model to mislabel the top scoring peptide. For example, for FEDLRLLSF, the best scoring peptide 
was FEDLRVLSF 22.2% and 25.9% of the time for predictions and percentile ranks, respectively. For 
FEDLRVLSF, the best scoring peptide was FEDLRLLSF 23.8% and 38.1% of the time for predictions 
and percentile ranks, respectively.

Figure 10. Boxplot of percentile ranks per peptide in the rank test, with KLGGALQAK, NLVPMVATV, CTELKLSDY, RLRAEAQVK, RLPGVLPRA, and 
SLFNTVATLY excluded. AVFDRKSDAK was included as an example of a peptide with a poor rank in the rank test. Top TP: Percentile rank of the correctly 
chosen pairs. Second TN: Percentile rank of the second-best pair, when the correct pair was chosen. Top FP: Percentile rank of the best scoring pair 
when the incorrect pair was chosen. FN: Percentile rank of the correct pair, when the incorrect pair was chosen. The predictions are based on model 17 
in Supplementary file 1.

https://doi.org/10.7554/eLife.93934
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Generally, it should also be noted that in cases where the correct peptide-TCR is not given the 
lowest rank, the correct peptide-TCR pair is given a very high percentile rank, most often greater 
than 20 (refer to FN label in Figure 10). The same observation holds for the top scoring peptides 
in these cases (top FP in Figure 10). This once again indicates that there might be some potential 
wrongly labeled outliers in the positive data, even when the data is filtered with the use of the model 
predictions.

Performance when data is scarce or absent
Having demonstrated a robust and high performance of the CNN-pan-specific model in the context 
of TCR specificity towards known peptides, i.e. peptides included in the training data, we next turned 
to the uttermost challenging question namely prediction of TCR specificity towards novel peptides.

To investigate this, we trained models in a pan-specific leave-one-out setup, where for a given 
peptide, both positives and negatives generated from that peptide were removed from the training 
data, thus preventing data leakage. This was done both for the NetTCR 2.1 and the updated NetTCR 
2.2 architecture. For this experiment, the limited training dataset with outliers removed was used. This 
resulted in 26 different models, each of which was evaluated on the peptide dataset for the left-out 
peptide. As shown in Figure 11, a performance in terms of AUC slightly better than random was 
observed for most of the peptides. Furthermore, a noticeable improvement in performance was seen 
for the updated NetTCR 2.2 model. However, the performance was almost completely random when 
evaluated in terms of AUC 0.1, as can be seen in Figure 11—figure supplement 1. The only peptides 
with non-random AUC 0.1 performance were FEDLRLLSF and FEDLRVLSF, and this was only the case 
for the NetTCR-2.2 model architecture. These peptides differ by only a single amino acid, and the 

Figure 11. Per peptide performance of the old (NetTCR 2.1) and updated (NetTCR 2.2) pan-specific CNN models trained in a leave-one-out setup. The 
performance was evaluated in terms of AUC on the full dataset. The performance shown in this figure is based on model 63 (NetTCR 2.1 - Leave one 
out) and model 19 (NetTCR 2.2 - Leave one out) in Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 11:

Figure supplement 1. Per peptide performance of the old (NetTCR 2.1) and updated (NetTCR 2.2) pan-specific CNN models trained in a leave-one-out 
setup.

https://doi.org/10.7554/eLife.93934


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Immunology and Inflammation

Jensen and Nielsen. eLife 2023;12:RP93934. DOI: https://doi.org/10.7554/eLife.93934 � 21 of 29

result thus indicates that the updated model in this case is able to transfer the knowledge gained from 
training on another similar peptide, which was not the case with the old architecture.

We next extended the analysis to a leave-most-out setting to investigate how little data is required 
in order to train models with non-random performance. Here, a number of training datasets were 
generated by subsampling the limited dataset in order to achieve 5, 10, 15, 20, 25, 50, and 100 
positive observations, respectively, per peptide. Swapped negatives were also subsample in this way, 
keeping a ratio of 1:5 between binders and non-binders. This was only done for the peptides GILG-
FVFTL, RAKFKQLL, ELAGIGILTV, IVTDFSVIK, LLWNGPMAV, CINGVCWTV, GLCTLVAML and SPRWY-
FYYL, since they all had substantial performance (AUC 0.1 ≥ 0.65) for the full model and more than 
100 positive observations to begin with.

