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Neural activity ramps in frontal 
cortex signal extended motivation 
during learning
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Abstract Learning requires the ability to link actions to outcomes. How motivation facilitates 
learning is not well understood. We designed a behavioral task in which mice self-initiate trials to 
learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex 
(ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC 
neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to 
reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded 
cues until reward-associated cues were reached, and was required for learning. To determine how 
ACC inherits this motivational signal we performed projection-specific photometry recordings from 
several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in 
orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued 
ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated 
cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed 
these neural correlates of motivation, and further delineated separate ensembles of neurons that 
sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out 
task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.

eLife assessment
This important manuscript provides compelling experimental evidence of extended motivational 
signals encoded in the mouse anterior cingulate cortex (ACC) that are implemented by orbitof-
rontal cortex (OFC)-to-ACC signaling during learning. The experimental methods used were state-
of-the-art. These results will be of interest to those interested in cortical function, learning, and/or 
motivation.

Introduction
Animals must sustain an extended motivational state to achieve goal-directed learning. Imagine being 
hungry in the middle of a busy metropolis with no cellphone battery and no way of searching for the 
nearest restaurant. The feeling of hunger provides motivation to search for restaurant signs, scan 
menus, and contemplate what type of food to eat. If it is dinnertime and many restaurants are full, 
this motivational state (hunger) may persist for hours until a restaurant is selected. Thus, an animal’s 
ability to carry out novel actions based on its desired goals is commonly referred to as goal-directed 
learning. This learning is of a more deliberate, informed nature than habitual learning, as it is sensitive 
to the current value of outcomes and can lead to a novel sequence of actions for a desired outcome 
(Balleine and Dickinson, 1998; Tolman, 1948; Pezzulo et al., 2014).
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Goal-directed learning often requires the ability to maintain an extended motivational state even in 
the midst of distracting and competing external variables (Miller and Cohen, 2001; Shenhav et al., 
2013). This function has been long proposed to be carried out by the prefrontal cortex (PFC), as 
patients with PFC lesions struggle to perform tasks that require maintaining a motivational and goal-
directed state, in the midst of competing sensory information, such as the Stroop task or the Wisconsin 
Card Sorting Task (Stroop, 1935; Yuan and Raz, 2014; D’Esposito and Postle, 2015; Milner, 1963; 
Pardo et al., 1990; Shallice and Burgess, 1991). In particular, the anterior cingulate cortex (ACC) has 
been implicated in action selection over long timescales that are influenced by a variety of motiva-
tional factors, such as the value and effort required for each outcome (Shenhav et al., 2013; Hauber 
and Sommer, 2009; Hillman and Bilkey, 2010; Wallis and Kennerley, 2011; Cowen et al., 2012; 
Shenhav et al., 2016). For instance, when animals are given two choice options: one in which high 
effort leads to high rewards, and one in which low effort leads to low rewards, animals learn to exploit 
the high-effort, high-reward option (Walton et al., 2003; Schweimer et al., 2005). Impairments to 
the ACC results in animals failing to accurately allocate motivation toward strategies that maximize 
reward (Amiez et al., 2006; Kennerley et al., 2006). Single-unit recordings from ACC have shown 
that neurons encode for choices that require effort with a higher payoff, giving support for the hypoth-
esis that this region is important for action-outcome associations and allocating resources for learning 
and for the maximization of reward over long timescales (Hillman and Bilkey, 2010; Monosov et al., 
2020; Holroyd and Yeung, 2012; Hillman and Bilkey, 2012). While the precise functions of ACC are 
still debated, its role in goal-directed learning is widely accepted (Shenhav et al., 2013; Holroyd and 
Yeung, 2012; Botvinick et al., 2001; Heilbronner and Hayden, 2016; Rushworth et al., 2012).

To provide deeper mechanistic insight into how ACC encodes an extended motivational state to 
facilitate goal-directed learning, we sought to track how animals learn to adjust their behavior over 
days-long timescales to maximize reward when cue-reward contingencies change. We designed a 
task in which mice self-initiate trials and learn to associate cues with reward. Through neural activity 
recordings during behavior, we found that ACC neural activity was consistently tied to trial initiations 
where mice seek to leave unrewarded cues to reach a rewarded cue. Subsequently, by recording 
neural activity from inputs to ACC we identified a ramp in bulk activity in orbitofrontal cortex (OFC)-
to-ACC projections as mice continuously existed unrewarded cues, peaking when they finally reached 

eLife digest Achieving goals takes motivation. An individual may have to complete a task many 
times for a future reward. For example, an animal may have to forage repeatedly to find food, or a 
person may have to study to get a good grade on a test. How these complex behaviors are encoded 
in the brain’s wiring is not fully understood.

Patients with injuries to the frontal cortex of the brain display a lack of motivation to pursue goals. 
This discovery suggests the frontal cortex plays a vital role in motivation and goal-directed behavior. 
Animal studies show that part of their brain's frontal cortex, the anterior cingulate cortex (ACC), helps 
them stay motivated and put extra effort into achieving goals. Yet, scientists wonder how particular 
actions are associated with specific goals and suspect the orbital frontal cortex (OFC) contains the 
blueprint to support this association.

Regalado et al. show that the OFC and ACC work together during goal-seeking behavior in mice. 
In the experiments, mice learned to complete a task to achieve a sugar water reward. As the mice 
were learning, Regalado et al. recorded activity in the ACC and found that the ACC is active during 
goal-seeking behavior. They also discovered that the activity of neurons in the OFC increased the 
longer mice went without receiving a reward, up until the reward was achieved, signaling a motiva-
tional state. Animals not motivated enough to maximize their rewards did not have an increased OFC 
activity. The experiments also showed that the motivational signals in the OFC were conveyed to ACC 
to support goal-directed learning, especially linking actions to positive future outcomes.

The experiments help explain how an increase in neuronal activity in the OFC helps to increase 
motivation and goal-seeking behavior supported by the ACC. More studies will help scientists learn 
more about these processes and develop drugs or other therapies that can help people who have 
learning difficulties or struggle with motivation because of an injury or mental illness.

https://doi.org/10.7554/eLife.93983
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a rewarded cue, thus tracking an extended motivational state. Finally, cellular resolution imaging of 
OFC-to-ACC neurons identified populations of neurons that sequentially tile the observed bulk neural 
activity ramp across unrewarded cue presentations. In particular, neurons that preferentially encoded 
reward cues, before learning, began to code for unrewarded, cues after learning, including the moti-
vation to exit these rooms to reach more reward-associated cues. Taken together, we identified a 
mechanism by which OFC neural activity ramps map out task structure and conveys an extended 
motivational state to ACC to enable goal-directed learning.

Results
ACC contains neural correlates of motivation during learning
We began by designing a learning task in which mice self-initiate trials and, upon brief cue exposure 
(an olfactory and auditory cue), learn to stop to collect a water reward (Figure 1A and B, Figure 1—
figure supplement 1A, Materials and methods). We implemented this task in a head-fixed setting 
to enable hundreds of trials per session, and millisecond precision in tracking stimulus delivery and 
behavioral responses (Figure 1A). We used ‘time to initiate trials’ as the primary measure of motiva-
tion, and ‘total reward obtained’ as the primary measure of learning. Due to the self-paced nature of 
the task (Figure 1B and C), we found variation between our mice in how quickly they initiated trials 
and how many rewards they received per minute (Figure 1C). As expected, the faster mice can initiate 
trials, the more rewards they obtained per minute, providing a strong correlation between motivation 
and learning (Figure 1D).

