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Abstract Extant ecdysozoans (moulting animals) are represented by a great variety of soft-
bodied or articulated organisms that may or may not have appendages. However, controversies 
remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We 
describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from 
the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like 
appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equiv-
alent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic 
analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus 
suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are 
likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct 
during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdys-
ozoa and the nature of the earliest representatives of the group.

eLife assessment
This study provides a fundamental advance in palaeontology by reporting the fossils of a new inver-
tebrate, Beretella spinosa, and inferring its relationship with already described species. The analysis 
placed the newly described species in the earliest branch of moulting invertebrates. The study, 
supported by convincing fossil observation, hypothesizes that early moulting invertebrate animals 
were not vermiform.

Introduction
The Ediacaran‒Cambrian transition is marked by the appearance in the fossil record of a variety of 
new body plans that prefigure the majority of present-day animal lineages, including the ecdyso-
zoans, a huge clade that encompasses all invertebrate animals growing through successive moulting 
stages, such as panarthropods (Arthropoda, Onychophora, Tardigrada), scalidophoran (incl. Priapu-
lida) and nematoid worms (Erwin, 2020). Altogether ecdysozoans represent a very high percentage 
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of animal biodiversity and disparity, inhabiting almost all possible ecological niches on Earth (Brusca 
et al., 2016). The nature of the last common ancestor of Ecdysozoa (LCAE) remains largely unre-
solved, even though worms are prevalent before the rise of panarthropods as trace and body fossils 
in basal Cambrian and late Ediacaran rocks (Buatois et al., 2014; Liu et al., 2014; Vannier et al., 
2010). Some recent molecular phylogenies also predict that the most basal ecdysozoans were worm-
like, elongated organisms (Howard et al., 2022; Laumer et al., 2019) that possibly diverged in the 
Ediacaran (Howard et al., 2022; Rota-Stabelli et al., 2013). Current reconstruction based on fossil 
and developmental evidence features the ancestral ecdysozoan as a millimeter-sized worm (Budd, 
2001; Valentine and Collins, 2000) with a terminal (Ortega-Hernández et al., 2019) or ventral mouth 
(Martín-Durán and Hejnol, 2015; Nielsen, 2019). Clearly, the discovery of Saccorhytus (Han et al., 
2017; Liu et al., 2022; Shu and Han, 2020) in the basal Cambrian of China (Kuanchuanpu Formation; 
ca. 535 Ma Sawaki et al., 2008) that is anything but a worm sowed doubt among scientists. Sacco-
rhytus is a sac-like secondarily phosphatized microscopic animal spiked with conical sclerites and a 
single opening that was first seen as the earliest known deuterostome (Han et al., 2017) but is now 
considered as an ecdysozoan on more solid grounds (Liu et al., 2022; Shu and Han, 2020), thus 
broadening the anatomical spectrum of the group and its disparity in the Cambrian and reopening 
the debate on the nature of LCAE.

We describe here Beretella spinosa gen. et sp. nov. from Member 5 of the Yanjiahe Formation 
(basal Cambrian Stage 2, ca. 529 Ma, Hubei Province, China) that shares morphological traits with 
Saccorhytus coronarius such as an ellipsoidal body, a pronounced bilaterality, a spiny ornament made 
of broad-based sclerites, and a single opening. Cladistic analyses are made to resolve the position 
of both Beretella and Saccorhytus that provide key information on the early evolution of the group.

Results
Systematic palaeontology

Superphylum Ecdysozoa Aguinaldo et al., 1997
Phylum Saccorhytida Han, Shu, Ou and Conway Morris, 2017 stat. nov.

Remarks
Saccorhytida first appeared in the literature as a new stem-group Deuterostomia that accommodated 
a single species, Saccorhytus coronarius (Han et al., 2017). Since Saccorhytus is no longer considered 
a primitive deuterostome and, instead, more likely belongs to ecdysozoans, Saccorhytida became an 
extinct Order of Ecdysozoa (Liu et al., 2022; Shu and Han, 2020). Because both Saccorhytus and 
Beretella display major morphological differences with all other known ecdysozoan phyla (Nematoida, 
Scalidophora, and Panarthropoda), Saccorhytida is tentatively elevated here to the rank of phylum 
within Ecdysozoa.

