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Abstract Heterogeneity of tumor metabolism is an important, but still poorly understood 
aspect of tumor biology. Present work is focused on the visualization and quantification of 
cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) 
of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer 
cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice 
and ex vivo in patients’ tumor samples. The dispersion and bimodality of the decay parameters 
were evaluated to quantify the intercellular metabolic heterogeneity. Our results demonstrate 
that patients’ colorectal tumors have significantly higher heterogeneity of energy metabo-
lism compared with cultured cells and tumor xenografts, which was displayed as a wider and 
frequently bimodal distribution of a contribution of a free (glycolytic) fraction of NAD(P)H within 
a sample. Among patients’ tumors, the dispersion was larger in the high-grade and early stage 
ones, without, however, any association with bimodality. These results indicate that cell-level 
metabolic heterogeneity assessed from NAD(P)H FLIM has a potential to become a clinical prog-
nostic factor.

eLife assessment
This study presents a valuable finding on the heterogeneity of tumour metabolism using fluores-
cence lifetime imaging, measured across 4 cell lines, 4 tumour types of in vivo mouse models, and 
29 patient samples. The indication is that the level of heterogeneity of cellular metabolism increases 
with model complexity and demonstrates high heterogeneity at a clinical level. The evidence 
supporting the claims of the authors is solid, and at the revision stage, the authors have included 
additional samples from 8 patients in the data pool, which is helpful for the conclusions that the 
authors are trying to draw. The work will be of interest to medical biologists developing methods for 
quantifying metabolic heterogeneity.
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Introduction
Reprogramming of energy metabolism is an established hallmark of malignant tumors. Tumor cells 
adjust their metabolism to sustain uncontrolled proliferation and tumor progression, even in the 
conditions of low nutrient supply and hypoxia. There are two main metabolic pathways for energy 
production in the form of ATP – glycolysis and oxidative phosphorylation (OXPHOS). For a long time, 
enhanced glycolysis has been considered as a central feature of tumor metabolism (DeBerardinis 
and Chandel, 2016). Unlike most normal cells, tumor cells rely on glycolysis not only in hypoxia 
(anaerobic glycolysis), but also in normoxia (aerobic glycolysis, or the Warburg effect), which provides 
them with many metabolic intermediates and a high-speed production of ATP for fast growth. The 
glycolytic shift in the tumors traditionally correlates with negative prognosis (Zhou et  al., 2022). 
At the same time, mitochondrial OXPHOS is as important in malignant cells as glycolysis. Although 
defective mitochondria and lower OXPHOS capacity are often observed in cancer cells, this is not 
an absolute phenomenon – many tumors preserve functional mitochondria and normal OXPHOS 
rate (Gentric et al., 2017). Along with glucose, tumors use glutamine and fatty acids as alternative 
substrates. Interestingly, tumor cells are capable of switching between different metabolic pathways 
depending on their own needs and local environment, thus demonstrating a high degree of meta-
bolic plasticity.

Therefore, tumor metabolism is currently viewed as a dynamic, variable system with a diversity of 
cellular metabolic states. In this context, intratumor heterogeneity means that there are the cells with 
different metabolic profiles in a tumor concurrently, and intertumor heterogeneity means that tumors 
of the same type and stage are characterized by the different metabolic strategies (Kim and DeBe-
rardinis, 2019).

Heterogeneity of tumor metabolism can be caused by various factors (Shirmanova et al., 2023). 
Some of them («intrinsic») are related to tumor cells themselves: these are histogenesis of the tumor, 
mutation profile, (epi)genetics factors, differentiation state and proliferation activity, to name a few 
(Pavlova and Thompson, 2016; Sengupta and Pratx, 2016; Seth Nanda et al., 2020; Farhadi et al., 
2022). Other reasons («extrinsic») are associated with the nonuniform microenvironment, for example 
local hypoxia, nutrient distribution, heterogeneity of the vasculature network, interaction of tumor 
cells with the extracellular matrix and stromal cells, etc. (Marusyk and Polyak, 2010; Masson and 
Ratcliffe, 2014; Yoshida, 2015; Stine et al., 2015). Collectively, these factors lead to variability of 
tumor metabolism in space and time. Metabolic heterogeneity as a part of general heterogeneity of 
tumors imposes some difficulties in patients’ diagnosis and treatment and is believed to have a prog-
nostic value (Liu et al., 2022a; Liu et al., 2022b; Pinho et al., 2020).

Although metabolic heterogeneity is a well-recognized feature of tumors, its characterization 
at the cellular level remains scarce. In part, this is associated with the lack of the highly sensitive 
and direct techniques for its observation. Clinical imaging modalities, such as metabolic PET with 
radiolabeled tracers (18F, 11C) and MRI/MRS, allow to capture inter- and intratumor heterogeneity 
among patients with low (~4.5 mm) spatial resolution (Plathow and Weber, 2008). Recently evolved 
methods of single-cell sequencing deliver comprehensive information about the metabolic landscape 
of a tumor with a resolution up to 55–100 µm based on the expression of the metabolic genes, but 
these approaches are rather complex, laborious and not widely available (Evers et al., 2019; Huang 
et al., 2023).

Interrogation of cellular metabolism is possible with the laser scanning fluorescence microscopy 
that enables the detection of autofluorescence of the redox cofactors, such as the reduced form of the 
nicotinamide adenine dinucleotide (phosphate) – NAD(P)H and oxidized flavins (Georgakoudi and 
Quinn, 2023). Recording of the fluorescence decay parameters using the option of the fluorescence 
lifetime imaging (FLIM) allows the evaluation of the states of the cofactor molecules attributed to 
different metabolic pathways. The unbound state of NAD(P)H has a short lifetime (~0.4 ns), while the 
protein-bound state has a long lifetime (~1.7–3.0 ns; Lakowicz et al., 1992). Changes in the relative 
fractions of the unbound and bound NAD(P)H in cancer cells calculated from biexponential fitting of 
decay curve typically indicate the shifts between glycolysis and OXPHOS (Rück et al., 2014). FLIM 
of NAD(P)H is currently considered as a promising, label-free technique for the assessment of meta-
bolic heterogeneity of tumors at the (sub)cellular scale. Several studies, including ours, demonstrate 
the possibilities of NAD(P)H FLIM to visualize metabolic heterogeneity in cultured cells, multicellular 
structures in vitro, tumor xenografts in vivo and patients’ tumors ex vivo (Shah et al., 2015; Skala 
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et al., 2022; Lukina et al., 2019). However, quantifying the degree of tumor heterogeneity is lacking 
in most of these works.