The ACC has been prominently implicated in motivation and voluntary actions for maximizing 
reward, so we posited that ACC would contain motivation-related neural activity patterns in our task 
(Shenhav et al., 2013; Monosov, 2017; Kolling et al., 2016; Khalighinejad et al., 2020; Khaligh-
inejad et al., 2022). To test this hypothesis, we injected AAV1-CaMKII-GCaMP6f into the ACC and 
implanted fiber-optic cannulas to record bulk neural activity in ACC during behavior (Figure 1E). We 
observed strong neural responses in ACC that were tuned to reward delivery and trial initiations 
(Figure 1F and G). Notably, the ACC neural signal precedes speed onset in both cases, suggesting 
that ACC is not tracking speed but rather the motivation to initiate trials (Figure 1F and G, Figure 1—
figure supplement 1B). We sought to determine how prolonged inhibition of ACC would impact 
motivation and whether this was required for learning and reward maximization. We injected AAV9-
CaMKII-hM4D(Gi) into ACC and performed chemogenetic inhibition during a session of clozapine 
N-oxide (CNO) injection (ACC inhibition session) versus a session of saline injection (control session) 
(Figure 1H and I). We found that ACC inhibition caused mice to have a significant increase in time to 
initiate trials (Figure 1I), which also resulted in a decreased number of rewards received per minute 
(Figure 1J). Furthermore, we found a small, but significant, decrease in speed during trial initiation 
(but not overall session speed), suggesting that ACC inhibition might also impair vigor of movements 
during trial initiations (Figure 1—figure supplement 1C). Thus, we developed a self-paced behavioral 
task where mice learned cue-reward contingencies, and identified motivation-related signals in ACC 
that were required for learning to maximize rewards.

ACC contains neural correlates of extended motivation during learning
We next sought to increase the motivational demand during learning. We thus extended our task by 
training mice to learn two sets of cue-outcome relationships, where one cue-set (olfactory+auditory) is 
associated with a sucrose water reward (hereafter referred to as ‘R’ cues), whereas the other cue-set is 
associated with no-reward (‘N’ cues). Since mice have been shaped to stop during cue presentations 
(Figure 1), it is now effortful for them to learn to continue running through the N cues so that they can 
reach more R cues, and thus maximize their total rewards in a session. Thus, motivation is assessed not 
only by ‘time to initiate trials after R cues’, as before, but now also the more effortful measure of ‘time 
to initiate trials after N cues’ (Figure 2A; see Materials and methods). We measured overall learning 
through differences in their lick rates and speed during presentations, expecting progressive suppres-
sion of licking and increases in speed in the N cues compared to the R cues across days. Interestingly, 
we found that mice learned to suppress licking in the N cues (Figure 2A; red arrows on day 2) much 
earlier than learning to increase speed in N cues (Figure 2A; red arrows on day 4; Video 1). Across 
the cohort, on average, this increase in speed during N cues began as early as day 3, after they had 

https://doi.org/10.7554/eLife.93983
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learned to suppress their licking (day 2), as determined by speed and stop discrimination index (stop 
DI: % of stops in N – R/all trials) (Figure 2B and C, Figure 2—figure supplement 1A; see Materials 
and methods). Finally, there was also a significant correlation between stop DI and rewards obtained 
per minute, confirming that the development of this behavioral strategy is tied to reward maximiza-
tion within a given training session (Figure 2D).

We next searched for neural correlates of motivation by recording bulk neural activity in ACC as 
mice performed this task, and aligning neural responses to behavioral frames, focusing on periods 
when mice learn to run during N cue presentations. As before (as in Figure 1), in this two cue-outcome 
relationship task, we again found that ACC continued to be active during reward delivery and during 

Figure 1. Neural activity in anterior cingulate cortex (ACC) signals a motivational state to obtain reward. (A) Schematic of virtual reality experimental 
setup and trial structure. A mouse initiates a trial by running to trigger the onset of cues (olfactory and auditory). After cue onset, a mouse stops to 
collect a water reward, which ends the trial (see Materials and methods). (B) Representative traces of speed and licks from one mouse during a session, 
with shaded portions corresponding to when cues are on. Red arrows correspond to periods when mice are running to trigger cue onset or stopping 
to trigger water delivery. Black arrows correspond to sections of a session where we can quantify time to initiate trials, initiation speed, cue stops, and 
rewards. (C) Quantification per mouse of time to initiate a trial (far left; seconds), initiation speed (left; cm/s), % trials in which a stop occurred during 
cue presentation (right), and rewards received per minute. Individual data points shown (N=12 mice). (D) Scatter plots of the mean time (s) to initiate a 
trial plotted alongside rewards received per minute per mouse (N=12 mice). Individual data points shown, with a best fit line, represented by the solid 
line in the figure. r2=0.8675 and p<0.0001 are determined by linear regression. (E) Left: Bulk neural activity recording experimental design. GCaMP6f 
was injected into the ACC and neural activity was recorded on a fiber photometry setup (see Materials and methods). Right: Brain histology from a 
representative mouse showing DAPI in blue, GCaMP6f in green, and photometry cannula implantation in ACC (dotted white lines). Scale bar: 1 mm. 
(F) Top: Trial averaged plots of ACC activity (z-scored dF/F) and speed (cm/s) aligned to reward onset. Data are mean (solid line) ± s.e.m. (shaded 
area). Bottom: Relative frequency plots of the time (s) for ACC dF/F or speed to rise above 1 std or 1 cm/s during rewards, respectively (N=105 trials 
across 12 mice). *p<0.05, paired t-test between time to rise (s) between ACC and speed. Data is the frequency of values across time. (G) Same as F, 
but for trial initiations (N=510 trials across 12 mice). (H) Injection strategy for DREADDS-based chemogenetic inhibition of ACC during self-paced task. 
Coronal section from an animal virally injected with AAV1-CamKii-hM4D(Gi) in ACC. DAPI is shown in blue and hM4D(Gi) in red. Scale bar: 1 mm. (I) 
Representative traces of speed and licks from one mouse during the task on a day with saline (top) or clozapine N-oxide (CNO) (bottom) administration 
45 min prior to a session, with shaded portions corresponding to when cues are presented. (J) Left: Quantification of time (s) to initiate trial (left) across 
saline and CNO sessions in mCherry-control mice (N=188 trials across 6 mice) and hM4D(Gi)-DREADDs mice (N=215 trials across 4 mice). Right: Same 
as left but for rewards received per minute in mCherry-control mice (N=60 min across 6 mice) and hM4D(Gi)-DREADDs mice (N=40 min across 4 mice). 
p=0.8707 for mCherry and *p<0.05 for hM4Di (time to initiate), p=0.2073 for mCherry and *p<0.05 for hM4Di (rewards per min), unpaired t-test between 
saline and CNO sessions per group. Data are mean ± s.e.m.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Task shaping and speed-related differences between mice and during anterior cingulate cortex (ACC) inhibition.