Emended diagnosis
Microscopic, ellipsoidal body shape with pronounced bilateral symmetry expressed by paired spiny 
sclerites. Single, presumably oral opening on assumed ventral side (no anus).

Remarks
Only two forms, Saccorhytus and Beretella are currently placed within Saccorhytida, making it prema-
ture to formally define intermediate taxonomic categories such as an order and a family.

Beretella spinosa Han, Guo, Wang and Qiang, gen. et sp. nov.
LSID: ​urn:​lsid:​zoobank.​org:​act:​C2DC9EC2-​82EB-​4B2B-​9829-​718EE8104593

Etymology
From ‘béret’, French, that designates a soft, visorless cap referring to the overall shape of this species, 
and ‘spinosa’, Latin, an adjective, alluding to its spiny ornament.

https://doi.org/10.7554/eLife.94709
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Holotype
CUBar138-12 (Figure 1A‒C, Figure 1—figure supplement 1G).

Paratype
CUBar171-5 (Figure 1H, I, Figure 1—figure supplement 1F) and CURBar121-8 (Figure 1J and K, 
Figure 1—figure supplement 1H).

Diagnosis
Body with a beret-like lateral profile. Convex side (presumably dorsal) with an elevated (presumably 
posterior) and lower (presumably anterior) end. The opposite side (presumably ventral) flattened. 
Bilateral symmetry well expressed in the overall body shape (sagittal plane) and sclerite distribution. 
Antero-posterior polarity. Convex side with a slightly elevated sagittal stripe topped with a single 
row of four aligned spines (S1) and five additional spines (S2) on each side. Six broad-based conical 
sclerites (S3) distributed in two symmetrical longitudinal rows plus two sagittal ones. Double rows of 
six marginal spines (S4 and S5). Flattened side often pushed in and partly missing, bearing a possible 
mouth opening. Possible oral spine.

Stratigraphy and locality
Watsonella crosbyi Assemblage Zone (Guo et  al., 2021), Member 5 of the Yanjiahe Formation 
(Cambrian Terreneuvian, Stage 2) in the Yanjiahe section near Yichang City, Hubei Province, China 
(Figure 1—figure supplements 2 and 3).

Description and comparisons
The body of Beretella spinosa is secondarily phosphatized and has a consistent beret-like three-
dimensional shape in the lateral view. Its length, width, and height range from 1000–2900  µm, 
975–2450  µm, and 500–1000  µm, respectively (Figure  1—figure supplement 1E-H, Figure  2—
figure supplement 1E-I, Supplementary file 1a-c). The ratio of the maximal length to width is 1.6:1 
(Figure 1—figure supplement 1E-H). As seen in top view, B. spinosa shows a small lateral constriction 
at approximately mid-length (Figure 1A and C).

The body has a convex, assumedly dorsal side with one, presumably posterior end more elevated 
than the other (Figure 1B, E, I and K, Figure 1—figure supplement 1E-H, Figure 2—figure supple-
ment 1G-I). This elevation is gradual along the sagittal plane and then becomes more abrupt near the 
low elevated, presumably anterior end. The opposite, assumedly ventral side is less well preserved 
and seems to have been originally flattened.

The convex side bears a complex ornamented pattern made of five sets (S1‒S5) of spiny sclerites 
directed towards the more elevated end (Figures 1A, B, D, E, H‒K and 2A, B, D, Figure 2—figure 
supplement 1E, F). These sclerites were originally pointed (Figure 1A, B, D, E, H-K and Figure 2B, K, 
L, Figure 2—figure supplement 1A, B, G), but most of them were broken thus revealing an internal 
cavity and an ellipsoidal transverse section (Figures 1A, B, H‒K and 2A-E, G). The broken sclerites 
show an inner and outer phosphatic layer (thickness ca. 20–50 µm) often separated by a thin empty 
space (Figure 2G-L).

