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Abstract Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading 
cause of cancer- related deaths, and the incidence of liver cancer is still increasing worldwide. Cura-
tive hepatectomy or liver transplantation is only indicated for a small population of patients with 
early- stage HCC. However, most patients with HCC are not candidates for radical resection due 
to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug 
sorafenib as first- line treatment. In the past few years, immunotherapy, mainly immune checkpoint 
inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has 
proven more effective than sorafenib, and clinical trials have been conducted to apply these thera-
pies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind 
it remain unclear, and immune resistance is often challenging to overcome. Several studies have 
pointed out that the complex intercellular communication network in the immune microenvironment 
of HCC regulates tumor escape and drug resistance to immune response. This underscores the 
urgent need to analyze the immune microenvironment of HCC. This review describes the immuno-
suppressive cell populations in the immune microenvironment of HCC, as well as the related clinical 
trials, aiming to provide insights for the next generation of precision immunotherapy.

Introduction
Primary liver cancer is currently the fourth most common malignant tumor and the second leading 
cause of cancer- related deaths in China, posing a significant threat to the lives and health of the popu-
lation (Sung et al., 2021; Llovet et al., 2021b; Villanueva, 2019). Treatment options, such as hepa-
tectomy or liver transplantation, are only suitable for patients in the early stages, with approximately 
50–60% of liver cancer patients eventually requiring systemic therapy. For over a decade, kinase inhib-
itor therapy has been the main treatment for advanced liver cancer, including first- line drugs such 
as sorafenib and lenvatinib (in China, doxorubicin), with a median overall survival of 11–14 months. 
However, this therapy still cannot effectively control progressive liver cancer and prevent its recur-
rence. With the advancements and clinical application of immunology research, immuno- oncology 
has revolutionized tumor treatment. For instance, by combining anti- PD- L1/PD- 1 and cytotoxic T 
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lymphocyte antigen 4 (CTLA- 4) monoclonal antibodies (mAbs) with anti- vascular endothelial growth 
factor (VEGF) bevacizumab, the median survival of liver cancer patients can reach 19 months, bringing 
new hope to the clinical treatment of liver cancer (Llovet et al., 2021a; Llovet et al., 2018; Finn 
et al., 2020; Qin et al., 2021). Nevertheless, the lack of accurate prediction and systematic research 
and response to primary and secondary resistance mechanisms in key populations has led to poor 
outcomes (El- Khoueiry et al., 2017; Zhu et al., 2018a; Yau et al., 2019). It is generally assumed 
that a positive response to immunotherapy usually depends on the dynamic interaction between 
tumor cells and the tumor microenvironment (TME). Increasing studies have shown that the inhibi-
tory changes and heterogeneous characteristics of TME have a great impact on tumor development, 
differential efficacy, and drug resistance. In this review, we will analyze the cells, mechanisms of action, 
and related clinical trials in the immune microenvironment of hepatocellular carcinoma (HCC) that 
regulate immune resistance, providing new insights for future HCC treatment.

Liver Cancer-Immune Microenvironment
The liver is a key frontline immune tissue that maintains systemic homeostasis by having relatively 
high immune tolerance to foreign antigens, especially those of intestinal origin. A large population 
of key cells with major immunosuppressive effects are involved in immune evasion in HCC, including 
regulatory T (Treg) cells, myeloid- derived suppressor cells (MDSCs), tumor- associated macrophages 
(TAMs), tumor- associated neutrophils (TANs), and dendritic cells (DCs) (Llovet et al., 2022a; Llovet 
et al., 2022b).