https://doi.org/10.7554/eLife.93983
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Figure 2. Neural activity in anterior cingulate cortex (ACC) scales to match an increased motivational state during learning. (A) Top: Schematic of 
training where mice learn to associate stopping to one set of cues with no water reward (‘N’) or with water reward (‘R’). Bottom: Representative traces 
of speed and licks from one mouse during a session on training day 2 and day 4, with shaded portions corresponding to when a reward cues (R, blue) 
or no-reward cues (N, orange) is presented. Red arrow denotes the suppression of licks on day 2, and rise in speed during no-reward cues on day 4. 
(B) Trial averaged speed (cm/s; top), lick rate (Hz; middle), and ACC activity (dF/F z-scored; bottom) aligned to cue presentation across days 2 and 4 
of training, separated by reward and no-reward cues (blue vs orange). Black arrow signifies rise in speed after no-reward cue presentation. N=12 mice. 
Data are mean (dark line) with s.e.m. (shaded area). (C) Quantification of average cue speed (cm/s; top), lick rate (Hz; middle), and ACC activity (dF/F 
z-scored; bottom) across training, separated by reward and no-reward cues (blue vs orange). N=12 mice in each group, data are mean ± s.e.m. *p<0.05, 
paired t-test between reward and no-reward. (D) Scatter plots of rewards per minute vs stop discrimination (top), lick discrimination (middle), or dF/F 
difference (bottom) for each mouse throughout training (N=120 data points, 12 mice per each of 10 days). Data are individual points with best fit line. 
r2 and p values are shown, as determined by linear regression. (E) Top: Trial averaged speed (cm/s) and ACC activity (dF/F z-scored) aligned to cue 
presentation across three trials consisting of a reward, no-reward, and reward cue (RNR). Bottom: Trial averaged ACC activity (dF/F z-scored) aligned 
to cue presentation across four trials consisting of a reward, no-reward, no-reward and reward cue (RNNR). N=12 mice. Data are mean (dark line) with 
s.e.m. (shaded area). (F) Quantification of average cue dF/F activity across RNR and RNNR trial sequences. N=12 mice. *p<0.05, one-way repeated 
measured ANOVA with post hoc Tukey’s multiple comparison test. Data are mean ± s.e.m. (right). (G) Top: Injection strategy for AAV1-CaMKII-stGtACR2 
into ACC for optogenetic inhibition during training. Middle: Brain histology from a representative mouse showing DAPI in blue, stGtACR2 in red, and 
photometry cannula implantation in ACC. Scale bar: 1 mm. Bottom: Optogenetic inhibition was targeted to days 1–6 of training and mice were allowed 
to continue training for days 7–10. (H) Left: Trial averaged plots of speed (cm/s) aligned to cue entry on T6 for mCherry controls and GTACR inhibition 
mice, separated by reward or no-reward cues. Right: Quantification of mean speed during cue presentations. N=8 mice for mCherry, 4 for GTACR early 
inhibition. *p<0.05, paired t-test.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Lick rate discrimination, anterior cingulate cortex (ACC) learning signal controls, and ACC inhibition lick rate learning.

https://doi.org/10.7554/eLife.93983
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trial initiations (Figure  2—figure supplement 
1B–C). Additionally, however, in this task we 
found that ACC began to significantly increase its 
activity, specifically during N cues, as early as T3, 
as mice exhibited a learned motivation to leave 
N cues to reach more R cues (Figure 2B–D). As 
a further confirmation of this result, we investi-
gated ACC’s activity during extended motiva-
tion across two consecutive N cues and found 
that ACC activity continued to remain high from 
the initial N cue presentation until an R cue was 
reached (Figure  2E and F, Figure  2—figure 
supplement 1D). These neural responses, and 
in particular the dF/F difference in N vs R cues, 
positively correlated with the amount of reward 
obtained per minute, linking motivation-related 
ACC activity to overall learning (Figure  2D). 
Importantly, in all cases, on a trial-by-trial basis, 
the neural signal preceded the behavioral ramp 

in speed (Figure  2E), and was present even if we restricted our analyses to cue presentations in 
which mice stopped (Figure 2—figure supplement 1E), suggesting a motivational rather than motor 
response. To further confirm this dissociation, we passively presented both sets of cues to the mice 
at the end of each training session. As expected, mice did not develop the motivation to run out of 
N cues (Figure 2—figure supplement 1F), and accordingly, the ACC neural activity was no longer 
different between N and R cues. These results together suggest that ACC encodes a motivation signal 
to initiate trials, and in particular corresponds to the behavioral measure of running during N cues to 
reach more R cues, thus facilitating goal-directed learning.

We proceeded to test whether these motivation-related signals in ACC are required for learning. 
To restrict our inhibition to cue presentation portions of our task, and combat any potential off-target 
effects of CNO (Manvich et al., 2018) from repeated administration across several days of training, 
we used optogenetic inhibition. We injected AAV1-CaMKII-stGtACR2 bilaterally in ACC to express 
the inhibitory opsin and delivered light selectively when the mouse received R or N cues, for the first 
6 days (‘early’) or last 4 days (‘late’) of training (Figure 2G and H, Figure 2—figure supplement 1H). 
We found that early ACC inhibition prevented mice from learning to run out of N cues, even though 
they still learned to suppress their lick rates (Figure 2H, Figure 2—figure supplement 1G). Late ACC 
inhibition had no effect on speed or lick rate behavior, as mice continued to run out during N cues 
while inhibition occurred, suggesting ACC activity does not broadly suppress speed (Figure 2—figure 
supplement 1H). All together, we identified an extended motivation signal in ACC that is required for 
learning and reward maximization.

Neural activity in orbitofrontal projections ramps until rewards are 
reached
The ACC receives projections from disparate regions across the brain that could facilitate the inte-
gration of value, internal state, and multisensory information, so we sought to identify how afferent 
projections may convey motivational signals to ACC during learning (Fillinger et  al., 2017). We 
injected rgAAV-hSyn-Cre into ACC and injected AAV1-CAG-FLEX-GCaMP6f in the OFC, anteromedial 
thalamus (AM), basolateral amygdala (BLA), locus coeruleus (LC), and implanted optical fibers above 
each region to record neural activity during learning in this task (Kim et al., 2016; Figure 3A). We first 
characterized whether the previously observed ACC neural responses during reward delivery and trial 
initiations were present in any of the inputs to ACC (Figure 3—figure supplement 1A). We found 
that even before learning all projections responded significantly to rewards, and most (OFCACC, AMACC, 
and LCACC) increased their activity in anticipation of trial initiations (Figure 3—figure supplement 1A). 
Thus, motivation-related signals were broadly present in various projections to ACC.

We then searched for motivation-related neural responses that were specifically tied to learning. 
To do so, we aligned neural responses to trial initiations after N cues, as mice learned to leave N cues 

Video 1. Behavior during learning. Playback speed: 
2×. Shown here is a representative mouse learning to 
stop in cues that predict reward (blue walls) and run 
throughout consecutive cue presentations that predict 
no-reward (yellow walls). Displayed trial sequence order 
is reward, no-reward, no-reward, and reward (RNNR).

https://elifesciences.org/articles/93983/figures#video1

https://doi.org/10.7554/eLife.93983
https://elifesciences.org/articles/93983/figures#video1
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to reach more R cues. We found that both OFCACC and AMACC had higher baseline activity during trial 
initiations after no-rewards (Figure 3—figure supplement 1B, C). To further understand this higher 
activity after no-rewards we analyzed sequences of ‘RNR’ trials which contained reward, no-reward, 
and reward cues (Figure 3B). We observed a rise in OFCACC activity prior to the N cue presentation that 
continued to rise until an R cue was reached (black dotted arrow; Figure 3B). We quantified this moti-
vational signal as a difference in pre-cue activity between N and R cues in RNR trial sequences across 
days and found that this difference emerged at the time of learning (~T3) and closely tracked perfor-
mance of the learned behavior (T3-T6) for OFCACC and AMACC, but not BLAACC or LCACC (Figure 3B). 
To further build confidence in these results, we asked whether this continuous rise in OFCACC activity 