In this paper, we present the results of assessment of cell-level metabolic heterogeneity of 
colorectal cancer using FLIM-microscopy of NAD(P)H. The distributions of the fluorescence decay 
parameters have been analyzed in the four colorectal cancer cell lines (HT29, HCT116, CaCo2, CT26), 
in the mouse tumor models in vivo generated from these cell lines and in the post-operative samples 
of patients’ colon tumors. Quantification of heterogeneity has been performed with the dispersion (D) 
and the bimodality index (BI) of the decay parameters. SHAP (SHapley Additive exPlanations) analysis 
has been conducted to find associations of the heterogeneity degree with clinical prognosis.

Figure 1. FLIM of NAD(P)H in monolayer cell cultures. (A) Representative FLIM images of colorectal cancer cell lines. Scale bar = 50 μm. For FLIM: 
ex. 750 nm, reg. 450–490 nm. (B) The relative contribution of free NAD(P)H (a1, %) in cell cultures. Box shows the median and the quartiles Q1 and Q3, 
whiskers show minimum and maximum. Dots indicate individual cells (n=280 for HT29 cells, n=185 for HCT116 cells, n=146 for CaCo2 cells, n=138 for 
CT26 cells). p-values are shown in Supplementary file 1. (C) The distribution of the NAD(P)H-a1 for the cell lines. The bimodality index (BI-a1) is shown 
on each diagram.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Original FLIM data for Figure 1A (HT29 cells).

Source data 2. Original FLIM data for Figure 1A (HCT116 cells).

Source data 3. Original FLIM data for Figure 1A (CaCo2 cells).

Source data 4. Original FLIM data for Figure 1A (CT26 cells).

Source data 5. The dataset (NAD(P)H-a1 values) used to plot the charts shown in Figure 1B.

Figure supplement 1. FLIM of NAD(P)H in monolayer cell cultures.

Figure supplement 2. Autofluorescence of cofactors FAD and NAD(P)H in cultured cells HT29, HCT116, CaCo2 and CT26.

https://doi.org/10.7554/eLife.94438
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Results
Metabolic heterogeneity assessment in colorectal cancer cell lines
First, using FLIM of NAD(P)H, cellular metabolism was assessed in monolayer cultures of different 
colorectal cancer cell lines (Figure 1A). Typical values of NAD(P)H fluorescence lifetimes were regis-
tered for all cell lines – short τ1~0.39 ns and long τ2~2.03–2.59 ns (Table 1). Due to specifics of 
cellular metabolism, the relative contributions of the free (a1) and bound (a2) forms of NAD(P)H and, 
consequently, the mean lifetimes τm varied between the cell lines. The a1 value decreased and τm 
increased in the following order: CT26 (~86%, 0.57 ns)>HCT116 (~84%, 0.71 ns)>HT29 (~80%, 0.80 
ns)>CaCo2 (~73%, 0.95 ns) (Figure 1B, Table 1). A high NAD(P)H-a1 (low τm) is an indicator of glyco-
lytic shift, which is typical for cells with intense proliferation in a monolayer culture, like CT26 and 
HCT116. CaCo2 cells with the lowest a1 value had more OXPHOS-shifted metabolism, which can be 
associated with the expression of morphological and functional characteristics of mature enterocytes 
of normal small intestine by this cell line (Lea, 2015). All cell lines statistically differed from each other 
(for p-val, see Supplementary file 1), and intercellular variations of the a1 parameter were minor 
(<3%).

To quantify the metabolic heterogeneity, the BI was calculated for distributions of both a1 
(Figure 1C, Table 2) and τm values (Figure 1—figure supplement 1, Table 1). For all cell lines the BI 
of the a1 distribution did not exceed 1.1 (the threshold of bimodality, Wang et al., 2009), justifying 
the uniformity of cell metabolism in a culture, which is consistent with the general view on standard 
cell lines as homogenous populations (Auman and McLeod, 2010; Idrisova et al., 2022). The BI-τm 
was, however, rather high (>1.0) in all cell lines except HCT116 (0.90). In the further experiments on 
tumors the BI-a1 was used as more relevant.

Additionally, the dispersion of NAD(P)H-a1 (D-a1) was evaluated for each cell line to describe the 
extent of distribution of the data around the median (Table 2). The D-a1 value varied from 1.67% in 
CT26 cell culture to 3.41% in CaCo2.

Metabolic heterogeneity in mouse tumor models in vivo
Next, FLIM of NAD(P)H was performed in vivo on mouse tumor models, obtained from the colorectal 
cell lines shown above (Figure  2A). All the tumors were verified by histopathological analysis 
(Figure 2B).

Among the tumors, CT26 had the highest (~82%), and CaCo2 had, on average, the lowest (~76%, 
p-val=0.0028) contribution of free NAD(P)H a1, similar to the cultured cells (Figure 2C, Table 1).

Most of the individual tumors showed larger (≥3%) inter-cellular variations of NAD(P)H-a1 than 
corresponding cell lines, where the deviation from the median was ≤3%. The dispersion D-a1 was 
in the range of 2.6–4.0% (Table 2). At that, intertumor differences across each type of tumor were 
insignificant.

Table 1. NAD(P)H fluorescence decay parameters of colorectal cancer cells in monolayer cultures in vitro and in mouse tumors in 
vivo.
Cell line τm, ns τ1, ns τ2, ns a1, % BI-τm

Cell lines in vitro

HT29 0.80±0.05 0.39±0.03 2.47±0.17 80.11±1.34 1.05

HCT116 0.71±0.05 0.40±0.02 2.39±0.20 84.13±1.58 0.90

CaCo2 0.95±0.10 0.38±0.05 2.53±0.24 73.48±2.26 1.30

CT26 0.57±0.06 0.35±0.03 2.03±0.22 86.48±1.28 1.28

Tumors in vivo

HT29 0.84 [0.81;0.90] 0.46 [0.42;0.48] 2.66 [2.54;2.76] 81.54 [79.93;83.13] 0.85±0.35

HCT116 0.88 [0.85;0.92] 0.47 [0.45;0.48] 2.66 [2.56;2.77] 80.61 [79.32;81.96] 0.91±0.28

CaCo2 1.02 [0.86;1.19] 0.42 [0.38;0.50] 2.91 [2.61;3.32] 76.89 [74.06;78.52] 1.51±0.71