Immunosuppressive Lymphocytes
During acute inflammation and injury, naive CD8+ T cells can differentiate into effector CD8+ T cells, 
TEFF, to response after receiving antigen stimulation. And part of TEFF will form long- lived self- 
renewable memory CD8+ T cells, TMEM, which can produce rapid immune response during infection. 
However, during tumor immunity, T cells differentiate into exhausted CD8+ T cells, TEX, with gradual 
loss of cytokines, high expression of inhibitory markers (PD- 1, Tim- 3, LAG3, TIGIT, and 2B4), meta-
bolic alterations, and decreased proliferative potential and viability in response to persistent antigenic 
stimulation (Sen et al., 2016). The sustained high expression of inhibitory receptors represents a core 
characteristic of CD8+ T- cell exhaustion. The surface inhibitory receptors on T cells, immune regulatory 
cell populations such as Treg, immunoregulatory antigen- presenting cells (APCs), MDSCs, and soluble 
molecules such as immunosuppressive cytokines IL- 10 and transforming growth factor (TGF)-β, inflam-
matory cytokine I type IFN (IFN- I), γ chain cytokines IL- 2 and IL- 7, all play a role in regulating the deple-
tion of CD8+ T cells (McLane et al., 2019; Cheng et al., 2021; Kurachi, 2019). Typically, the more 
inhibitory receptors that are co- expressed by exhausted CD8+ T cells, the more severe the exhaustion 
(Blackburn et al., 2009). TEX minimizes immune- mediated pathological damage by limiting tumor 
immunity, and this limiting function can be thought of as sustained progression or worsening of the 
disease. Given that an effective immune response is almost entirely contingent upon functional T cells, 
the depletion of CD8+ T cells within TME represents a primary cause of immunotherapy resistance 
in HCC. Mary Philip and Andrea Schietinger found that thymocyte selection- associated HMG box 
protein, TOX, is highly expressed in tumor- specific CD8+ T cells (Figure 1). Overexpression of TOX 
in vitro induced a depletion phenotype in CD8+ T cells (Scott et al., 2019). Although the process of 
T- cell exhaustion can hinder anti- tumor immunity, this dysfunctional state can be reversed by targeting 
programmed cell death protein 1 (PD- 1) and CTLA- 4, thereby enhancing tumor immunity. Conse-
quently, reversing human T- cell exhaustion is a crucial mechanism through which patients receiving 
PD- 1 and CTLA- 4 pathway drugs achieve significant anti- tumor effects (Blackburn et al., 2009; Schi-
etinger and Greenberg, 2014; Said et al., 2010).

Regulatory T cells (Tregs) are a subset of lymphocytes known for their potent immunosuppressive 
functions, characterized by the constitutive expression of CD25 and CTLA- 4 on their cell surface, as 
well as the presence of the transcription factor Forkhead box P3 (Foxp3) in their nucleus. However, 
their accumulation in tumors suppresses anti- tumor immunity (Tay et al., 2023). Subpopulations of 
Treg can modulate the expression of inhibitory receptors and depletion signaling pathways of CD8+ 
T cells through IL- 10 and IL- 35, which leads to diminished tumor killing capacity (Figure 1; Sawant 
et al., 2019). Sawant et al. deleted IL- 10 or IL- 35 in Tregs resulted in attenuated tumor growth and a 
concomitant dramatic reduction of TEX in the tumor (Ribas and Wolchok, 2018; Pauken and Wherry, 
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2015). Evidence from certain studies hints at a possible linkage between the PD- 1 pathway and the 
generation of IL- 10. This linkage is thought to be facilitated by the induction of IL- 10 synthesis in 
monocytes as a result of the engagement between PD- 1 and PD- L1 (Said et al., 2010). Further studies 
revealed that immunosuppressive cytokines such as IL- 10 and IL- 35, dependent on the BLIMP- 1 
pathway, promote CD8+ T- cell exhaustion (Turnis et  al., 2016). The functional plasticity observed 
in Tregs is considered a crucial aspect of their cellular lineage. Sawant et al. have identified distinct 
subpopulations of Tregs within tumors that secrete IL- 10 or IL- 35, yet these phenotypes are transient, 