Figure 3. Mice with extended motivational states during learning display neural activity ramps in orbitofrontal cortex (OFC). (A) Injection strategy and 
fiber-based photometry setup to record bulk GCaMP6f of projections to anterior cingulate cortex (ACC) from OFCACC (orbitofrontal cortex), AMACC 
(anteromedial thalamus), BLAACC (basolateral amygdala), or LCACC (locus coeruleus). Representative traces for a single mouse showing traces for each 
region dF/F, speed, and licks. Shaded portions are shown corresponding to when a reward cues (R, blue) or no-reward cues (N, orange) are presented. 
(B) Left: Trial averaged bulk GCaMP6f dF/F of ACC, OFCACC, AMACC, BLAACC, and LCACC during a sequence of trials on T6 including reward, no-reward, 
and reward cues (RNR). Black arrows denote the rise in pre-cue activity from N cue to the following R cue in the RNR sequence. Right: Quantification 
of pre-cue activity for the N cue and following R cue. Data are mean (solid line) ± s.e.m. (shaded area). N=19, 12, 5, 4 mice, data are mean (solid line) 
± s.e.m. (shaded area), *p<0.05, paired t-test between N vs R cues. (C) Left: Trial averaged bulk GCaMP6f dF/F of OFCACC during a sequence of trials 
including reward, two no-reward, and reward cues (RNNR). Red arrows denote the rise in pre-cue activity from first N cue to the last R cue in the RNNR 
sequence. Right: Quantification of pre-cue activity for the first N cue, second N cue, and last R cue. Data are mean (solid line) ± s.e.m. (shaded area). 
N=19 mice, data are mean (solid line) ± s.e.m. (shaded area), *p<0.05, one-way repeated measures ANOVA with post hoc Tukey’s multiple comparison 
test. (D) Left: Speed (cm/s) for ‘Learner’ (black; reached a DI>0.5 for 3 consecutive days) or ‘Non-Learner’ (red) mice on training day 6 aligned to 
no-reward cue onset. Middle: Discrimination index for each group of mice throughout training. Right: Speed during reward and no-reward cues for 
‘Learner’ mice. N=7 (‘Learner’) and 9 (‘Non-Learner’) mice. Data are mean (solid line) ± s.e.m. (shaded area), *p<0.05, unpaired t-test between Learner 
and Non-Learner DI (middle), paired t-test between reward and no-reward cues (right). (E) Left: Trial averaged bulk GCaMP6f dF/F of OFCACC during a 
sequence of trials including reward, two no-reward, and reward cues (RNNR). Black arrows denote the rise in pre-cue activity from first N cue to the last 
R cue in the RNNR sequence. Red arrows denote the absence of this ramp in Non-Learner mice. Right: Quantification of pre-cue activity for the first N 
cue, second N cue, and last R cue. Data are mean (solid line) ± s.e.m. (shaded area). N=7 (‘Learners’) and 9 (‘Non-Learner’) mice, data are mean (solid 
line) ± s.e.m. (shaded area), *p<0.05, one-way repeated measures ANOVA with post hoc Tukey’s multiple comparison test.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Motivation signals in bulk projection activity, and behavior of learners.

https://doi.org/10.7554/eLife.93983
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in RNR sequences would be further extended in RNNR sequences. Indeed, OFCACC activity continued 
ramping across two consecutive N trials, exhibiting higher pre-cue activity upon entering an R cue 
after two versus one N (black dotted line, Figure 3C).

To more directly determine whether this motivational ramp signal in OFCACC is tied to learning, we 
separated our mice into two groups, one that learned the task (‘Learners’, stop DI>0.5 for at least 3 
consecutive days) and one that did not learn (‘Non-Learners’) (Figure 3D, Figure 3—figure supple-
ment 1D). The Learners reached a high DI by T6, which persisted throughout the rest of training, 
whereas the ‘Non-Learners’ only reached a significantly higher DI by T10 (Figure 3D). Both subsets 
of mice still learned to discriminate with licking at comparable rates (Figure 3—figure supplement 
1E). When we compared OFCACC activity in an RNNR sequence of trials, we found that only Learners 
exhibited a significant ramp in neural activity from the first N cue to the final R cue presentation, 
which emerged coincidental with behavioral learning and persisted for the remaining days of training 
(Figure 3E). Together, we identify projection activity in OFC that ramps across N cues until an R cue is 
reached that is specifically tied to the development of a learned goal-directed behavior.

Orbitofrontal projection neurons tile unrewarded trials until rewards 
are reached
Given that we identified a ramp in OFCACC bulk neural activity during NNR sequences (Figure 3), we 
sought to determine whether a single persistently active population or a sequence of tiled neurons 
underlies this ramp. We thus performed real-time cellular resolution imaging of OFC projections to 
ACC by injecting rgAAV-hSyn-Cre into ACC and AAV1-CAG-FLEX-GCaMP6f in OFC (Figure  4A). 
We implanted a gradient-index (GRIN) lens above OFC and imaged the region under a two-photon 
microscope as mice performed the learning task (Figure 4A). We focused our analysis on days where 
behavioral learning emerged (Figure 4B), and on NNR trial sequences to find an underlying cellular 
mechanism to the previously observed photometry results (Figure 4C). We found individual neurons 
that were uniquely active across the first N, second N, or R cue, thereby tiling the sequence of NNR 
trials (Figure 4D and E). We further found that an increasing number of neurons were active along the 
sequence of NNR trials and most prominently before learning (Figure 4F, Figure 4—figure supple-
ment 1A–C). Thus, collectively, as an ensemble, these neurons ramp consecutive N cues and peak 
upon reaching R cues.

To determine how these NNR ensembles facilitate learning we tracked the same population of 
neurons ‘before’ and ‘after’ learning (Stop DI>0.4; Figure 4G, Figure 4—figure supplement 1D). We 
identified an ensemble of neurons that were uniquely responsive to R cues preceded by 2 N cues, 
before learning, and characterized their responses after learning. Interestingly, these neurons were no 
longer responsive to R cue onset but rather to pre-R cue activity, which then became progressively 
more responsive to the preceding N cue onset, aligning with the learned behavioral transition of mice 
leaving N cues to reach R cues (Figure 4G and H). To determine whether OFCACC activity ramps were 
required for learning, we optogenetically inhibited these projections bilaterally by injecting rgAAV-
hSyn-Cre into ACC and AAV1-hSyn-SIO-stGtACR2 into OFC and delivering light only on R or N cues. 
We then specifically assessed whether previous trial history affected behavioral responses on the 
current cue condition (Figure 4I and J). Interestingly, while both mCherry control and OFCACC inhibi-
tion cohorts could increase their speed during N cues following an R cue, OFCACC mice were impaired 
in doing so if the N cue was followed by an N cue (Figure 4I and J, Figure 4—figure supplement 
1E). Taken together, these data demonstrate that ensembles of neurons progressively tile the OFC 
motivational ramp, and that the initial reward responsive neurons become progressively linked to 
unrewarded cues after learning, thus effectively linking actions to outcomes to maximize rewards 
(Figure 4—figure supplement 1F).

Discussion
In this study, we developed a self-paced cue-outcome learning task to determine how mice extend 
their motivational state to maximize reward over long timescales. We identify the ACC as broadly 
critical to maximizing reward in our task, especially as mice learn to run out of unrewarded cues. We 
found that upstream inputs to ACC from OFC sustain a ramp-like increase in activity through consec-
utive unrewarded cues until mice reach rewarded cues. Cellular resolution imaging of OFC projection 

https://doi.org/10.7554/eLife.93983
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Figure 4. Orbitofrontal cortex (OFC) projection neurons tile sequences of trials with no-rewards. (A) Injection strategy (top left), histology (top right; 
scale bar, 1 mm) and z-projection images of two-photon recording (bottom left; mean over time; scale bars, 200 μm) of GCaMP expressing OFC 
projection neurons with gradient-index (GRIN) implants. Bottom right: Sequence of trials with z-scored dF/F for individual neurons, with shaded 
portions corresponding to when a reward cues (R, blue) or no-reward cues (N, orange) are presented. Red arrow denotes a dF/F transient occurring 
after two consecutive N cues. (B) Stop (black) or lick (gray; see Materials and methods) discrimination index on the first day stop DI reaches >0.4 
(‘after’) and the two previous days (‘before’ and ‘middle’). N=5 mice. (C) Schematic of OFCACC bulk activity based on Figure 3 results and potential 
single neuron findings that tile a sequence of trials with two no-rewards followed by a reward cue presentation (NNR). (D) Representative neurons 
with tunings (std>0.75 for 3 s prior to or after cue presentation) to separate cues in an NNR trial sequence. Trial averaged activity of an N (top), NN 
(middle), and NNR (bottom) neuron with heat map showing individual trial responses. (E) Quantification of neurons tuned to separate cues within an 
NNR trial sequence and their activity to all other cues. N=17 (N), 18 (NN), 32 (NNR) cells out of 115 cells in total. *p<0.05, one-way repeated measures 
ANOVA with post hoc Tukey’s multiple comparison test. (F) Percentage of neurons tuned to different cues in an NNR trial sequence before (top) or after 
(bottom) training. N=5 mice. *p<0.05, one-way repeated measures ANOVA with post hoc Tukey’s multiple comparison test. (G) Ensemble average plots 
of neurons tuned to R cues after two consecutive N cue presentations (NNR cells) before learning (top) and their activity after learning (bottom). Black 
arrows denote the rise in activity prior to R cues after learning. N=18 NNR cells out of 81 cells tracked across days. (H) Quantification of transient time 
(s) since R cue onset for neurons tracked across days. N=132, 170 transient events before and after learning across 18 NNR cells and 105, 59 transient 
events before and after learning across 12 NR cells. *p<0.05, unpaired t-test. (I) Left: Injection strategy for AAV1-hSyn-SIO-stGtACR2 into OFCACC 
for optogenetic inhibition during training. Optogenetic inhibition was targeted to training for 6 days. Right: Brain histology from a representative 
mouse showing DAPI in blue, stGtACR2 in red, and photometry cannula implantation in ACC. Scale bar: 1 mm. (J) Left: Mean animal speed (cm/s) 
aligned to cue zone entry after no-reward on T6 for mCherry control or GtACR mice. Black arrow signifies lack of speed increase during N cues. Right: 
Quantification of mean change speed in cue zone after no-reward, assessed separately for each cue presentation. N=10 mice for mCherry and 13 mice 
for GtACR, *p<0.05, paired t-test.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Neuron tunings to NNR task structure and inhibition of OFCACC neurons.