CT26 0.72 [0.67;0.78] 0.39 [0.37;0.41] 2.34 [2.21;2.50] 82.12 [80.96;84.70] 1.20±0.36

τm – mean lifetime, τ1 – short lifetime component, τ2 – long lifetime component, a1 – relative contribution of the short lifetime component, BI-τm – bimodality index of the mean lifetime.

https://doi.org/10.7554/eLife.94438
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Figure 2. FLIM of NAD(P)H in mouse tumors in vivo. (A) FLIM images of NAD(P)H of tumor cells in mouse models in vivo. Scale bar = 50 μm. For FLIM: 
ex. 750 nm, reg. 450–490 nm. (B) Representative histological slices of tumors, hematoxylin/eosin (HE) staining, initial magnification 20×. Scale bar = 
50 μm. (C) The relative contribution of free NAD(P)H (a1, %) in three representative tumors (numbered 1–3) obtained from different cell lines. Box shows 
the median and the quartiles Q1 and Q3, whiskers show minimum and maximum. Dots indicate individual cells (n=280 for HT29, n=340 for HCT116, 
n=160 for CaCo2, n=350 for CT26). p-values are shown in Supplementary file 1. (D) Representative distributions of the NAD(P)H-a1 for each type of 
tumor. The bimodality index (BI-a1) is shown on the diagrams.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Original FLIM data for Figure 2A (HT29 tumor).

Source data 2. Original FLIM data for Figure 2A (HCT116 tumor).

Source data 3. Original FLIM data for Figure 2A (CaCo2 tumor).

Source data 4. Original FLIM data for Figure 2A (CT26 tumor).

Source data 5. The dataset (NAD(P)H-a1 values) used to plot the charts shown in Figure 2C.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.94438
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The BI-a1 values in mouse tumors were generally higher than in monolayer cultures (Figure 2D, 
Table 2). In 5 of 19 tumors the BI-a1 was ≥1.1, indicating the bimodal distribution of the a1 parameter, 
that is the presence of two subpopulations of cells with different metabolism. Ten tumors had the BI-a1 
in the range of 0.7–1.0, which suggests that, while the distribution of the estimated parameter was 
unimodal, it was either wide or asymmetric, thus, also indicating some degree of heterogeneity. In 4 
of 19 tumors the BI-a1 was small (0.43–0.69), suggesting uniformity of cells’ metabolism. Given the 
genetic identity of cells in standard cell lines, we can assume that the nonuniform microenvironment 
in the tumors was a major source of their variable metabolism.

Metabolic heterogeneity in colorectal cancer samples from patients
NAD(P)H FLIM images were collected from 29 postoperative samples of patients’ colorectal adenocar-
cinomas, among which were the tumors of the I–IV stages, poorly and highly differentiated (Table 3, 
Supplementary file 2). The representative FLIM and histological images are presented in Figure 3A 
and B correspondingly. Patients’ tumors showed fluorescence lifetimes of τ1~0.45 ns and τ2~1.80–
3.20 ns (Supplementary file 2), which were comparable with the values in human tumor xenografts 
(Table 1). The parameter NAD(P)H-a1 was in the range of ~62–80% and NAD(P)H-τm was in the range 

Figure supplement 1. Immunohistochemical analysis of the expression of EpCAM (green, epithelial cells marker) and vimentin (red, mesenchymal cells 
marker) in mouse tumors.

Figure supplement 2. Autofluorescence of cofactors FAD and NAD(P)H in HT29 and HCT116 tumor xenografts in vivo.

Figure 2 continued

Table 3. Information about patients and their colorectal tumors.
Characteristics Number Percent

Gender

Male 16 55.17

Female 13 44.83

Age

Mean ±SD 65.28±11.92 y.o. -

Median 67 y.o. -

Tumor staging

I 3 10.34

IIA 6 20.69

IIB 3 10.34

IIIB 11 37.93

IIIC 1 3.45

IV 5 17.25

Tumor site

Cecum colon 2 6.90

Transverse colon 10 34.48

Hepatic flexure 3 10.34

Sigmoid colon 8 27.59

Rectum 6 20.69

Grade

Low (G1) 4 13.79

Moderate (G2) 19 65.52

High (G3) 6 20.69

https://doi.org/10.7554/eLife.94438
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Figure 3. FLIM of NAD(P)H in patients’ tumor samples ex vivo. (A) Representative FLIM images of patient tumors. Scale bar = 50 μm. For FLIM: ex. 
750 nm, reg. 450–490 nm. (B) Histopathology of tumors, hematoxylin/eosin (HE) staining, initial magnification 20×. Scale bar = 50 μm. (C) The relative 
contribution of free NAD(P)H (a1, %) in patients’ tumors (numbered 1–29). Box shows the median and the quartiles Q1 and Q3, whiskers show minimum 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.94438
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of 0.80–1.20 ns, indicating that patients’ tumors generally had larger variability of metabolic statuses 
than cancer cells in vitro and in xenografts in vivo.

A high degree of inter- and intratumor variability of cellular metabolism was detected in patients’ 
tumors (Figure 3). Less than half of the tumors (13 of 29) showed deviation of NAD(P)H-a1 from the 
median <10% across the cells, and for the rest (16 of 29) the variations were 10–25%. The dispersion 
D-a1 varied significantly among the samples, from 2.19% to 11.99%.

According to the heterogeneity assessment using the bimodality index, 14 of 29 tumors were 
metabolically highly heterogeneous (BI-a1 ≥1.1) (Figure 3D, Table 2). In 14 tumors the BI-a1 value 
was in the range of 0.50–1.0, which indicated the presence of metabolically different cells but not 
clearly separated into two clusters. Only one tumor sample (p16) was metabolically homogeneous 
(BI-a1=0.24).

Notably, the bimodality index showed no correlation with dispersion. That is, among the samples 
there were those with bimodal distribution, but small dispersion of NAD(P)H-a1 in a cell population 
(e.g. samples № 12, 13, 21), and vice versa (e.g. samples № 3, 7, 8).