Figure 1. Overview of immunosupressive cells in the hepatocellular carcinoma (HCC) immune microenvironment. Key cell types and cellular component 
implicated in immune surveillance are indicated in this figure. TAM, tumor- associated macrophage; MDSC, myeloid- derived suppressor cells; CD4+ 
Treg, regulatory CD4+ T cells; CD8+ Tex, exhausted CD8+ T cells; CAF, cancer- associated fibroblast; DCs, dendritic cells; TCR, T- cell receptor; IDO, 
indoleamine 2,3- dioxygenase; MHC I, major histocompatibility complex class I; MHC II, major histocompatibility complex class II.
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indicating that Tregs can transition between these states (Panduro et al., 2016). Despite the elucida-
tion of the interconversion potential of IL- 10 and IL- 35 secretion by Tregs within tumors, the signaling 
mechanisms governing this conversion remain poorly understood. Investigating the conditions that 
facilitate this conversion would offer insights into regulating the therapeutic targeting of this cell 
population (Chan et al., 2016; Mumm et al., 2011). Sequencing analysis and single- cell mapping 
of tumor and paracancerous tissues showed a significant decrease in CTL/Treg ratio in HCC tissues, 
indicating that effector cells in the immune microenvironment of HCC tumor tissues had shifted from 
an activated to a suppressed state (Ally et al., 2017). In addition, TGF-β is associated with the promo-
tion of Treg production, differentiation, and the resulting inhibition of CD8+ T cells. Thus, inhibition 
of TGF-β with the specific inhibitor SM- 16 reduces Treg infiltration, leading to HCC tumor regres-
sion (Figure  1; Shen et  al., 2015). Research indicates that CCR4+ Tregs acquire immunosuppres-
sive stem- like properties through long- term chromatin reprogramming. CCR4 antagonist can impede 
intratumoral Tregs aggregation, thereby overcoming resistance (Gao et al., 2022). A similar mech-
anism has previously been reported for the Treg cell- specific marker CCR8 (Whiteside et al., 2021; 
Roose et al., 2021). Additionally, single- cell sequencing analysis of specimens from 29 HCC patients 
undergoing immunotherapy indicates a high infiltration of Tregs alongside PD- 1+CD8+ T cells (Magen 
et al., 2023). Furthermore, studies have shown that CD4+CD25+ Tregs obtained from patients, when 
co- cultured with CD8+ T cells, can suppress their proliferation, activation, as well as the production of 
granzyme B and perforin (Fu et al., 2007).

Myeloid-Derived Suppressor Cells
MDSCs are immature bone marrow- derived cells and are therefore highly heterogeneous, with 
monomorphonuclear and polymorphonuclear distinctions, and can be categorized into two major 
subgroups: granulocytic (G-) MDSCs or polymorphonuclear (PMN)- like MDSCs and monocytic (M-) 
MDSCs. In mice, PMN- MDSCs are characterized as CD11b+Ly6G+Ly6Clow cells, while M- MDSCs are 
identified as CD11b+Ly6G-Ly6Chigh cells. Considering the absence of Gr- 1 in humans, PMN- MDSCs are 
defined as CD11b+CD14-CD15+ or CD11b+CD14-CD66b+ cells, whereas M- MDSCs are designated as 
CD11b+CD14+HLA- DR-/lowCD15- cells (Bronte et al., 2016). The recruitment of MDSCs to the TME is 
crucial for establishing an immunosuppressive niche. Specifically, PMN- MDSCs are primarily recruited 
through CXC chemokines, including CXCL1, CXCL2, and CXCL5 (Groth et  al., 2021; Lim et  al., 
2020). On the other hand, M- MDSCs migrate toward the TME via the CCL2- CCR2 axis (Lim et al., 
2020). Notably, CCR5 ligands (CCL3, CCL4, and CCL5) play a vital role in the recruitment of both 
MDSC subsets (Blattner et al., 2018). MDSCs are present in small numbers in the peripheral blood of 
healthy individuals, yet their numbers increase dramatically after tumorigenesis and migrate through 
the peripheral blood circulation to the site of the lesion. MDSCs have been reported to significantly 
upregulate tumor- associated macrophages, TAM receptor tyrosine kinases (RTKs) (TYRO3, AXL, 
MERTK, etc.), and corresponding ligands, leading to immunosuppression (Holtzhausen et al., 2019). 
MDSCs can bind to the CD40 receptor and express high levels of indoleamine 2,3- dioxygenase (IDO) 
or arginase 1 (ARG1), inducing a significant production of IDO1, leading to the expansion of Tregs 
(Figure 1; Yu et al., 2013; Zoso et al., 2014). MDSCs lack the necessary neutral amino acid trans-
porter, which results in a significant limitation of the essential nutrients required for T- cell activation. 
Furthermore, MDSCs also deprive T cells of the cysteine necessary for activation, thereby compromise 
anti- tumor function (Srivastava et  al., 2010). Additionally, iNOS is upregulated in the cytoplasm 
of MDSCs, where large amounts of L- arginine are metabolized to nitric oxide (NO) and L- citrulline, 
and NO drives negative communication between T cells, including interfering with IL- 2R signaling 
and catalyzing the T- cell receptor (TCR), ultimately leading to the suppression of T- cell function (Lu 
et al., 2019; Lee- Chang et al., 2019; Bodogai et al., 2015). In addition, hypoxia- inducible factor 
1α (HIF- 1α) upregulation enhances the differentiation of M- MDSCs into immunosuppressive TAMs 
(van Vlerken- Ysla et al., 2023; Kwak et al., 2020). M- MDSCs also secrete IL- 10, which suppresses 
DCs and promotes Tregs development. MDSCs induce immunocompetence by interacting with PD- 1 
receptors on T cells. Furthermore, other immune checkpoint molecules like VISTA, Gal- 9, and CD155 
have been implicated in MDSC- mediated immunosuppression (Wu et al., 2019b; Johnston et al., 
2014; Zhang et al., 2020; Limagne et al., 2019; Le Mercier et al., 2014; Wang et al., 2018; Noman 
et al., 2014; Antonios et al., 2017). Preclinical evidence also suggests that PMN- MDSCs are suscep-
tible to ferroptosis, releasing oxidized lipids that impair T- cell function. Moreover, extracellular vesicles 
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(EVs) from PMN- MDSCs inhibit NK cell- mediated anti- tumor activity (Tumino et  al., 2021; Burke 
et al., 2014).