The convex side bears six prominent conical sclerites (S3) all with a rounded to elliptical well-
delimited broad base, distributed in two longitudinal symmetrical pairs with two additional sclerites 
at both ends of the sagittal plane (Figures 1 and 2D, Figure 1—figure supplement 1E-H, Figure 2—
figure supplement 1E-I). A low-relief stripe runs in a sagittal position and vanishes towards the 
elevated end. It is topped by a row of aligned spines (S1, Figure 1A); the one closer to the more 
elevated end being more tubular and longer. This row is flanked on both sides by smaller aligned 
spines (S2, Figures 1A, D, H , and 2A‒C). Two relatively sinuous rows of six tiny spines are present 
parallel to the lateral margins (S4 and S5, Figures 1B, E, H‒J and 2D, E).

The convex side bears a polygonal micro-ornament (mesh size ca. 5 µm wide, Figure 2F, Supple-
mentary file 1a-c). However, its exact extension is uncertain due to coarse secondary phosphati-
zation. Clusters of spherical phosphatized grains (diameter ca. 20 µm) occur near the sclerite base 
(Figure 2—figure supplement 1B).

https://doi.org/10.7554/eLife.94709
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Figure 1. Beretella spinosa gen. et sp. nov. from Member 5 of the Yanjiahe Formation (Cambrian Stage 2), Yichang, Hubei Province, China. (A‒C) 
Holotype, CUBar138-12. (A) Dorsal view showing the external ornament: (five sclerites at the midline in yellow (S1); flanked by two rows of sclerites 
in blue (S2); large broad-based conical sclerites in two dorsolateral pairs and one antero-posterior pairs in green (S3)); white arrows indicate lateral 
constriction. (B) Right lateral view showing two additional rows of six sclerites (S4 and S5, in light blue and pink, respectively). (C) Ventral view showing a 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.94709
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In most specimens, the flattened side is occupied by a relatively large opening (1200 and 600 µm 
in maximal length and width, respectively) with irregularly defined margins (Figure 1C and F, see also 
Video 1 and Video 2). The flattened side is often largely missing and opens into a spacious internal 
cavity with no signs of internal organs (e.g. gut and pharynx; Figure 1C and F). One specimen shows 
a tiny spine on the margin of the flattened side (Figure 1F and G), which differs from other spiny 
sclerites (S1-S5).

The length of studied specimens ranges from 1.0 to 2.9 mm (Figure 1—figure supplement 1E-H). 
Whether growth was continuous or instead took place via successive moulting stages and cuticular 
renewal (ecdysis) could not be tested due to the small number of specimens (N=17) available for 
measurements. No major morphological variations (e.g. a sclerite pattern) can be seen between the 
smallest and largest specimens of B. spinosa (Figure 1—figure supplement 1E-H).

Remarks
Body polarities in Beretella
The anterior-posterior (AP) and dorsal-ventral (DV) polarities of Beretella are uneasy to define because 
of the lack of modern equivalent among extant animals. In the vast majority of extinct and extant 
invertebrates for which antero-posterior polarity is defined on the basis of independent criteria (e.g. 
position of the mouth), sclerites point backwards (e.g. Cambrian scalidophoran worms [Han et al., 
2007; Huang et al., 2004] and Wiwaxia [Zhang et al., 2015a]). This is most probably also the case 
with Beretella (Figure 1A, D and J). The dorsoventral polarity of Beretella is supported by the fact that 
protective sclerites such as spines most commonly occur on the dorsal side of bilaterians (Figure 1A, 
D and J).

Comparison with Saccorhytus and other ecdysozoans
Beretella spinosa has no exact equivalent in any Cambrian animals except Saccorhytus coronarius, an 
enigmatic, sac-like ecdysozoan (Han et al., 2017; Liu et al., 2022; Shu and Han, 2020). Both forms 
share a tiny, poorly differentiated ellipsoidal body, and a set of prominent bilaterally arranged spiny 
sclerites. Indeed, the broad-based conical sclerites (S3) of Beretella are almost identical to those of 
Saccorhytus (Figure 2—figure supplement 1D) and have counterparts among scalidophoran worms 
(Figure 2—figure supplement 1C). However, they differ in number, ornamented structures, shape, 
and spatial arrangement (Figure 2—figure supplement 2). Beretella has a much more pronounced 
dorsoventral differentiation than Saccorhytus and its cuticle seems to have been harder and less flex-
ible (see details in Supplementary file 1a-c), which altogether the hypothesis of Saccorhytus being 
the larval stage of Beretella unlikely. Both Beretella and Saccorhytus differ from other known ecdys-
ozoans in the lack of an elongated body, introvert, annulations, and through gut (Figure 1—figure 
supplement 1, Figure 2—figure supplements 1 and 2, Supplementary file 1a-c).