Therefore, using NAD(P)H FLIM we have observed and quantified metabolic heterogeneity of 
patients’ colorectal tumors. Unlike tumor xenografts obtained from the cell lines that are thought to be 
genetically stable and identical, patients’ tumors are genetically diverse, which could also contribute 
to their metabolic heterogeneity, in addition to microenvironmental factors.

Interrelation between metabolic heterogeneity and clinicopathological 
characteristics of tumors
The relationships between the metrics of cellular heterogeneity – the bimodality index BI and disper-
sion D of NAD(P)H fluorescence decay parameters – with the clinical parameters of the tumor, such as 
the stage according to the TNM system, and the grade (G), were analyzed (Figure 4). Due to the small 
sample size, all tumors were divided into two groups by each parameter: T1 +T2 and T3 +T4; N0M0 
and all the others with metastases; G1 +G2 and G3.

SHAP analysis was used to estimate the importance of each variable (D-τ2, D-a1, D-τm, BI-τ2, 
BI-a1, BI-τm) coming from the biexponential decay curves for individual predictions. Fluctuations of 
τ1 (fluorescence lifetime of free NAD(P)H) were not included in the analysis because they do not have 
a rational biological interpretation.

The results showed that, among the variables, dispersion of a1 had a major relative weight in the 
prediction of all the clinical characteristics studied.

The tumors of the advanced stages T3 and T4 were characterized by reduced dispersion of a1 
compared with early stages T1 and T2, indicating their lower heterogeneity (Figure 4). The stage of 
the tumor T was significantly associated with the value of D-a1 (p-val=0.02).

If metastases were present (N and M were different from 0 in TNM), then those primary tumors 
showed a tendency to have lower D-a1 compared with tumors for which metastases were absent 
(p-val=0.056).

The high-grade tumors displayed a higher value of dispersion D-a1 than the low-grade ones 
(Figure 4). Mann-Whitney U test showed a statistically significant difference between the groups of 
different grades (p-val=0.04).

Other variables had no significant associations with clinicopathological parameters of the tumors 
and did not separate the groups of tumors reliably (see, for example, box-plots for BI-τm and BI-a1 
values, Figure 4—figure supplement 1).

and maximum. Dots are the measurements from the individual cells. (D) Representative distributions of the NAD(P)H-a1 for patients’ tumors. The 
bimodality index (BI-a1) is shown on the diagrams.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. The dataset (NAD(P)H-a1 values) used to plot the charts shown in Figure 3C.

Figure supplement 1. Immunohistochemical analysis of the expression of EpCAM (green, epithelial cells marker) and vimentin (red, mesenchymal cells 
marker) in patients’ tumors.

Figure supplement 2. Immunohistochemical analysis of the expression of GLUT3 and LDHA in patients’ tumors.

Figure supplement 3. Autofluorescence of cofactors FAD and NAD(P)H in patient tumor ex vivo (№ 11).

Figure 3 continued

https://doi.org/10.7554/eLife.94438
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Thus, the higher dispersion of free NAD(P)H fraction in a sample was characteristic of colorectal 
tumors of early stages (T1, T2) and high grade (G3) and thus showed a potential as a prognostic 
marker.

Discussion
The altered energy metabolism is known to support tumor progression because tumor cells are criti-
cally in need of ATP for uncontrolled proliferation and growth. It has been established that tumor cells 
explore different metabolic programs and utilize multiple fuels even within one tumor, thus leading to 
metabolic heterogeneity. Until recently, direct observation of cell-level heterogeneity of tumor metab-
olism was a challenging task, but became possible with the evolution of advanced optical microscopic 

Figure 4. The relationships between metabolic heterogeneity and clinicopathological characteristics of patients’ tumors. (A) Plots of SHAP analysis for 
the built decision tree models to determine the importance of dispersion (D) and bimodality index (BI) of the fluorescence decay parameters of NAD(P)
H. The higher the value of the variable, the more red the dot is. (B) Box-plots of D-a1 with highest significance, * p-val <0.05.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The relationships between parameters BI-τm (A) and BI-a1 (B) and clinicopathological characteristics of patients’ tumors.

https://doi.org/10.7554/eLife.94438
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techniques, such as two-photon fluorescence lifetime microscopy, FLIM. In the present research, using 
FLIM of redox cofactor NAD(P)H, which possesses endogenous fluorescence, we compared metabolic 
features of colorectal cancer cells across in vitro and in vivo models and patients’ samples. For the first 
time, it was shown that heterogeneity of cellular metabolism increases with model complexity and is 
the highest at the level of patients’ tumors. The heterogeneity was quantified on the basis of FLIM 
data and correlated with clinical characteristics of the tumors, which has not been done before.

A lot of studies, including the works of our group, demonstrate the possibilities of FLIM for assess-
ment of the intra- and intertumor heterogeneity of metabolism in different models. Using NAD(P)
H FLIM, metabolic heterogeneity was revealed in colorectal cancer cell cultures obtained from the 
patients’ tumors, whereas the cells of the standard cell lines were uniform in their metabolism (Shirshin 
et  al., 2022). J. Chacko and K. Eliceiri observed intercellular heterogeneity of metabolism in the 
MCF10A human breast epithelial cell line (Chacko and Eliceiri, 2019). Several studies show metabolic 
heterogeneity of 3D multicellular structures. For example, tumor spheroids obtained from the cervical 
cancer cell line HeLa (Lukina et al., 2018) or murine colorectal carcinoma cell line CT26 (Shirmanova 
et al., 2021) displayed the differences in metabolism between the outer and the inner cell layers 
with the outer layers being more glycolytic (higher NAD(P)H-a1). The spheroids generated from the 
patients’ derived glioblastoma cultures did not show metabolic zonality, but generally had greater 
intercellular variations of NAD(P)H lifetime parameters than the spheroids from standard line U373 
MG (Yuzhakova et al., 2023). A spectrum of works by M. Skala’ group demonstrates an opportunity 
of the optical metabolic imaging for heterogeneity assessment in patient tumor-derived organoids on 
the example of a breast, pancreatic (Sharick et al., 2020; Walsh et al., 2014; Walsh et al., 2017), 
head and neck (Shah et al., 2017), and colorectal cancers (Skala et al., 2022).