https://doi.org/10.7554/eLife.93983
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neurons revealed ensembles of neurons that tile the motivational ramp, and a progressive shift in 
ensemble tuning during learning such that neurons initially encoding for reward become progressively 
linked to motivated actions, i.e., trial initiations to reach more rewards. We therefore present a model 
where OFC contains neurons that increasingly link reward to motivated behaviors, conveying a moti-
vational ramp to ACC, to facilitate learning and reward maximization (Figure 4C, Figure 4—figure 
supplement 1F).

The OFC has been implicated in guiding adaptive, flexible behavior by signaling information 
about future outcomes (Rudebeck et al., 2013; Montague and Berns, 2002; Mainen and Kepecs, 
2009; Rich and Wallis, 2016; Padoa-Schioppa and Conen, 2017). One view sees OFC’s function as 
encoding for the value of the outcomes of events, with various neural correlates having been found 
for value-guided behavior. Another view sees OFC’s function more as building a model of the causal 
relationships between events, which may or may not entail value assessments, into a cognitive map 
(Behrens et al., 2018). Indeed, OFC neurons have been found to encode sensory-sensory associa-
tions even prior to any kind of learning (Sadacca et al., 2018). A way to link both perspectives into a 
single account has been to view value and a cognitive map as occurring along a spectrum, where infer-
ring value onto outcomes hinges upon a map that is created. We have found that mice learn to run out 
during N cues to more quickly reach R cues, thereby acquiring more rewards over a training session. 
This behavior can be viewed as both value-guided, as the mouse suppresses their lick rate during N 
cues, and also requiring a mental model of the environment, as running occurs with the expectation 
of reaching R cues in the future. Indeed, the pseudorandom trial structure ensures that N cues will 
be presented no more than two times in a row, such that after two N cues an R cue is guaranteed 
(see Materials and methods). We thus parsimoniously position OFC as functioning in model-based 
behaviors, and in the accurate planning of actions based on the learned transition structure of a task 
(Drummond and Niv, 2020).

We linked the ramp-like increase in neural activity in OFC to motivation, but several questions still 
remain about how motivation is computed and why it would be represented as a ramp. Motivation 
could be computed as a combination of several variables such as time since last reward, value of 
reward, and effort to reach future rewards. Future theory-driven analyses could determine how moti-
vation is computed, and whether individual variables of time, value, and effort are encoded as clusters 
of similar tuned neurons, or mixed and collectively represented at the population level. In either case, 
it is likely that a combined map of task space and value information carried by OFC are being used to 
inform downstream regions, such as ACC, for adjusting behavior.

The ACC has been shown to carry information necessary for switching or staying with current 
behaviors during decision-making and learning in order to maximize rewards and minimize threats or 
punishments (Shenhav et al., 2013; Monosov, 2017; Kolling et al., 2016). We posit that ACC reads 
information from OFC about task structure and value to perform computations relevant to allocating 
behavioral control. We have seen this through our findings that ACC is important for learned behav-
iors associated with maximizing rewards in our self-paced learning task. We compare the decision 
to run during N cues to a foraging decision to leave a patch to find alternative options, and ACC’s 
importance in the development of this behavior is reminiscent to signals previously described at the 
time a foraging decision is reached (Blanchard and Hayden, 2014; Hayden et al., 2011). We found 
inhibition of ACC activity affected the development of running during N cues, effectively diminishing 
an animals’ ability to strategy switch (Kennerley et al., 2006; Akam et al., 2021; Sarafyazd and 
Jazayeri, 2019; Tervo et al., 2014). While we did not perform single-cell imaging of ACC in our task, 
we hypothesize that individual ACC neurons could encode the distribution of actions/opportunities 
(Klein-Flügge et al., 2022) (i.e. stop, run, lick, suppress lick) taken during R or N cues. ACC neurons 
could compute the relative value of the action taken such that more ACC neurons become recruited 
once mice learn to run out of N cues. The sustained increase in bulk ACC activity across N cue trials 
(Figure 2) could come from a stable sequence of individual neurons that encode the timescale of the 
actions taken. In this way, OFC projections would encode current motivation across N cues before 
learning, which then triggers ACC to compute the value-based actions. Motivational signals in OFC 
would thus represent state since past rewards/goals, while in ACC these signals represent actions 
taken to pursue rewards/goals in the future.

Here, we studied learning as a systems-level process guided by top-down signals that maintain a 
motivational state. Our work showed the recruitment of multiple frontal cortical areas in this process, 

https://doi.org/10.7554/eLife.93983
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which is to be expected as animals are required to build, maintain, and use representations of task 
structure and value to drive learned, motivated behaviors (Klein-Flügge et al., 2022). Future work 
can build upon the task we developed here to determine how the frontal cortex maintains motiva-
tional states across many more cue-outcome associations, and how these associations may dynami-
cally change across time (Izquierdo et al., 2017). Lastly, a more synaptic-level approach into how ACC 
integrates information from upstream regions during learning could reveal important micro-circuit 
computations, molecular or structural changes during motivational states and learning (Thornquist 
et  al., 2020; Peters et  al., 2017), and potential mechanisms underlying seconds-long behavioral 
timescale learning rules (Bittner et al., 2017).

Materials and methods
Key resources table 

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Strain, strain background (AAV) AAV1-CaMKIIa-GCaMP6f Upenn Vector Core Addgene#100834

Strain, strain background (AAV) AAV1-CAG-FLEX-GCaMP6f Douglas Kim Addgene#100835

Strain, strain background (AAV) AAV1-CKIIa-stGtACR2-FusionRed Ofer Yizhar Addgene#105669

Strain, strain background (AAV) AAV9-CaMKIIa-hM4D(Gi)-mCherry Bryan Roth Addgene#50477

Strain, strain background (AAV) AAV9-CaMKIIa- mCherry Bryan Roth Addgene#114469

Strain, strain background (AAV) rgAAV-hSyn-Cre James Wilson Addgene#105553

Strain, strain background (AAV) AAV1-hSyn1-SIO-stGtACR2 Ofer Yizhar Addgene#105677

Strain, strain background (AAV) AAV9-hSyn-DIO-mCherry Bryan Roth Addgene#50459

Mice
All procedures were done in accordance with guidelines derived from and approved by the Institu-
tional Animal Care and Use Committees (protocol #22,087-H) at The Rockefeller University. Animals 
used were 8- to 10-week-old naive male C57BL/6J mice (Jackson Laboratory, Strain #000664) at the 
time of surgery. Mice were group housed (3–5 per cage) with ad libitum food and water, unless mice 
were water restricted for behavioral assays, in which case they were given 1 mL water per day. Body 
weight was monitored daily to ensure it was maintained above 80% of the pre-restriction measure-
ment. Surgical procedures and viral injections were carried out in mice under protocols approved by 
Rockefeller University IACUC and were performed in mice anesthetized with 2% isoflurane using a 
stereotactic apparatus (Kopf).