Discussion
Ventral mouth
All bilaterian animals have a digestive system with at least one opening that corresponds to the mouth 
(Brusca et al., 2016). Although the presumed oral area of Beretella is poorly preserved (ventral side 

large opening that may have accommodated the mouth (see the text) and an empty body cavity. (D‒G) CUBar75-45. (D) Dorsal view showing a broken 
S3. (E) Micro-CT image, right lateral view displaying S4. (F) Ventral view depicting a tiny projection in purple. (G) An enlargement of the projection of F. 
(H‒I) Paratype, CUBar171-5. (H) Right dorsal view showing S1‒S4. (I) Right-lateral view showing S4 and S5. (J‒K) Paratype CUBar121-8. (J) Dorsal view 
showing poorly preserved S1 and S2. (K) Right-lateral view showing S3‒S5. A, assumed anterior end (see text); ef, exotic fragment; D, assumed dorsal 
side; L, left; P, posterior end; R, right; tp, tiny spine; V, ventral side. The same abbreviations are used throughout the manuscript including supplementary 
files.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Size variation between Saccorhytus coronarius and Beretella spinosa.

Figure supplement 2. Origin of fossil material.

Figure supplement 3. Typical Small Shelly Fossils (SSFs) found associated with Beretella spinosa in Member 5 of the Yanjiahe Formation.

Figure 1 continued

https://doi.org/10.7554/eLife.94709
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often pushed in and largely destroyed), its mouth is likely to be found ventrally (see description), since 
no other opening occurs on its dorsal side, except those created by broken sclerites. The well-defined 
dorsoventral polarity of Beretella would suggest that the animal was resting on its ventral (flattened) 
side, the spiny dorsal side playing a protective role.

Figure 2. Beretella spinosa gen. et sp. nov. (A) CUBar99-19, dorsal view showing an ornament S1‒S4. (B, C) CUBar136-9, general dorsal view and 
details. (D) CUBar136-11, dorsal view showing S1‒S5. (E, F) CUBar73-15 general view and details of the cuticular polygonal reticulation in black. (G‒J) 
CUBar128-27. (G) General view. (H, I) details of outer and inner surface of the bi-layered structure of the cuticular wall as seen in broken conical sclerites. 
(J) Micro-CT section showing possibly sclerite infilling. (K, L) CUBar99-18, cuticular fragment, general view and details of large sclerite (central feature 
represents possible phosphatic infilling). is, infilling sclerite; pr, polygonal reticulation; sb, sclerite base.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Truncated sclerites in early Cambrian saccorhytids and scalidophoran worms.

Figure supplement 2. Saccorhytus coronarius, multi-layered secondarily phosphatized cuticle.

https://doi.org/10.7554/eLife.94709
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Phylogenetic position of Beretella
Beretella’s phylogenetic affinities remain elusive 
due to the lack of information concerning its 
internal anatomy and ventral side. Its scler-
itome consists of isolated conical sclerites that 
were the cuticular outgrowths of a seemingly 
rigid integument that covered both sides of the 
animal. Such conical sclerites have close counter-
parts in Cambrian ecdysozoans such as scalido-
phoran worms (e.g. Eokinorhynchus Zhang et al., 
2015b), lobopodians (e.g. Onychodictyon ferox 
Hou et al., 1991) and even more clearly Sacco-
rhytus that recent cladistic analyses resolved as a 
branch of the total-group Ecdysozoa (Liu et al., 
2022). These sclerites, unknown in other animal 
groups, suggest that both Saccorhytus and Bere-

tella belongs to Ecdysozoa (moulting animals), although more direct fossil evidence such as exuviae 
or features suggesting cuticular moulting (Daley and Drage, 2016; Wang et al., 2019) has yet to be 
found.