In the research in vivo, the heterogeneous structure of tumor and its microenvironment was 
shown on PyMT mammary tumors (Burkel et al., 2022). Analysis of the optical metabolic parameters 
revealed heterogeneity of the B78 mouse melanoma model, caused by different microenvironments 
(Heaton et al., 2023). The authors suggested that tumor heterogeneity could be induced by such 
factors as pH, nutrient and oxygen availability, or activation of immune cells. In the in vivo study on 
HeLa tumor xenografts, metabolically different cells were detected in the cellular and collagen-rich 
areas (Shirmanova et al., 2018). Recently, we demonstrated a high variability of cellular metabolic 
statuses in CT26 tumors of large size compared with small tumors, which correlated with heteroge-
neous oxygen distribution (Parshina et al., 2022). A significant intertumor heterogeneity of metabo-
lism was observed in patient-derived glioblastoma xenografts, which differed them from standard U87 
glioma (Yuzhakova et al., 2022).

In our study, we compared metabolic FLIM parameters of colorectal cell lines, mouse tumor models 
and patients’ colorectal tumors. As expected, intercellular heterogeneity of metabolism was the 
highest in patients’ tumor samples as followed from a wide and often bimodal distribution of NAD(P)
H-a1. This result is consistent with the study by J. Auman and H. McLeod using genome-wide gene 
expression data; the authors concluded that colorectal cancer cell lines lack the molecular heteroge-
neity of clinical colorectal tumors (Auman and McLeod, 2010).

Cell-level metabolic heterogeneity may be present in the cell population initially, as discussed 
above, or develop during the treatment. The heterogeneous metabolism after treatment was 
detected in tumor organoids (Walsh et al., 2016; Walsh et al., 2014; Gillette et al., 2021) and in 
animal models (Heaster et al., 2019). In any case, the presence of metabolically distinct cells led to 
the varying drug responses.

An assessment of metabolic heterogeneity in patients’ tumors seems valuable from a clinical 
point of view. The great efforts to translate FLIM in the clinical setting both in vivo and ex vivo have 
been done by several groups (Jo et al., 2018; Alfonso-Garcia et al., 2023; Weyers et al., 2022; 
Seidenari et al., 2012; Mycek et al., 1998; Herrando et al., 2024; Lagarto et al., 2020). Clinical 
translation is spearheaded through macroscopic implementation and point-spectroscopy approaches 
that are capable of large sampling areas and enable access to otherwise constrained spaces but 
lack cellular resolution, making the interpretation of the results a complicated task. Previously, using 
NAD(P)H FLIM-microscopy of postoperative samples, we observed a high degree of inter- and intra-
tumor heterogeneity of T3 stage colorectal tumors in comparison with normal colon samples (Lukina 
et al., 2019). Unfortunately, most of the tumor types are inaccessible for microscopic investigation in 
patients using clinically approved techniques. The exception is the skin tumors that can be inspected 

https://doi.org/10.7554/eLife.94438
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with clinical systems, like MPTflex or MPTcompact (JenLab, Germany). At the same time, endoscopic 
FLIM-microscopy has been developing actively since the last ten years, which opens the prospects 
for in vivo examination of a wide spectrum of patients’ tumor types (Sun et al., 2013; Farhadi et al., 
2022). In principle, an assessment of tumor metabolism in biopsy samples is also possible, which 
widens the potential clinical applications of FLIM.

Although metabolic heterogeneity at the cellular level has been reported for different models and 
patient-derived cells, the comparisons between different samples and studies are hard to make as 
most of them lack any quantification of the heterogeneity.

Different approaches have been proposed to quantify the metabolic differences identified by FLIM. 
For example, in the papers (Shah et al., 2015; Sharick et al., 2019) a heterogeneity index and its 
modified form the weighted heterogeneity index (wH-index) were used for quantitative analysis of 
cellular heterogeneity. The wH-index is based on the Gaussian distribution models and is a modified 
form of the Shannon diversity index. Using this index the authors described the variations of a combi-
nation of parameters, such as NAD(P)H fluorescence lifetime, FAD fluorescence lifetime and optical 
redox ratio, defined as the OMI-index. The methods developed in Heaster et al., 2019 established 
the combination of optical metabolic imaging variables and spatial statistical analysis (spatial prox-
imity analysis, spatial clustering, multivariate spatial analysis, spatial principal components analysis) 
to quantify the spatial heterogeneity of tumor cell metabolism. Recently, we have proposed a new 
quantitative criterion – the bimodality index (BI) – to accurately discriminate between metabolically 
diverse cellular subpopulations on the basis of NAD(P)H FLIM data (Shirshin et al., 2022). The BI 
provides dimensionless estimation on the inherent heterogeneity of a sample by checking the hypoth-
esis about approximation of a fluorescence decay parameter distribution by two Gaussians. Using the 
BI, the metabolic heterogeneity has been identified in standard and primary cancer cells cultures after 
chemotherapy with 5-fluorouracil.

Here, we used the dispersion of NAD(P)H D-a1 and bimodality index BI-a1 for quantifying meta-
bolic heterogeneity of patient’s tumors and compared it with in vitro and in vivo models. Of these 
two metrics of heterogeneity, the dispersion appeared more valuable in terms of tumor prognosis. 
Our results on patients’ colorectal tumors revealed some associations between the dispersion of a1 
within a sample and tumor stage – the early-stage tumors (T1, T2) were metabolically more hetero-
geneous than the late-stage ones (T3, T4). A degree of heterogeneity was also associated with differ-
entiation state, a stage-independent prognostic factor in colorectal cancer where the lower grade 
correlates with better the prognosis. The high-grade (G3) tumors had significantly higher dispersion of 
a1, compared with low-grade ones (G1, G2). These results have a rational explanation from the point 
of view of biological significance of heterogeneity. In stressful and unfavorable conditions, to which 
the tumor cells are exposed, the spread of the parameter distribution in the population rather than 
the presence of several distinct clusters (modes) matters for adaptation and survival. The high diver-
sity of cellular metabolic phenotypes provided the survival advantage, and so was observed in more 
aggressive (undifferentiated or poorly differentiated) and the least advanced tumors.

One of the possible reasons for metabolic heterogeneity could be the presence of stromal cells or 
diversity of epithelial and mesenchymal phenotypes of cancer cells within a tumor. Immunohistochem-
ical staining of tumors for EpCam (epithelial marker) and vimentin (mesenchymal marker) showed that 
the fraction of epithelial, EpCam-positive, cells was more than 90% in tumor xenografts (Figure 2—
figure supplement 1) and on average 76 ± 10% in patients’ tumors (Figure 3—figure supplement 
1). However, the ratio of EpCam- to vimentin-positive cells in patients’ samples neither correlated 
with D-a1 nor with BI-a1, which means that the presence of cells with mesenchymal phenotype did not 
contribute to metabolic heterogeneity of tumors identified by NAD(P)H FLIM.