Surgical procedures
Puralube vet ointment was applied to the eyes and 0.2 mg/kg meloxicam was administered intra-
peritoneally using a 1 mL syringe. Hair from the scalp was trimmed, and the area was sterilized using 
povidone-iodine swabs and subsequently ethanol swabs. An incision covering the anteroposterior 
extent was made to allow access to the skull. Injection sites were accessed using a dental drill which 
made 0.5 mm holes through the skull. All virus was injected using a 35 G beveled needle in a 10 µL 
NanoFil Sub-Microliter Injection syringe (World Precision Instruments) controlled by an injection pump 
(Harvard Apparatus) at a rate of 100  nL/min. After all viral delivery, an additional 5–10  min delay 
was applied to avoid backflush before slowly removing the injection needle. Animals that required 
cannulas or GRIN lenses were implanted immediately following viral injection. Following surgery, mice 
were allowed to recover in a single housed cage for up to 12 hr, and were given meloxicam tablets. 
Mice were typically housed for 3 weeks to allow for adequate expression before behavioral testing 
or histology.

Viral injections

•	 In retrograde tracing experiments, mice were unilaterally injected in ACC (A/P: +1.0, M/L: 
±0.35, D/V: –1.4) with rgAAV-CAG-tdT at a volume of 500 nL (1.0×1013 vg/mL).

https://doi.org/10.7554/eLife.93983
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•	 For fiber photometry experiments, 1 µL of AAV1-CaMKIIa-GCaMP6f (UPenn Viral Core, diluted 
to 5×1012 vg/mL) and rgAAV-hSYN-Cre (1.20×1013 vg/mL) was injected into ACC, and AAV1-
CAG-FLEX-GcaMP6f (5.0×1012 vg/mL) was injected into OFC (A/P: 2.5, M/L: ±1.0, D/V: –2.5), 
AM (A/P: –0.75, M/L: ±0.5, D/V: –3.55), BLA (A/P: –1.23, M/L: 2.75, D/V: –4.7) and LC (A/P: 
–5.45, M/L: ±0.85, D/V: –3.7). One week after virus injection, mice were unilaterally implanted 
with 1.25 mm ferrule-coupled optical fibers (0.48 NA, 400 μm diameter, Doric Lenses) cut to the 
desired length so that the implantation site is ∼0.2 mm dorsal to the injection site.

•	 For cellular imaging, rgAAV-hSYN-Cre (1.20×1013 vg/mL) was injected into ACC and AAV1-
CAG-FLEX-GcaMP6f (5.0×1012 vg/mL) was injected into OFC.

•	 For optogenetic inhibition of ACC, AAV1-CaMKIIa-stGtACR2 (1×1013 vg/mL) was injected into 
ACC bilaterally. For controls, AAV1-CaMKIIa-mCherry (7×1012 vg/mL) was injected.

•	 For chemogenetic inhibition of ACC, AAV9-CaMKIIa-hM4D(Gi) (1×1013 vg/mL) was injected into 
ACC bilaterally. For controls, AAV9-CaMKIIa-mCherry (1×1013 vg/mL) was injected bilaterally in 
either region.

•	 For optogenetic inhibition of OFC-ACC projections, rgAAV-hSYN-Cre (1.20×1013 vg/mL) was 
injected into ACC bilaterally and either AAV1-hSyn1-SIO-stGtACR2 (1.50×1013 vg/mL) or AAV9-
hSyn-DIO-mCherry (9.0×1012 vg/mL) for controls was injected bilaterally into OFC.

Cannula implants
One week after viral injections, mice undergoing photometry or optogenetic experiments were 
implanted with fiber-optic cannulas (Doric Lenses). For photometry, mice were unilaterally implanted 
with 1.25  mm ferrule-coupled optical fibers (0.48 NA, 400  μm diameter, Doric Lenses) cut to the 
desired length so that the implantation site is ∼0.2  mm dorsal to the injection site. For optogenetics, 
mice were implanted bilaterally with 1.25 mm cannulas (0.22 NA, 200 µm diameter, Doric Lenses). In 
both cases, cannula implants were slowly lowered using a stereotaxic cannula holder (Doric) at a rate 
of 1 mm/min until it reached the implantation site, 0.2 mm dorsal to the injection site. In the case of 
bilateral AM optogenetic inhibition, one cannula was implanted at a 10° angle laterally to the skull in 
order to prevent stereotactic hindrance. Optic glue (Edmund Optics) was then used to seal the skull/
cannula interface and a custom titanium headplate was glued to the skull using adhesive cement 
(Metabond).

GRIN lens implants
Immediately following viral injections, mice undergoing calcium imaging were implanted with GRIN 
lens(es). An incision covering the anteroposterior extent was made, and the skin overlying the skull 
was cleared. The skull was then cleared and textured using a scalpel. Using a dental drill, 1  mm 
diameter holes were made at stereotactically determined sites of implantation. Site of drilling was 
immediately covered using chilled Ringers solution, and using a sterile 28 G × 1.2” insulin syringe 
and low-pressure vacuum suction, the underlying dura was removed. GRIN lenses (1.0 mm diameter, 
4.38 mm length, 0.5 NA from GRINTECH (NEM-1 00-25-1 0-860-5-0.5p)) were wrapped in a 1.25 mm 
wide custom length stainless steel sleeve (McMaster, catalog #5560K46) using optic glue, made to 
cover only the part of the lens held external to the brain. With a 0.5 mm burr (Fine Science Tools) 
attached to a stereotaxic cannula holder, the GRIN was slowly lowered into the brain at a rate of 
1 mm/min, ending 0.2 mm dorsal to the injection site. The skull was constantly flushed with chilled 1× 
PBS. Every time the lens moved 0.8 mm more ventral, it was temporarily retracted 0.4 mm dorsally 
at the same rate, before continuing down again. We found this especially helpful to maximize the 
number of observed cells when imaging in deep regions. The skull-sleeve connection was then sealed 
with glue, and further secured with adhesive cement. A custom titanium headplate was glued to the 
skull using adhesive cement. Immediately following surgery, mice were injected with 0.2 mg/kg dexa-
methasone subcutaneously to reduce inflammation.

Histology
Animals were deeply anesthetized with 5% isoflurane before transcardial perfusion with ice-cold PBS 
and 4% paraformaldehyde in 0.1 M PB. Brains were then post-fixed by immersion for ~24 hr in the 
perfusate solution followed by 30% sucrose in 0.1 M PB at 4°C. The fixed tissue was cut into 40 µm 
coronal sections using a freezing microtome (Leica SM2010R), free-floating sections were stained with 
DAPI (1:1000 in PBST), and mounted on slides with ProLong Diamond Antifade Mountant (Invitrogen). 

https://doi.org/10.7554/eLife.93983
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Images were taken on a Nikon Inverted Microscope Eclipse Ti-E with a 4×/0.2 NA objective lens. 
Whole-slide images were stitched with NIS-Elements imaging software and further analyzed in ImageJ 
and MATLAB.

Virtual reality system
We used a custom-built virtual reality environment, modified from a previously reported version 
(Rajasethupathy et al., 2015). In brief, a 200-mm-diameter styrofoam ball was axially fixed with a 
6-mm-diameter assembly rod (Thorlabs) passing through the center of the ball and resting on 90° post 
holders (Thorlabs) at each end, allowing free forward and backward rotation of the ball. Mice were 
head-fixed in place above the center of the ball using a headplate mount. Virtual environments were 
designed in the virtual reality MATLAB engine ViRMEn (Aronov and Tank, 2014). The virtual environ-
ment was displayed by back-projection onto white fabric stretched over a clear acrylic hemisphere 
with a 14-inch diameter placed ∼20 cm in front of the center of the mouse. The screen encompasses 
∼220° of the mouse’s field of view and the virtual environment was back-projected onto this screen 
using a Vamvo Ultra Mini Portable projector. The rotation of the styrofoam ball was recorded by 
an optical computer mouse (Logitech) that interfaced with ViRMEn to transport the mouse through 
the virtual reality environment. A National Instruments Data Acquisition (NIDAQ) device was used 
to send out TTL pulses to trigger the CMOS camera, laser for optogenetics, and the various Ardu-
inos controlling tones, odors, airpuff, lick ports. Additionally, the NIDAQ recorded the capacitance 
changes of the lick port when licking occurred and the CMOS camera exposures to align lick rate and 
neural recording/imaging to trial events.