Cladistic analyses were performed to test the relation of Beretella and Saccorhytus to other ecdys-
ozoan groups and, more generally, their phylogenetic relationships with other bilaterian groups (see 
details in Figure 3—figure supplements 1–4). Both taxa join in a clade (Saccorhytida, Figure 3A‒C) 
and are resolved as members of total-group Ecdysozoa. This clade is the sister group of Cycloneu-
ralia plus Panarthropoda (crown-group Ecdysozoa, Figure 3D, Figure 3—figure supplements 1–4, 
Figure 4). These results are consistent with the body plan of Saccorhytida being markedly different 
from that of crown-group ecdysozoans that all have an elongated body and differentiated structures, 
such as, in Cycloneuralia, the introvert and pharyngeal complex (Figure 4).

The ancestral ecdysozoan body plan
Molecular clock analyses often place the divergence of Ecdysozoa relatively deep into the Ediacaran 
(Howard et al., 2022; Rota-Stabelli et al., 2013), thus highlighting major discrepancy with the known 
fossil record of the group. Potential ecdysozoans occur in the late Precambrian as suggested by 
sclerites resembling scalids of priapulids, found in Ediacaran Small Carbonaceous Fossils assemblages 
(Moczydłowska et  al., 2015) and locomotion traces presumably made by scalidophoran worms 
(Buatois et al., 2014; Vannier et al., 2010). In the absence of fossil data for other groups such as 
nematoids, scalidophorans are potentially the oldest known representatives of Ecdysozoa. Recent 
Bayesian analyses based on a large molecular data set obtained from the 8 extant ecdysozoan phyla 
recover Scalidophora as the sister-group to Nematoida +Panarthropoda and suggest that ecdysozoans 
probably diverged in the Ediacaran, possibly some 23 million years before the oldest fossil occur-

rence (trace fossils) of the group (Howard et al., 
2022). Although this study does not speculate on 
the nature of the last common ancestor of Ecdys-
ozoa, it is consistent with the view that the earliest 
representatives of the group were probably 
worm-like, relatively elongated animals. (Howard 
et al., 2020) drew comparable conclusions based 
on Acosmia, an assumed stem-ecdysozoan worm 
from early Cambrian Chengjiang Lagerstätte. 
However, the re-evaluation of the morphological 
characteristics of this worm rather suggests a less 
basal position either within the total-group Cyclo-
neuralia (Figure  3D, Figure  3—figure supple-
ments 1 and 2) or among crown-group Ecdysozoa 
(Figure  3—figure supplements 3 and 4). The 
ellipsoidal (non-vermiform) shape of saccorhytids 

Video 1. Animation of holotype of Beretella spinosa.

https://elifesciences.org/articles/94709/figures#video1

Video 2. Animation of holotype of Beretella spinosa 
without color.

https://elifesciences.org/articles/94709/figures#video2

https://doi.org/10.7554/eLife.94709
https://elifesciences.org/articles/94709/figures#video1
https://elifesciences.org/articles/94709/figures#video2
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and their position as the sister group of the crown-group Ecdysozoa clearly reopens the debate on the 
nature of the ancestral ecdysozoan (Figure 4) and has led to explore alternative evolutionary hypoth-
eses, in particular: (i) does the enigmatic saccorhytid body plan results from anatomical simplification? 
(ii) to what extent may these animals shed light on the nature of the earliest ecdysozoans?