Metabolic heterogeneity of colorectal cancer is discussed in the literature. The focus of many of 
these studies is on the molecular classification of tumors by the analysis of their metabolic features. 
For example, Zhang et al., 2020 showed that colorectal tumors could be classified into three distinct 
metabolism-relevant subtypes and developed a metabolism-related signature consisting of 27 meta-
bolic genes, which were expressed differentially among the three subtypes and correlated with 
patients’ overall survival . Varshavi et al., 2020 performed metabolic characterization of colorectal 
cancer cells depending on KRAS mutation status using 1H NMR spectra of the metabolites. They 
revealed that some mutations led to an increase of glucose consumption and lactate release, while 
others, on the contrary, decreased it. Numerous studies have investigated the prognostic potential of 
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key metabolic (mainly glycolytic) enzymes assessed from immunohistochemistry (IHC). For example, 
glucose transporter 3 (GLUT3) was highly expressed in colorectal cancer tissues of 63% of patients as 
relative to benign tissues and correlated with poor clinical outcomes (Dai et al., 2020). In the study 
by Offermans et al., 2022 a sum score based on the expression levels of six proteins (PTEN, p53, 
GLUT1, PKM2, LDHA, MCT4) in colorectal cancer showed worse survival of patients with a higher 
probability of the Warburg effect . Mizuno et al., 2020 found that expression of lactate dehydro-
genase A (LDHA) at the invasive margin of the tumor was weaker than in the center. Note that stan-
dard molecular genetics and immunolabeling techniques identify the metabolic differences between 
tumors or between large areas within a tumor, while a single cell level metabolic information is lacking. 
We have verified the inability of IHC to detect intercellular differences in metabolic states based on 
the expression of LDHA and GLUT3. One can see from representative IHC images that the expression 
level of glycolytic enzymes provides some information about intertumor metabolic differences, but 
is insensitive to intercellular variability of metabolism registered by NAD(P)H FLIM (Figure 3—figure 
supplement 2).

Liu et al. found a correlation between intratumor metabolic heterogeneity parameters of 18F-FDG 
PET/CT and KRAS mutation status in colorectal cancer – KRAS mutant tumors had more 18F-FDG 
uptake and heterogeneity than wild-type KRAS (Liu et al., 2022a). In a different study they showed 
that intratumor metabolic heterogeneity assessed from 18F-FDG PET/CT is an important prognostic 
factor for progression-free survival and overall survival in patients with colorectal cancer (Liu et al., 
2022b). The value of intratumoral metabolic heterogeneity in 18F-FDG PET/CT for prediction of recur-
rence in patients with locally advanced colorectal cancer was also demonstrated by Han et al., 2018. 
In the study by Zhang et al. intratumoral metabolic heterogeneity derived from 18F-FDG PET/CT 
was higher in colorectal tumors with a high microsatellite instability (MSI) – an important prognostic 
biomarker, and predicted MSI in stage I–III colorectal cancer patients preoperatively (Zhang et al., 
2023). Lin et  al., 2021 identified two subtypes of colorectal cancer using a metabolic risk score 
based on genes that were mostly involved in lipid metabolism pathways; this criterion was applied for 
survival prediction – patients with a higher metabolic risk score had worse prognosis. Therefore, these 
clinical studies consider intratumor metabolic heterogeneity as a useful prognostic factor.

In the context of metabolic heterogeneity assay using NAD(P)H FLIM, some limitations should be 
mentioned. If the investigation of patients’ tumor metabolism is performed on ex vivo tissue samples, 
one should be careful to work with freshly excised tissue or store the sample in the appropriate 
conditions. As we found previously, FLIM parameters of autofluorescence change very quickly (within 
15 min) on air, but can be preserved in 10% BSA on ice during 3 h (Lukina et al., 2019). A limitation 
of our study is that microscopic FLIM images of the tissues were processed manually to obtain infor-
mation about each individual cell, which made the analysis time-consuming. The methods for segmen-
tation of tissue images have been continuously developed in digital histopathology (Ahmed et al., 
2022; van der Laak et al., 2021). As for FLIM, there are approaches to automatic segmentation of 
FLIM images of cell cultures and some normal tissues on the basis of machine learning (Smith et al., 
2019). So, in spite of the complex and heterogeneous tissue architecture, there are expectations that 
the task of identification of the individual cells in FLIM images of tumor tissues will be solved in the 
nearest future. Finally, a small size of the microscopic field of view (typically less 300 µm) limits the 
inspected area within the tumor sample. Taking into account a high spatial heterogeneity of clinical 
tumors, there is no confidence whether the inspected area is sufficiently representative.

Fluorescence of flavins can also serve as a biomarker of cellular metabolism independently of or in 
conjunction with NAD(P)H, for example in the optical redox ratio, OMI or FLIRR indexes (Walsh et al., 
2014; Wallrabe et al., 2018; Kalinina et al., 2021). With the aim to assess metabolic heterogeneity in 
colorectal cancer, we have made an attempt to record the signal from flavins in addition to NAD(P)H. 
Figure 1—figure supplement 2, Figure 2—figure supplement 2 and Figure 3—figure supplement 
3 show the examples of fluorescence images of flavins and NAD(P)H in colorectal cancer cell cultures 
and tissues. However, the fluorescence intensity of flavins was very low (~27 times lower than NAD(P)
H) and insufficient to collect the required number of photons for correct fitting. Yet, this observation 
does not exclude that flavins can be useful in the heterogeneity assays of cancer of different origin.

Owing to the high (sub)cellular resolution (~200–500  nm), FLIM-microscopy provides unique 
information about metabolic heterogeneity, unavailable with any other methods, like 18F-FDG PET/
CT, spatial transcriptomics or immunohistochemistry. Therefore, FLIM-microscopy of endogenous 
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cofactors is not only a powerful research technique, which is capable of improving our understanding 
of cellular metabolic diversity, but also the tool with a great potential for clinical translation to predict 
disease outcome.