Behavioral shaping
Starting approximately 3 weeks after surgery, mice were put on a restricted water schedule, receiving 
1 mL of water in total per day. Body weight was monitored daily to ensure it was maintained above 
80% of the pre-restriction measurement.

After a week of water deprivation, mice were habituated to the styrofoam ball for 2  days by 
receiving their 1 mL of water per day in head-fixed condition. Then mice were put onto a linear track 
(vertical gray bars) where water release was contingent on running a short time to trigger the onset 
of cues (an odor and tone) where they received 5 s of water delivery. Over the course of a session, 
and in subsequent days, the duration needed to run increased. Once mice could run on the ball for 
2 s, we introduced a condition to stop during cue onset to trigger water delivery. Over the course 
of a session, and in subsequent days, the duration needed to stop increased. If a mouse took longer 
than 10 min to receive their 1 mL of water on a given day, the duration needed to run and/or stop to 
get water was repeated on the following day until they could reliably walk on the ball for water under 
10 min. Once all mice from a cohort were able to run for 1 s, stop during cues for 3 s, and complete 
at least 80% of initiated trials, training began.

Behavioral task
In the final version of the task that was used during all experiments, mice ran down a virtual linear 
track to trigger contextual cues used to predict the outcome they will receive (~4 µL of sucrose water 
or no water) if they stop. At the beginning of the linear track, mice self-initiated trials by running 
(speed  >10  cm/s) down a virtual linear track for 1  s. Olfactory and auditory cues would then be 
presented for 3 s. The auditory cues consisted of 5 kHz or 9 kHz tones outputted by a thin plastic 
speaker (Adafruit) and olfactory cues consisting of ɑ-pinene or octanol were diluted with mineral oil 
to 10% and released by a custom-built olfactometer. Both auditory and olfactory cues were outputted 
by Arduino code under the control of ViRMEN code. The cues for reward were a 5 kHz tone and 
ɑ-pinene while the cues for no-reward were 9 kHz tone and octanol. Outcome onset would happen 
under the condition that a mouse dropped their speed below 10 cm/s for at least 1 s before the end 
of the cues. If the mouse failed to stop for at least 1 s, they would be immediately placed at the start 
of the linear track and would need to run for 1 s to trigger the next trial start. The outcomes consisted 
of free access to 10% sucrose water presented by a lickometer (reward) or no water (no-reward), 
alongside another presentation of contextual cues, for 3 s. Sucrose water output were controlled by 
Arduino code under the control of ViRMEN code. After the outcome zone mice were transported to 
the beginning of the linear track to start the next trial. The order of reward and no-reward cue was 
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pseudorandomly predetermined through code so as to not lead to more than 2 of the same cues 
presented in a row.

Performance in the task was assessed by average speed and average anticipatory lick rate (during 
the 3 s of cue presentation) for all reward and no-reward trials in a given session. Prior to training, mice 
were given a ‘preexposure’ session where they were exposed to each set of cues, with tap water given 
upon outcome trigger in both. They were then given 10 days of training (referred to as T1-T10). Each 
mouse was given 15 min on the ball for each training session, and supplemental water was given to 
each mouse if they failed to drink 1 mL during a session.

Behavioral analysis
For behavioral experiments, we quantified several variables within a given session per mouse. We 
determined how long it took for mice to initiate trials based on how long (s) it took for their speed to 
be above 1 cm/s for over 1 s after a reward, their speed (cm/s) during trial initiations, the percentage 
of times they stopped (i.e. their speed (cm/s) was below 1 for at least 1 s by the 3rd second after cue 
onset) after cue onset within a given session, and how many rewards they received per minute (total 
rewards per session/minute in a session). For analysis in Figure 1J we calculated time to initiate trial 
on a per trial basis, and rewards per minute on a per minute basis.

We also assessed learning by calculating a stop and normalized lick rate difference, which we refer 
to as the stop and lick discrimination index (DI). The DI was calculated as follows:

	﻿‍
Stop DI = stops in reward cues - stops in no-reward cues

stops in reward cues + stops in no-reward cues‍�

	﻿‍
Lick DI mean lick rate in reward cues - mean lick rate in aversive cues

mean lick rate in reward cues + mean lick rate in aversive cues‍�

A DI of 1 therefore indicates perfect discrimination, while a DI of 0 indicates chance performance. 
For all sessions, stops were assessed by whether they triggered the reward or no-reward out-period of 
the trial (i.e. their speed (cm/s) was below 1 for at least 1 s by the 3rd second after cue onset) and lick 
rate was calculated in the window of time 3 s after the onset of the cues. Repeated measures ANOVA 
with Tukey’s post hoc test was used to assess learning by comparing to discrimination during preexpo-
sure. We separated out cohorts of mice in Figure 3 based on how well they discriminated with stops. 
We determined ‘Learner’ mice by seeing if their stop DI reached above 0.5 for at least 3 consecutive 
days by Training Day 10, and ‘Non-Learner’ mice as those mice who did not.

Chemogenetic inhibition of ACC
For chemogenetic silencing experiments, we injected AAV9-CaMKIIa-hM4D(Gi) (or AAV9-CaMKII-
mCherry for controls) bilaterally into ACC. For a week prior to behavioral shaping, mice were habit-
uated to handling and intraperitoneal injections of saline. A solution of CNO was prepared at a 
concentration of 0.5 mg/mL, and mice were injected at a dosage of 5 mg/kg. Behavioral experiments 
were conducted 45 min after injection.

Optogenetic inhibition of ACC
Mice were injected with AAV1-CaMKII-stGtACR2 bilaterally in ACC, while control cohorts were 
injected with AAV1-CaMKII-mCherry. Cannulas were implanted directly above the injection sites. 
After 3 weeks, mice underwent shaping as described above, then moved onto training. For inhibition 
during training, light from a 473 nm laser (15 mW at fiber tip) was delivered through a mono fiber-
optic patch cord for 3 s (cue zone followed by reinforcement zone) upon the animal entering the cue 
zone, throughout the duration of training (~15 min).

In vivo multi-site photometry recordings
Photometry setup
A custom multi-fiber photometry setup was built as previously (Kim et al., 2016) with some modifi-
cations that were incorporated to increase signal to noise, detailed below. Excitation of the 470 nm 
(imaging) and 405 nm (isosbestic control) wavelengths were provided by LEDs (Thorlabs M470F3, 
M405FP1) which are collimated into a dichroic mirror holder with a 425 nm long pass filter (Thor-
labs DMLP425R). This is coupled to another dichroic mirror holder with a 495 nm long pass dichroic 

https://doi.org/10.7554/eLife.93983
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(Semrock FF495-Di02-25x36) which redirects the excitation light on to a custom branching fiber-optic 
patchcord of five bundled 400 mm diameter 0.22 NA fibers (BFP(5)_400/430/1100-0.48_3 m_SMA-
5xMF1.25, Doric Lenses) using a 10×/0.5 NA Objective lens (Nikon CFI SFluor 10×, Product No. 
MRF00100). GCaMP6f fluorescence from neurons below the fiber tip in the brain was transmitted via 
this same cable back to the mini-cube, where it was passed through a GFP emission filter (Semrock 
FF01-520/35-25), amplified, and focused onto a high sensitivity sCMOS camera (Prime 95b, Photo-
metrics). The multiple branch ends of a branching fiber-optic patch cord were used to collect emission 
fluorescence from 1.25 mm diameter light weight ferrules (MFC_400/430-0.48_ZF1.25, Doric Lenses) 
using a mating sleeve (Doric SLEEVE_ZR_1.25). The excitation was alternated between 405 nm and 
470 nm by a custom-made JK flip flop which takes the trigger input from the sCMOS and triggers the 
two excitation LEDs alternatively. Bulk activity signals were collected using Photometrics data acquisi-
tion software, Programmable Virtual Camera Access Method (PVCAM).