Do saccorhytids result from simplification?
A relatively simple body plan and tiny size is often seen as resulting from anatomical simplification 
(e.g. reduction of digestive system) and miniaturization (micrometric size) in possible relation with the 
adaptation to specialized ecological niches or parasitism (Hanken and Wake, 1993). For example, 
some extant scalidophoran worms living in interstitial (meiobenthic) habitats such as loriciferans have 
a miniaturized body (Kristensen, 1983) compared with their macroscopic counterparts (e.g. Priapulus 
Schmidt-Rhaesa, 2013b). However, they retain a through gut and a functional introvert and show 

Figure 3. Position of Beretella spinosa in the animal tree based on cladistic analysis. (A-C), artistic three-dimensional reconstructions of Beretella 
spinosa in the anterolateral (A), dorsal (B), and posterolateral views (C). (D) Phylogenetic tree obtained from cladistic analyses using maximum likelihood. 
Saccorhytus and Beretella join in a clade (new phylum Saccorhytida) resolved as the sister-group of all other ecdysozoans; numbers at key nodes denote 
probability. Fossil and extant taxa are in italics and bold, respectively. Known fossil record indicated by thicker vertical bars (after Shu and Han, 2020).

The online version of this article includes the following source data, source code, and figure supplement(s) for figure 3:

Source code 1. The dataset (matrix) for cladistic analysis.

Source data 1. Characters description for cladistic analysis.

Figure supplement 1. Full maximum likelihood tree generated by IQTREE.

Figure supplement 2. Bayesian inference tree generated by MrBayes.

Figure supplement 3. Maximum parsimony tree generated by TNT (equal weight).

Figure supplement 4. Maximum parsimony tree generated by TNT (implied weight, k=3).

https://doi.org/10.7554/eLife.94709
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no sign of drastic internal simplification (Schmidt-Rhaesa, 2013a). Anatomical reduction is a typical 
feature of parasitism (Hanken and Wake, 1993) that is well-represented among extant ecdysozoans 
such as nematodes (Schmidt-Rhaesa, 2013c). Although relatively small (ca. 0.1–2.5 mm long), nema-
todes underwent no simplification of their digestive system. Saccorhytids have no specialized features 
(e.g. anchoring or piercing structures) that would point to any adaptation to ecto- or endo-parasitic 
lifestyles (Cong et  al., 2017). Saccorhytus has been interpreted (Han et  al., 2017) as a possible 
interstitial animal based on its micrometric size which corresponds to that of the extant meiofauna. 
If we accept the hypothesis that saccorhytids result from simplification, then we need to determine 
its origin. Simplification of saccorhytids from an elongated animal (e.g. cycloneuralian worm with 
a through gut and terminal mouth) is difficult to conceive because it would involve considerable 
anatomical transformations such as the loss of tubular organization, introvert and pharynx in addition 
to that of the digestive system (Figure 4, and Supplementary file 1d, e).

Early evolution of ecdysozoans: a new scenario
We propose here an alternative evolutionary hypothesis (Figure 4) in which saccorhytids are replaced 
within the broader framework of the origin and early diversification of moulting animals. Saccorhytids 

Figure 4. Possible evolutionary scenario to explain the origin and early evolution of ecdysozoans. (A) Summary tree (see Figure 3—figure supplements 
1–4) showing saccorhytids as a sister-group of Cycloneuralia (Nematoida plus Scalidophora)+Panarthropoda; main morphological features of each 
group listed along each branch. (B) Potential evolutionary pathway to evolve Saccorhytida and crown-group Ecdysozoa. Numbers in green, red and blue 
circles designate pre-ecdysozoan (Spiralia), Saccorhytida and Cycloneuralia, respectively. Light brown gradient (circle) to emphasize ecdysis and sclerite 
secretion seen as key evolutionary steps. 1, Hypothetical pre-ecdysozoan animal with a ciliated epidermis and glycocalyx. 2, Saccorhytid exemplified by 
Beretella with a cuticle bearing sclerites. 3, Crown-group ecdysozoan exemplified by a scalidophoran worm with an elongated shape, a differentiated 
head (introvert) and trunk, sclerites, a through gut, a terminal mouth and abilities to burrow into bottom sediment. Animals not to scale. Abbreviations: 
a, anus; a?, uncertain status of anus; ci, cilia; cu, cuticle; ec, epidermal cell; gl, glycocalyx (mucous layer); m, mouth; in, introvert; sc, sclerite; se, sediment; 
TGE, total-group Ecdysozoa. Silhouettes from phylopic.org. (CC BY 3.0 or public domain): Spiralia (by Martin R. Smith), Nematoida (by Birgit Lang), 
Scalidophora (by Fernando Carezzano), and Panarthropoda (by Harold N Eyster). Saccorhytida generated from reconstruction of Figure 3.
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are seen as an early off-shot from the stem-line Ecdysozoa (see cladistic analysis above) that possibly 
retained important features of the body plan of ancestral ecdysozoans. This scenario must be consid-
ered as a working hypothesis whose aim is to stimulate research in this key area of animal evolution.