Conclusions
It is now evident that metabolic processes in cancer are highly variable, which make the tumor metab-
olism extremely heterogeneous. Metabolic heterogeneity of tumors complicates treatment efforts 
and is thought to be a negative prognostic factor. Due to the lack of methods for direct observa-
tion and quantification of metabolic heterogeneity at cellular level, it has been poorly characterized 
so far. Our assessments of cell-level heterogeneity from FLIM-microscopy of NAD(P)H clearly show 
that heterogeneous metabolic landscape of a patient’ tumor is hardly reproducible in in vitro and 
in vivo models, which underlie the importance of such investigations on clinical material. Although 
the present research included a limited number of patients (n=29), the obtained results showing the 
associations between metabolic heterogeneity and clinical features of tumors allow us to consider it 
as a potential prognostic marker. We plan to continue this study to collect more tumor samples and 
estimate the correlations between their metabolic heterogeneity and follow-up clinical outcomes.

Materials and methods
Cell cultures
The human colorectal carcinoma cell lines HТ29, HCT116, CaCo2 and murine colon carcinoma 
cell line CT26 were used in the study. Cell lines were obtained from the Cell Culture Collection of 
Ivanovsky Institute of Virology, Gamaleya National Research Center of Epidemiology and Microbi-
ology (Moscow, Russia), and their identity has been authenticated using STR profiling. Cells were 
grown in Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Carlsbad, CA, USA) supplemented 
with 10% fetal bovine serum (FBS; Gibco, Carlsbad, CA, USA), 2 mM glutamine (Gibco, Carlsbad, CA, 
USA), 10 mg/mL penicillin (Gibco, Carlsbad, CA, USA), 10 mg/mL streptomycin (Gibco, Carlsbad, CA, 
USA). The cells were incubated at 37 °C, 5% CO2, and 80% relative humidity and passaged three times 
a week. The passaging of cells was carried out at a confluence of 70–80% with trypsin-EDTA (Thermo 
Fisher Scientific, Waltham, MA, USA). Prior to use, the cell lines were tested for mycoplasma using 
PCR analysis and found to be uncontaminated.

For fluorescence microscopic studies the cells were seeded in 35 mm glass-bottomed FluoroDishes 
(Ibidi GmbH, Gräfelfing, Germany) in the amount of 5х105 cells in 2 mL of DMEM and incubated for 
24 h (37 °C, 5% CO2). Before FLIM, DMEM was replaced with the FluoroBrite DMEM (Thermo Fisher 
Scientific, Waltham, MA, USA) for fluorescence imaging.

Cell culture experiments included two independent replicates for each cell line, the data from 
which were then combined.

Tumor models
In vivo experiments were performed on female nude and Balb/C mice weighing ∼20–22 g purchased 
from a certified SPF vivarium of the Lobachevsky State University (Nizhny Novgorod, Russia). The 
animal study was conducted according to the guidelines of the Declaration of Helsinki and approved 
by the Local Ethical Committee of the Privolzhsky Research Medical University (approval № 09 from 
30.06.2023). All surgery was performed under anesthesia, and every effort was made to minimize 
suffering. To generate tumors, the suspensions of cancer cells were injected subcutaneously into the 
tight in the following amount: 1.5×106 of НТ29 cells in 100 µL PBS, 1.0×106 of НCT116 cells in 100 µL 
PBS, 5.5×106 of CaCo2 cells in 100 µL PBS. CT26 cells (2.0×105 cells in 20 µL PBS) were inoculated 
intracutaneously in the ear. The tumor volume was measured using a caliper, and calculated using the 
formula v=a × b×1/2b, where a is the length and b is the width of the tumor. In vivo studies were done 
on 21st day of growth for HT29 tumors (244.8±36.6 mm3), on the day 23 for HCT116 (533.9±42.0 
mm3), on the day 68 for CaCo2 (397.8±65.2 mm3), and on the day 14 for CT26 (60.9±5.6 mm3). The 
groups of mice with HT29 and HCT116 tumors included three animals, CaCo2 - four animals, and 
CT26 - nine animals.

Mice were anesthetized by an intramuscular injection of Zoletil (40 mg/kg, Virbac SA, France) and 
2% Rometar (10 mg/kg, Spofa, Czech Republic) for intravital microscopy. The skin over the tumor was 
opened and the tumor was covered with a coverslip.

https://doi.org/10.7554/eLife.94438
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After in vivo study, the mice were euthanized by cervical dislocation and tumors were surgically 
removed for histological analyses.

Patient samples
Twenty-nine surgical samples of patients’ colorectal tumors were obtained in the Nizhny Novgorod 
Regional Oncological Center (Nizhny Novgorod, Russia) during the tumor resection. The study with 
the use of patients’ material was approved the Local Ethical Committee of the Privolzhsky Research 
Medical University (approval № 09 from 30.06.2023). All the patients gave informed written consent 
and consent to publish prior to the enrollment in the study.

All the patients had a histological verification of colorectal adenocarcinoma, the stage definition 
according to the TNM system, and the definition of the grade. There were tumors of the I–IV stage 
of low (G1), moderate (G2), and high (G3) grade. The tumors were localized in different sites of the 
large intestine (caecum, colon, rectum). Twenty-seven of 29 patients did not receive any anti-cancer 
therapy before the surgery, two patients (7 and 8) have been pretreated with radiotherapy or chemo-
therapy. Patients summary is presented in Table 3, data about their clinicopathological characteristics 
is presented in Supplementary file 2.

Immediately after surgical excision, tumor samples, 0.5–1 cm3 in size, were wrapped in gauze 
soaked in a solution of 10% BSA (bovine serum albumin), placed in sterile Petri dish on ice, transferred 
to the laboratory within 30 min and examined on the laser scanning microscope immediately. This 
storage protocol allows to preserve autofluorescence lifetime parameters unchanged for at least 3 h 
(Lukina et al., 2019).

FLIM-microscopy
FLIM of NAD(P)H was performed using the laser scanning microscope LSM 880 (Carl Zeiss, Germany) 
equipped with a TCSPC-based FLIM module (Becker & Hickl GmbH, Germany). The Ti:Sa femtosecond 
laser MaiTai HP (Spectra-Physics Inc, USA, repetition rate 80 MHz, pulse duration 120 fs) was used 
for two-photon excitation of NAD(P)H at a wavelength of 750 nm. Fluorescence signal was registered 
in the range 450–490 nm. The laser power applied to the samples was ∼6 mW. FLIM images were 
obtained using the water-immersion objective C-Apochromat W Korr 40×/1.3 (Carl Zeiss, Germany). 
Image collection time was 60 s. In total, 5–10 images were obtained from each sample.