Photometry recordings
While mice performed the self-paced contextual learning VR task we recorded bulk calcium signals 
from five regions: ACC, OFC, AM, BLA, and LC simultaneously. Mice shown in Figures 1 and 2 with 
ACC recordings also contained OFC, AM, BLA, and LC recordings, which we compile and show all 
together in Figure 3. We recorded at 18 Hz with excitation wavelengths alternating between 470 nm 
and 405 nm, capturing calcium dependent and independent signals respectively, resulting in an effec-
tive frame rate of 10 Hz.

Data processing
For analysis, the images captured by the CMOS camera were post-processed using custom MATLAB 
scripts. Regions of interest were manually drawn for each fiber to extract fluorescence values 
throughout the experiment. The 405 nm reference trace was scaled to best fit the 470 nm signal using 
least-squares regression. The normalized change in fluorescence (dF/F) was calculated by subtracting 
the scaled 405  nm reference trace from the 470  nm signal and dividing that value by the scaled 
405 nm reference trace. The true baseline of each dF/F trace was determined and corrected by using 
the MATLAB function msbackadj, estimating the baseline over a 200-frame sliding window, regressing 
varying baseline values to the window’s data points using a spline approximation, then adjusting the 
baseline in the peak range of the dF/F signal.

Bulk neural responses
The adjusted calcium signals from photometry were aligned to task events (e.g. cue onset, reward, 
trial initiation, etc.) in ViRMEn by time-stamping behavioral frames captured through the NIDAQ. 
Photometry signals from all animals from a given region were z-scored across the entire session. The 
mean regional responses to task variables (Figures 1–3) is the mean of these aligned z-scored signals 
across all animals, with s.e.m. calculated across all recorded trials. We then sought to quantify the 
difference in mean average activity patterns observed in response to each cue presentation. To calcu-
late the differential response to reward and trial initiation portions of the task (Figure 1), we calculated 
the time it took for dF/F activity to rise above 1 std and speed to rise above 1 cm/s (Figure 1F) or dF/F 
activity to rise above 0.5 std and speed to rise above 2 cm/s (Figure 1G). We zeroed the dF/F activity 
to the start of reward or 2 s prior to trial initiation.

We then sought to quantify the difference in temporal divergence activity patterns observed in 
reward or no-reward cue presentation. To calculate the differential response to cue onset we calcu-
lated the mean z-scored signal from 0 s to 3 s after cue onset (Figure 2). We also quantified the differ-
ence in pre-cue activity along sequences of trials with one or two no-reward cues to identify ramps 
in neural activity between reward cues (Figure 3). We zeroed the pre-cue activity of all trials within a 
given sequence to the activity at the time of the first reward cue and calculated the mean z-scored 
signal between 2 s before to 0 s before cue onset.

https://doi.org/10.7554/eLife.93983
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In vivo cellular resolution calcium imaging
Imaging setup
For imaging in Figure 4, mice were imaged throughout training in 15 min sessions per day. Volumetric 
imaging was performed using a resonant galvanometer two-photon imaging system (Bruker), with 
a laser (Insight DS+, Spectra Physics) tuned to 920 nm to excite the calcium indicator, GCaMP6f, 
through a 16×/0.8 water immersion objective (Nikon) interfacing with an GRIN lens through a few 
drops of distilled water. Prior to each session, mice were head-fixed and each GRIN lens was carefully 
cleaned with 70% ethanol. Fluorescence was detected through GaAs photomultiplier tubes using the 
Prairie View 5.4 acquisition software. Black dental cement was used to build a well around the implant 
to minimize light entry into the objective from the projector. High-speed z-stacks were collected in the 
green channel (using a 520/44 bandpass filter, Semrock) at 512 × 512 pixels covering each x–y plane of 
800 × 800 mm over a depth of ~150 μm (30  μm apart) by coupling the 30 Hz rapid resonant scanning 
(x–y) to a z-piezo to achieve ~3.1 Hz per volume. Average beam power measured at the objective 
during imaging sessions was between 20 mW and 40 mW. An incoming TTL pulse from ViRMEn at 
the start of behavior enabled time-locking of behavioral epochs to imaging frames with millisecond 
precision.

Source extraction
Calcium imaging data for Figure 4 was acquired by Prairie View 5.4 acquisition software and subse-
quently processed using the Suite2p toolbox (Pachitariu et al., 2017). Motion correction, ROI detec-
tion, and neuropil correction were performed as described. Cell identification was verified by manually 
validating every extracted source. Cell registration across sessions for Figure 4 was performed with a 
combination of custom scripts and existing packages (Cell Reg, Sheintuch et al., 2017).

Calculation of single-cell dF/F and transient identification
For each cell detected via automated source extraction, a normalized ΔF/F was calculated and indi-
vidual Ca2+ transients were identified as previously described (Rajasethupathy et al., 2015). Briefly, 
ΔF/F was defined as: (F – Fbaseline)/Fbaseline, where F is the raw output (‘F’) from the suite2p algorithm, and 
where Fbaseline is the baseline fluorescence, calculated as the mean of the fluorescence values for a given 
cell, continuously acquired over a 20 s sliding window to account for slow timescale changes observed 
in the fluorescence across the recording session. For all analysis, this dF/F was then normalized by 
z-scoring the entire time series across a session. To identify statistically significant transients, we first 
calculated an estimate of the noise for each cell using a custom MATLAB script, with a previously 
described method (Toader et al., 2023; Yadav et al., 2022). In essence, we identified the limiting 
noise cutoff level for a given cell using time periods that are unlikely to contain neural events, and then 
defined a transient as significant if it reached above at least 3σ of this estimated noise level. A custom 
MATLAB script using the function ‘findpeaks’ was used to identify any remaining obvious transients 
not identified by this method (typically when multiple transients occurred in rapid succession). Addi-
tional specifications required transients to persist above this noise level for at least 300 ms (roughly 
twice the duration of the half-life decay time of GCaMP6f). The transient duration was defined as the 
first and last frames where the dF/F reached 3σ. The value of dF/F was set to zero outside the duration 
of every identified transient to minimize effects of residual background fluorescence.

Single-cell cue tuning
To calculate the tuning of an individual cell in anticipation to or during reward or no-reward cues, we 
z-scored the trial averaged the activity on a given neuron across all the cue presentations for a given 
reward or no-reward trial. A cell was considered tuned if the magnitude of its trial averaged z-scored 
activity was at least 0.75 between 3 s before or after cue onset. To find tuning for cues based on 
previous trial history, we preselected cues that were preceded by specific combinations of trials.

Transient time analysis
To calculate the transient times of an individual cell tracked before and after learning, we first prese-
lected cells that are tuned to a particular trial sequence (such as NNR). We then identified the frame 
when the dF/F value first rises above the noise threshold (see Calculation of single-cell dF/F and 
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transient identification) 7 s before or after cue onset (such as for the R cue in an NNR tuned cell). We 
took all the transients for any given cell across all the trials in a session, in case a single cell fired more 
than one transient.

Statistical analysis
Sample sizes were selected based on expected variance and effect sizes from the existing literature, 
and no statistical methods were used to determine sample size a priori. Prior to experiments being 
performed, mice were randomly assigned to experimental or control groups. The investigator was 
blinded to all behavioral studies. Data analyses for calcium imaging (in vitro and in vivo datasets) 
were automated using MATLAB scripts. Statistical tests were performed in MATLAB 2017a, 2021b, or 
GraphPad Prism.
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