The cuticular secretion and the loss of cilia (Valentine and Collins, 2000) would be the first of a 
series of evolutionary events (Figure 4) that led to the rise of Ecdysozoa. Moulting (shedding of the 
old cuticle via apolysis and its renewal) reconciled body growth and cuticular protection (Schmidt-
Rhaesa, 2007). Cuticle secretion and moulting may have been quasi-simultaneous innovations that 
took place over a relatively short time interval. The nature of the very first ecdysozoans is hypothetical 
and lacks fossil evidence. However, they are tentatively represented here as small epibenthic or inter-
stitial slow-moving non- elongated animals from which saccorhytids may have evolved.

In our scenario, this ancestral ecdysozoan stock would have also given rise to elongated and 
tubular ecdysozoans through stepwise anatomical transformations such as the body elongation, the 
differentiation of key morpho-functional structures such as the pharynx and the introvert and the shift 
of the ventral mouth to a terminal position (Martín-Durán and Hejnol, 2015; Figure 4, Supplemen-
tary file 1d, e). This mouth shift from ventral to terminal arising in crown ecdysozoans is consistent 
with the chronology of divergence of animal lineages and the fact that the mouth of most spiralians 
is ventral (Martín-Durán and Hejnol, 2015; Nielsen, 2019; Ortega-Hernández et al., 2019). Devel-
opmental studies show that embryos of extant cycloneuralians have a ventral mouth that moves to a 
terminal position towards the adult stage (Martín-Durán and Hejnol, 2015; Nielsen, 2019). These 
assumed major anatomical changes (e.g. functional introvert) must be placed in the ecological context 
of Cambrian animal radiation. Important changes in the functioning of marine ecosystems occurred in 
the early Cambrian such as interactive relationships between animal species, exemplified by predation 
(Vannier and Chen, 2005; Vermeij, 1977) and may have acted as drivers in the evolution of early 
ecdysozoans, in promoting burrowing into sediment and the colonization of endobenthic habitats for 
the first time (Vannier et al., 2010). Burrowing into the sediment could be seen as the evolutionary 
response of epibenthic animals such as ancestral ecdysozoans to escape visual predation (Daley 
et al., 2013; Vannier and Chen, 2005). We hypothesize that this migration to endobenthic shelters 
was made possible by the development of a resistant cuticular layer (Figure 4) that strongly reduced 
physical damage caused by friction with the sediment and provided anchoring points (e.g. scalids and 
sclerites). Whereas saccorhytids became rapidly extinct during the Cambrian, worms massively colo-
nized endobenthic habitats, resulting in bioturbation and ecological turnover.

Methods
Material
Fourteen specimens of Beretella spinosa were recovered from samples (siliceous-phosphatic, 
intraclastic limestone) collected from Member 5 of the Yanjiahe Formation, Yanjiahe section near 
Yichang City, Hubei Province, China (Guo et al., 2021). These were obtained by digesting the rocks 
in 10% acetic acid. Faunal elements associated with Beretella spinosa in residues are mainly tiny 
molluscs (CUBar21-4 and CUBar206-6) (Figure 1—figure supplement 3). Comparisons were made 
with 10 specimens of Saccorhytus coronarius (ELIXX25-62, ELIXX34-298, ELIXX45-20, ELIXX48-64, 
ELIXX58-336, ELIXX61-27, ELIXX65-116, ELIXX65-296, ELIXX99-420) and one coeval scalidophoran 
specimen (ELIXX57-320) all from Bed 2 of the Kuanchuanpu Formation, Zhangjiagou section near 
Xixiang County, south Shaanxi Province, China. All specimens of Beretella are deposited in the pale-
ontological collections of Chang’an University, Xi’an (CUBar), those of scalidophoran, and Saccorhytus 
at Northwest University, Xi’an (ELIXX), China.