Extensive research has focused on how MDSCs contribute to the immunosuppressive microenvi-
ronment. Primarily, PMN- MDSCs demonstrate upregulated expression of ARG1 and reactive oxygen 
species (ROS), associated with their immunosuppressive functions, while M- MDSCs are characterized 
by the expression of immunoregulatory molecules like TGF-β, IL- 10, and PD- L1 (Gabrilovich, 2017; 
Gabrilovich et  al., 2012; Veglia et  al., 2021). However, MDSCs display significant heterogeneity 
across subsets and among patients, leading to variability in the expression of these molecules. There-
fore, understanding MDSCs’ heterogeneity and their immunosuppressive mechanisms remains a crit-
ical challenge in HCC immunotherapy.

Tumor-Associated Macrophages
Macrophages are versatile immune cells, involved in tissue homeostasis, pathogen defense, and 
wound healing (Wynn et al., 2013). Those present in tumor tissues or the microenvironment, known 
as TAMs, exhibit distinct subsets based on differential gene expression. TAMs can be categorized 
into TAM1 (FOLR2+), TAM2 (SPP1+), and TAM3 (MT1G+), with TAM1 further divided into CD163high/
CD206high and TAM2/TAM3 into CD163low/CD206low subsets (Sharma et al., 2020). Various markers 
distinguish these subsets, such as SPP1 and FOLR2 (Sharma et al., 2020; Finn et al., 2020; Sharma 
et al., 2012; Pliner et al., 2019). Krasniewski et al., 2022 utilized single- cell sequencing and flow 
cytometry, identifying four subsets of macrophages by membrane markers LYVE1 and MHCII, indi-
cating their dynamic polarization. Analysis of TCGA data showed a correlation between TAMs and 
poor patient prognosis (Zhang et al., 2019a). This may be due to the fact that TAMs inhibit T cells 
from recognizing and killing tumor cells (Condamine et al., 2016). We later found that upregulation of 
macrophage SPP1 expression in the hypoxic TME interacts with CAFs to stimulate extracellular matrix 
(ECM) reprogramming, which together form a tumor immune barrier (TIB) structure in TME (Sharma 
et al., 2020). Blockade of SPP1 or macrophage- specific knockdown of SPP1 in HCC model breaks 
the immunotherapeutic barrier TIB and sensitizes tumor cells to immunotherapy (Liu et al., 2023). 
Chemokines like CSF1 and CCL2 in the TME recruit peripheral blood monocytes, where they ulti-
mately differentiate into immunosuppressive M2 macrophages (Figure 1; Kang et al., 2011; Eggert 
et al., 2016; Li et al., 2017). TME with TAM- like features (expression of APOE, C1QA, C1QB, and 
TREM2, and high expression of SLC40A1 and GPNMB) (Lavin et al., 2017) was significantly associ-
ated with poor patient prognostic status, with SLC40A1 encoding transferrin. This observation aligns 
with recent findings by Mertens et al., 2018 regarding the involvement of iron metabolism in macro-
phage phenotypic differentiation. In a preclinical model of liver tumor metastasis, activated antigen- 
specific Fas+CD8+ T cells undergo apoptosis after interacting with FasL+CD11b+F4/80+ macrophages, 
culminating in the formation of an ‘immune desert’ (Yu et  al., 2021). It was also found that fetal 
liver- associated PLVAP ECs, CD163 macrophages, and TIGIT Tregs were specifically enriched in tumor 
tissues (Zhang et al., 2019a; Rantakari et al., 2016), while CD8+ T cells and NKT cells were predom-
inantly present in paraneoplastic tissues. Furthermore, TAMs not only dampen T- cell activity but also 
facilitate tumor progression and metastasis through signaling pathways like JAK2/STAT3/miR- 506- 3p/
FoxQ1 (Wei et al., 2019).