In the case of the pre-trained model, the leave-one-out model was used as the startpoint. Rather 
than having to re-train the full pan-specific CNN block (which may be impractical, if a user wants to 
re-train the model on a new peptide), we decided to instead fine-tune this CNN block by adding the 
subsampled data to the leave-one-out training data, while setting the sample weight to 1 for the new 
peptide observations, and 0.1 for the remaining observations. The pan-specific CNN block was then 
trained for 30 epochs in this way (for details refer to Materials and methods).

As shown in Figure 12 and Figure 12—figure supplement 1 all models demonstrated a non-
random performance with as low as 5 positive observations. As expected, a general increase in perfor-
mance was observed as more and more data was available for training. This was especially the case 
for the TCRbase ensemble model, which strongly outperformed all other models with an AUC close 
to 0.8, when the number of training points surpassed 15.

Noticeably, the performance of the baseline TCRbase model did not improve nearly as much as 
the CNN-based models when the amount of training data was increased, suggesting that the CNN 

Figure 12. Performance in terms of AUC of various models trained on increasing amounts of data. These models were trained on the following 
peptides: GILGFVFTL, RAKFKQLL, ELAGIGILTV, IVTDFSVIK, LLWNGPMAV, CINGVCWTV, GLCTLVAML, and SPRWYFYYL. The pre-trained models were 
based on the leave-one-out model, and afterwards fine-tuned and re-trained on the smaller training datasets. The performance shown is based on the 
predictions for model 24–51 in Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 12:

Figure supplement 1. Performance in terms of AUC 0.1 of various models trained on increasing amounts of data.

https://doi.org/10.7554/eLife.93934
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models are able to benefit much more from the increased amount of information present in larger 
datasets.

External evaluation
IMMREP 2022 benchmark
Having defined a novel and improved architecture and framework for training models for prediction of 
TCR specificity, we next turned to an independent data set to confirm its robustness. Here, we applied 
the datasets from the IMMREP 2022 workshop (Meysman et al., 2023), keeping all model hyper-
parameters unchanged compared to the different models described above. As shown in Figure 13, 
the updated peptide-specific models, NetTCR-2.2 - Peptide, significantly outperformed NetTCR 2.1 
(p=0.0367, p=0.0263, p=0.0087 and p=0.0034 for AUC, weighted AUC, AUC 0.1 and weighted AUC 
0.1, respectively). With an unweighted average AUC of 0.8476, this model performed on par with the 
best performing model in terms of AUC at the IMMREP workshop, TCRex αβ (Gielis et al., 2018), with 
an average unweighted AUC of 0.8473. However, to our surprise, and contrary to our findings on the 
original dataset of this paper, the NetTCR-2.2 - Pre-trained model underperformed compared to the 
peptide-specific model, even though part of this performance loss was recovered when introducing 
the TCRbase scaling on the pre-trained model. Furthermore, the NetTCR-2.2 - Pan model was also 
found to perform much worse than expected.

Figure 13. Boxplot of reported unweighted AUC per peptide for the models in the IMMREP benchmark, as well as the updated NetTCR 2.2 
models. Except for the updated NetTCR 2.2 models (NetTCR 2.2 - Pan, NetTCR 2.2 - Peptide, NetTCR 2.2 - Pre-trained and TCRbase ensemble) the 
performance of all models is equal to the reported performance in the IMMREP benchmark. The color of the bars indicates the type of input used by 
the model. Machine-learning models are labeled with black text, whereas distance-based models are labeled with blue text. Note that the TCRbase 
ensemble is a mixture between a machine-learning and distance-based model. The performance of the NetTCR 2.2 models is based on model 53 
(NetTCR 2.2 - Pan), model 54 (NetTCR 2.2 - Peptide), model 55 (NetTCR 2.2 - Pre-trained), and model 56 (TCRbase ensemble) in Supplementary file 
2. The performance of the remaining models are based on the values listed in the IMMREP 2022 GitHub repository at https://github.com/viragbioinfo/
IMMREP_2022_TCRSpecificity/blob/main/evaluation/microaucs.csv.