Scanning electron microscopy (SEM)
All specimens were coated with gold and then imaged using a FEI Quanta 400 FEG SEM at Northwest 
University and a FEI Quanta 650 at Chang’an University.

X-ray computed microtomography and 3D reconstruction
Micro-CT-images (tiff format, with pixel size 1.1  µm) of Beretella (CUBar75-45, CUBar128-27, 
CUBar138-12) and Saccorhytus (ELIXX65-116, ELIXX99-420) were acquired using the Zeiss Xradia 520 

https://doi.org/10.7554/eLife.94709
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at Northwest University (NWU), Xi’an, China, at an accelerating voltage of 50 kV and a beam current 
of 80 µA. Micro-CT data were processed using VGstudio Max 3.2 for 3D volume rendering.

Measurements
Measurements of the length, width, and height of Beretella and Saccorhytus were obtained from 
Micro-CT and SEM images by using tipDig2 v.2.16.

Phylogenetic analysis
We built our matrix with 55 taxa coded using 193 morphological characteristics (Figure 3—source 
data 1, Figure 3—source code 1). It is largely based on the data published by Howard et al., 2020, 
Vinther and Parry, 2019 and Ou et  al., 2017, although emended and supplemented by recent 
updates and new observations (Figure 3—source data 1, Figure 3—source code 1). Three characters 
(37. Through gut, 38. U-shaped gut, and 40. Ventral mouth) in matrix were coded as ‘? (uncertain)’, ‘?’, 
and ‘?’, respectively. Because although we can infer a ventral mouth and no anus of Beretella, these 
anatomic structures are invisible in fossils. We analyzed the data matrix using maximum parsimony 
(Tree analysis using New Technology, TNT), maximum likelihood (Important quartet tree, IQTREE) and 
Bayesian inference (MrBayes). Parsimony analysis was implemented in TNT under equal and implied 
(k=3) weight. Parameters are default (Goloboff et al., 2008; Goloboff and Catalano, 2016). The 
maximum-likelihood tree search was conducted in IQ-TREE (Nguyen et al., 2015), and support was 
assessed using the ultrafast phylogenetic bootstrap replication method (Hoang et al., 2018; Minh 
et al., 2013) to run 50,000 replicates. Bayesian inference was conducted in with MrBayes v3.2.6a with 
default priors and Markov chain Monte Carlo settings (Ronquist et al., 2012). Two independent runs 
of 7,000,000 Markov chain Monte Carlo generations were performed, each containing four Markov 
chains under the Mkv + Γ model for the discrete morphological character data (Lewis, 2001). In each 
run (N=2), trees were collected at a sampling frequency of every 5,000 generations and with the first 
25% samples discarded as burn-in. The convergence of chains was checked by effective sample size 
(ESS) values over 1,000 in Tracer v.1.7 (Rambaut et al., 2018), 1.0 for the potential scale reduction 
factor (PSRF; Gelman and Rubin, 1992), and by an average standard deviation of split frequencies 
below 0.007.

Ancestral character state reconstructions
Ancestral character state reconstructions for four morphological characters were performed on the 
ecdysozoan total group node, the ecdysozoan crown group node and saccorhytid node. Cycloneu-
ralia was treated as (i) a monophyletic (Supplementary file 1d) and (ii) paraphyletic group (Supple-
mentary file 1e). Characters selected for ancestral state reconstruction represent traits inferred as 
ecdysozoan plesiomorphies (ancestral characters) from studies of crown group taxa. These characters 
included the presence or absence of: (1) through gut; (2) ventral mouth; (3) introvert (see Supplemen-
tary file 1d, e).

This was carried out individually for the selected character in MrBayes. This was employed to calcu-
late the posterior probability of the presence (1) and absence (0) of the selected characters at the 
selected nodes. Analyses used the MK +gamma model, and always converged after 2 million gener-
ations. Average deviation of split frequencies (<0.01), ESS scores (>200), and PSRF values (=approx. 
1.00) assessed convergence of the MCMC chains (Howard et al., 2020).
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