FLIM images were processed in the SPCImage 8.5 software (Becker & Hickl GmbH, Germany). 
NAD(P)H fluorescence was analyzed in the cytoplasm of individual cells, in total 50–200 cells in each 
sample. Fluorescence decay curves were fitted by a bi-exponential model with a goodness of fit 
χ2  0.8–1.2. The following fluorescence decay parameters were analyzed: short component corre-
sponding to the free form of NAD(P)H (τ1), long component corresponding to the protein-bound 
NAD(P)H (τ2), their relative contributions (а1 и а2, correspondingly, a1+a2=100%), and the mean 
fluorescence lifetime (‍τm = a1×τ1+a2×τ2

a1+a2 ‍).

Histopathology and immunohistochemistry (IHC)
Formalin-fixed tumor samples were embedded in paraffin according to standard procedure and cut 
parallel to the optical plane. The sequential sections 7 μm thick were stained with hematoxylin and 
eosin, sections 4 µm thick were used for immunohistochemical staining.

Tissue sections were stained with primary antibodies to epithelial cell adhesion molecule EpCAM 
(Thermo Fisher Scientific, mouse, cat. #14-9326-82, dilution 1:700) and an intermediate filament 
protein vimentin (Abcam, ab137321, rabbit, dilution 1:700), according to the manufacturer’s protocol. 
Secondary antibodies goat anti-mouse (Alexa Fluor 488) and goat anti-rabbit (Alexa Fluor 555) were 
used. Tissue sections were imaged using EVOS M7000 Imaging System (Thermo Fisher Scientific 
Inc, Waltham, MA USA) with LED cubes GFP (ex.470/22 nm, em.510/42 nm for Alexa 488) and RFP 
(ex.531/40 nm, em. 593/40 nm for Alexa 555) at x20 magnification.

Immunohistochemical staining for LDHA and GLUT3 was performed using immunostainer 
«Bond-Max» (Leica Biosistems, UK) with BOND 5.1 software, according to the standard protocols 
recommended by the manufacturer. Staining protocol included preliminary dewaxing of the sections 
and unmasking in a high pH buffer based on ethylenediaminetetraacetic acid for 20 min at 98–99°C. 
Next, slides were incubated with primary polyclonal antibodies to Glucose Transporter 3 GLUT3 
(E-AB-31557, Elabscience, China) or to Lactate dehydrogenase A LDHA (E-AB-19947, Elabscience, 
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China) for 15 min. For the antibodies detection «Bond polymer refine detection system» (Leica Biosys-
tems, UK) was used. The images were obtained using 3DHISTECH PANNORAMIC Midi (Carl Zeiss, 
Germany) at magnifications ×5, ×10, ×20, ×40, 63 x, resolution 0.087 µm/pixel. Due to the expres-
sion of GLUT3 and LDHA in all cell types and, especially, in cancer cells, the 100% of cells within the 
samples had positive staining. The staining intensity was visually evaluated as negative (-) low (+), 
moderate (++), or high (+++).

Bimodality index and dispersion calculation
A continuous measure known as the «bimodality index» is utilized to gauge the degree of confor-
mity of a set of univariate data to a two-component mixture model. The score is larger if the two 
components are balanced in size or if the separation between the two modes is larger. The BI ≥1.1 is 
considered as a cutoff to reliably define a bimodal distribution in the data (Wang et al., 2009; Shirshin 
et al., 2022).

BI was calculated according to the equation:
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where μ – the mean of each Gaussian, σ – the standard deviation of each Gaussian and n – the number 
of measurements of each Gaussian.

Dispersion was calculated as interquartile range: 75% quantile – 25% quantile (Q3 – Q1).
The parameters τm and a1 obtained by FLIM microscopy were used to calculate the bimodality 

indices and the dispersion for cultured cells, mouse tumors and patients’ samples.
The bimodality index for a1 ,τm and τ2 and dispersion of a1 ,τm and τ2 were used to search for 

the relationships between them and the pathophysiological parameters of tumors: the TNM stage 
and the grade (G).

The fluorescence decay parameters were normalized using the z-normalization method to level out 
the numerical difference.

A random forest decision tree model was used to evaluate the importance of fluorescence decay 
parameters for clinicopathological characteristics. The model was used for feature selection analysis, 
by which the most significant ones are selected among the variables that define the sample. The 
random forest method delimited the variable space by attempting to reduce the Gini index as much 
as possible and partition the space into blocks containing only one type of sample. The model results 
were used for SHAP (SHapley Additive ExPlanations) analysis, which is designed to evaluate each 
variable for its ability to delimit space. SHAP analysis identified the most significant parameters, which 
were studied by classical statistical method (Mann-Whitney).

SHAP analysis is a technique used to explain the output of any machine learning model. SHAP 
analysis displays the relative influence of variables (decay parameters derivatives) on a model’s output 
and can provide insight into the most significant factors and the impact of variables on the outcome. 
SHAP values are a way to explain the contribution of each object to the model output. They measure 
how much each variable contributes to the model’s prediction and can help determine which variables 
are most important to the model and how they affect the outcome.

The T parameter from TNM was modified in a way that classes 1+2 became group 0, and 3+4 
became group 1. The modification of the parameter G resulted in two classes: classes 1+2 became 
group 0 and class 3 became group 1. Parameters N and M were modified as NM, in which the class 
was distinguished: no metastases – 0, metastases – 1. Since the clinical parameters, in a modified 
form, are binary, a point-biserial correlation coefficient was chosen to assess the correlation.

Statistical analysis
The obtained data were checked for the normal distribution using the Kolmogorov–Smirnov’s crite-
rion. The data with a normal distribution were presented as mean ± standard deviation (SD). The 
data with an abnormal distribution were presented as a median and 25% and 75% quartiles (Q1 and 
Q3). The ANOVA test for comparison data with a normal distribution and the Kruskal-Wallis’s test 
for comparison data with an abnormal distribution were used, with p-val  <0.05 being considered 
statistically significant. Statistical data processing was performed in IBM SPSS Statistics 26.0, R-studio, 
Python.

https://doi.org/10.7554/eLife.94438
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