The online version of this article includes the following figure supplement(s) for figure 13:

Figure supplement 1. Boxplot of average rank per peptide per model in the IMMREP test data, as reported in the IMMREP benchmark.

https://doi.org/10.7554/eLife.93934
https://github.com/viragbioinfo/IMMREP_2022_TCRSpecificity/blob/main/evaluation/microaucs.csv
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We further evaluated the peptide specificity of the models by calculating the average rank of 
each peptide in the benchmark specificity test dataset, and compared the ranks to those of the other 
methods included in the IMMREP benchmark. As is shown in Figure 13—figure supplement 1, also 
here the average ranks of the updated models were found to be comparable to the best performing 
models in the IMMREP benchmark.

To understand the source of the relatively poor performance of the pan-specific models in this 
benchmark, we further investigated the IMMREP datasets. Even though the construction of IMMRep 
datasets was made to ensure that no positive TCR was shared between the training and test data 
sets, inspection of the data revealed that swapped negatives were present in the training data, which 
originated from positive peptides in the test data. When a pan-specific model is trained on such data, 
this results in certain TCRs being ‘seen’ only as non-binders only during the model training. Given this, 
the model will likely assign such TCRs as negative when asked to predict the test data. This problem is 
limited to pan-specific models hence explaining the reduced performance compared to the peptide-
specific model.

Further, as shown in Table 4, the degree of redundancy between training and test data was rela-
tively high for many of the peptides. This redundancy between the IMMREP test and training data may 
result in test performance overestimation since the models observe similar TCR-peptide combinations 
during training.

When comparing the per peptide AUC of all models to the per peptide redundancy between 
training- and test data, we observed a Pearson correlation of 0.428 (sample size of 370), which was 
a much stronger correlation than observed between the number of training observations and AUC 
(0.062).

To address these issues, we applied the redundancy reduction and swapped negative data gener-
ation (generating the swapped within each data partition) from our own data pipeline on the training 

Table 4. Degree of redundancy between the IMMREP test and training data, when using a 95% kernel similarity threshold for 
redundancy within each peptide.
The redundancy reduction was performed on both positive and negative observations. The counts and percentages, however, only 
refers to the positive observations.

Peptide Pre reduction count Post reduction count Percent redundant

All 619 467 24.56%

GILGFVFTL 136 58 57.35%

NLVPMVATV 69 54 21.74%

YLQPRTFLL 67 53 20.90%

TTDPSFLGRY 49 47 4.08%

LLWNGPMAV 47 44 6.38%

CINGVCWTV 46 46 0.00%

GLCTLVAML 37 23 37.84%

ATDALMTGF 26 22 15.38%

LTDEMIAQY 25 23 8.00%

SPRWYFYYL 24 24 0.00%

KSKRTPMGF 22 13 40.91%

NQKLIANQF 15 15 0.00%

TPRVTGGGAM 12 12 0.00%

HPVTKYIM 12 10 16.67%

NYNYLYRLF 12 9 25.00%

GPRLGVRAT 11 11 0.00%

RAQAPPPSW 9 3 66.67%

https://doi.org/10.7554/eLife.93934
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data, while ensuring a positive to swapped negative ratio of 1:3 and positive to negative control ratio 
of 1:2, as was the case for the original IMMREP dataset. The performance of the different models was 
next assessed via nested cross-validation on this dataset, rather than the original left-out test data. 
As shown in Figure 14, this data setup once again resulted in the pre-trained models outperforming 
the peptide-specific models, and that the use of TCRbase scaling together with the pre-trained model 
resulted in the overall best performance, in line with our earlier findings. Moreover, the overall perfor-
mance of the models was found to drop, especially for the peptides with a high degree of redundant 
data, confirming a degree of performance overestimation in the original benchmark (see Supplemen-
tary file 2 for individual peptide performance).

Discussion
Here, we have presented an improved NetTCR framework for prediction of TCR specificity including 
updates to the training data, modeling architecture and training setup, with the goal of increasing the 
overall performance and generalization power of the model. First and foremost, the update includes 
a substantial expansion of the training data to 26 peptides, up from the six peptides available for 
predictions in NetTCR 2.1. The model updates included dropout and peptide-specific sample weights 
to deal with data imbalance, forcing the model to focus more evenly on all peptides, and resulted 
in vastly improved performance in the pan-specific setup. This performance gain was particularly 
pronounced for peptides with few observed binding TCRs. The updated architecture in the form of 
more hidden units in the dense layer, the change from sigmoid to ReLu activation for the max-pooling, 
and the introduction of dropout further improved the NetTCR model. A variation of the updated 
architecture was also investigated, which combined the properties of the pan-specific and peptide-
specific models, by having two separate CNN blocks where one block was pre-trained separately in 
pan-specific setup, followed by training the second block in a peptide-specific setup. This pre-training 
setup resulted in an additional increase in performance, mainly for the least abundant peptides.

Figure 14. Boxplot of unweighted AUC per peptide for the NetTCR 2.1 and 2.2 models, when trained and evaluated on the redundancy reduced 
dataset. The evaluation was performed using a nested cross-validation setup. The performance is based on model 58 (NetTCR 2.1 - Peptide), model 59 
(NetTCR 2.2 - Pan), model 60 (NetTCR 2.2 - Peptide), model 61 (NetTCR 2.2 - Pre-trained), and model 62 (TCRbase ensemble) in Supplementary file 2.

https://doi.org/10.7554/eLife.93934
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How to best use available data for training
The scarness of paired TCR data means that it often could be tempting to include all available data 
to the fullest, and include all redundant data for training. However, as we show here, the addition of 
redundant data in the training does not lead to improved performance. In fact, we found that the 
addition of redundant data may cause pan-specific models to underperform if the peptide imbalance 
of data is not accounted for, since the inclusion of redundant data often results in a further increased 
peptide imbalance.

The observation that the predictive performance for some peptides was much lower than expected 
given the amount of available training data, led us to believe that outliers in the form of false positives 
might be a potential issue. Furthermore, many of these peptides had in common that the main source 
of data was 10 X sequencing (10x Genomics, 2020), a platform known to have a high proportion 
of false annotations (Zhang et al., 2021; Povlsen et al., 2023). To deal with this issue, we imple-
mented a machine learning driven approach for outlier detection using the predictions of the peptide-
specific NetTCR models to identify observations which repeatedly received very poor predictions. The 
removal of these potential outliers from the training led to significantly improved test performance. It 
should also be noted that the data applied in the study included denoising for most of the 10 X data 
in the form of ITRAP (Povlsen et al., 2023), which together with ICON Zhang et al., 2021 have earlier 
been shown to properly remove outliers (Montemurro et al., 2023). Nevertheless, our results suggest 
that some outliers had escaped these denoising steps, indicating that denoising methods should still 
be improved upon. While the use of our model predictions to remove outliers resulted in improved 
performance, we believe that this approach should only be considered a proof-of-concept, and that 
more elaborate ways to identify outliers merit further investigation.

Integrating distance-based methods can improve performance of ML 
models
Inspired by the observation that sequence similarity distance-based models often achieve very high 
performance for the prediction of TCR specificity (Meysman et al., 2023), we investigated if inte-
grating TCRbase predictions could improve the performance of our models. We integrated TCRbase 
by scaling the CNN prediction with the TCRbase prediction to a power of α, and found that the 
performance of this ensemble (Pre-trained +TCRbase) achieved a significantly improved performance 
in terms of AUC and AUC 0.1. Interestingly, further inspections revealed that the increased perfor-
mance mainly resulted from improved discrimination of binders and non-binders when the binding-
threshold was set to result in a low FPR. Given how we are often interested in keeping the FPR very 
low for TCR specificity predictions, the simple integration of TCRbase can thus vastly benefit many 
real-world use-cases for TCR specificity predictions. While we decided to use a general α of 10 for 
the TCRbase scaling, it is possible that performance could be improved further, if α is allowed to be 
flexible depending on the peptide. For example, one could imagine that a peptide with a very high 
TCRbase predictive performance could benefit from a higher α, compared to another peptide with 
a lower TCRbase performance. Furthermore, the amount of positive data also influences which α is 
optimal. It would therefore be interesting to further investigate this, as this could potentially lead to 
further improved performance. Finally, investigating the relation between TPR and FPR at different 
values of α could also benefit many actual use-cases, considering that the optimal alpha value could 
be determined based on the desired maximum FPR rate.

Predictions for unseen peptide
It has repeatedly been shown that predicting TCR specificity for “unseen” peptides is extremely 
hard, especially for peptides that are very dissimilar to the peptides included in the training data 
(Moris et al., 2021; Grazioli et al., 2022). Investigating the performance of the pan-specific models 
in a leave-one-out setup revealed that the performance on unseen peptides overall remained very 
poor, also for the updated NetTCR-2.2 model. While the performance for NetTCR-2.2 in terms of 
AUC was generally better than random, the performance in terms of AUC 0.1 was very close to 
random, severely limiting its general potential use. Nevertheless, we observed that the performance 
of NetTCR 2.2 in the leave-one-out setup was improved when compared to NetTCR 2.1, especially for 
two peptides sharing a high mutual similarity. While the performance for these two peptides was still 

https://doi.org/10.7554/eLife.93934
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low compared to that observed in the full training setup, this result affirms that given a broad enough 
peptide coverage, pan-specific models have the potential to predict binding also for unseen peptides.

Improved performance when data is scarce
While high performance for unseen peptides so far remains very challenging, another important 
issue is to boost performance for peptides with relatively few observations. Performing a leave-
most-data-out, a substantial increase in performance was observed compared to the leave-out-out 
experiment with as little as five training observations, and already with 15 observations, a satisfactory 
performance was observed. This is in great contrast to earlier work, where a number of ~150 was 
suggested to be required for modeling TCR specificity (Montemurro et  al., 2021). These results 
thus suggest that the pre-trained models can beneficially be used as seeds for the development of 
peptide-specific models allowing for rapid fine-tuning to new data.

We also observed that the TCRbase ensemble based on the pre-trained model consistently outper-
formed any of the other models, both when data was very scarce, but also as the amount of training 
data was increased, highlighting the benefits of integrating distance-based methods for predictions. 
As a final note, we would also expect that the discrepancy between the performance of the peptide-
specific- and pre-trained model will become larger as the number of peptides to train on increases 
in the future, as a pan-specific CNN block trained on a more diverse dataset should allow for better 
generalization.

Performance on IMMREP 2022 benchmark
To compare the updated models with other models for TCR specificity predictions, we applied the 
modeling framework to the dataset from the IMMREP 2022 benchmark (Meysman et al., 2023). Here, 
we observed that the updated peptide-specific model performed on par with the best models in the 
benchmark. We however also observed that the pre-trained model performed worse than expected. 
Careful inspection of the data revealed that swapped negatives had been generated across the test 
and training data, meaning that some TCRs were only seen as negatives in the training, whereas they 
could be positive in the test data, albeit for a different peptide. This problem strongly affected the 
pre-trained model, which had a pan-specific component. Furthermore, since redundancy was only 
dealt with by removing duplicate TCRs, redundancy in both training and test data was observed, 
resulting in a certain degree of performance overestimation. This was for instance reflected in an 
unusually high performance for the peptides which had higher degrees of redundancies between 
training and test data.

To deal with these problems, we performed redundancy reduction on the training data identical 
to what was done for our novel extended data set, and made sure to only generate swapped nega-
tives from TCRs within a given partition. We then trained and evaluated our models using the nested 
cross-validation approach on this redundancy reduced data. Here, we recovered the earlier conclusion 
that the pre-trained models outperformed the peptide-specific models, and that the integration of 
TCRbase led to the highest overall performance. These results thus strongly underline a problematic 
issue with data redundancy and the leakage of swapped negative TCR between training and test data-
sets present in the IMMREP benchmark. This is of high concern, since these properties, as shown here, 
are in particular detrimental for pan-specific models. Considering this, we encourage the creation of 
a new benchmark which takes these issues into account, while ideally also expanding on the number 
of peptides present for predictions.

Conclusion
In this work, we have demonstrated how prediction of TCR specificity can be greatly improved by 
introducing minor but critical updates to the NetTCR training and modeling framework. While also 
improving on the peptide-specific models, these updates in particular boost the performance of pan-
specific models. In addition, we show that pre-training models on pan-specific data, followed by 
training in a peptide-specific setup, leads to substantially improved performance, especially when 
the amount of data is low. Scaling the predictions from NetTCR with similarity to known binders is 
also shown to boost performance. Further, we have for the first time demonstrated how machine 
learning models can be designed and applied for rational data denoising in the context of TCR spec-
ificity data. The performance for ‘unseen’ peptides was found to be overall low. However, the results 

https://doi.org/10.7554/eLife.93934
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demonstrated an encouraging tendency of high predictive power in cases of ‘unseen’ peptides with 
high similarity to the training data.
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dataset).
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