In addition to NOTCH and VEGF signaling pathways, Petty et al. identified the Hedgehog signaling 
pathway’s involvement in TAM polarization toward M2. Tumor cells secrete sonic hedgehog, driving 
M2 polarization, and produce CXCL9 and CXCL10, inhibiting CD8 T- cell recruitment into the TME 
(Figure 1). Furthermore, TAMs can secrete VEGF-α to facilitate stromal angiogenesis, thereby further 
promoting the progression of HCC (Banerjee et al., 2023).

The M2 macrophage- targeting peptide (M2pep), designed to selectively target M2 macrophages, 
has emerged as a promising agent for inducing tumor cell and M2 macrophage toxicity. Studies have 
demonstrated that M2pep can exert its effect without impacting M1 macrophages (Kakoschky et al., 
2018; Ngambenjawong et  al., 2016; Cieslewicz et  al., 2013). FDA- approved zoledronic acid, a 
third- generation amino- bisphosphonate agent, has demonstrated its ability to reverse the polarity 
of TAMs from M2- like to M1- like by attenuating the production of IL- 10, VEGF, and MMP9 while 
restoring iNOS expression (Comito et al., 2017; Chen et al., 2021). An additional agent repolarizing 
TAMs to the M1 phenotype is CP- 870,893, a CD40 agonist. Activation of macrophages via CD40, 
characteristic of the M1 phenotype, leads to increased release of pro- inflammatory cytokines and 
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upregulated expression of antigen- presenting molecules such as MHC- II (Baer et  al., 2016). TAM 
RTKs are also implicated in resistance to immune checkpoint inhibitors (ICIs). Notably, AXL has been 
identified as one of the top potential drug targets to overcome resistance to ICIs in bioinformatic 
analyses of large omics datasets from clinical studies and CRISPR screens (Li et al., 2022; Jiang et al., 
2021). Bemcentinib, the first of these agents, demonstrates favorable safety and efficacy profiles in 
phase I and II studies, other selective AXL TKIs, such as DS- 1205c and SLC- 391, are also being eval-
uated in clinical trials (DeRyckere et al., 2023; Valle et al., 2021). Administration of CD40 mAb has 
been demonstrated to induce macrophage- dependent tumor regression in mice. The tolerability and 
efficacy of CP- 870,893, alone or in combination with chemotherapy, have been assessed in multiple 
clinical trials (Beatty et al., 2011). Inhibitors targeting the CCL2/CCR2 or CSF- 1/CSF- 1R signaling axis 
have shown promise in reducing macrophage accumulation at tumor sites. Emactuzumab (RG7155), 
a novel humanized antibody targeting CSF- 1R, has been observed to decrease the number of TAMs 
expressing CSF- 1R in tumor lesions (Ries et al., 2014). Additionally, the oral tyrosine kinase inhib-
itor of CSF- 1R, pexidartinib (PLX3397), has demonstrated encouraging results in early clinical trials 
(Tap et  al., 2019). Other pharmaceutical agents, including the CCL2 inhibitor bindarit, anti- CCL2 
mAb carlumab, CSF1 inhibitor GW2580, and dequalinium- 14, CD40 antagonist CP- 870,893, have also 
shown anti- tumor effects by reducing macrophage infiltration (DeNardo and Ruffell, 2019). Further-
more, the density of TAMs often correlates with the density of vessels in tumor tissues. Consequently, 
TAMs exert a significant influence on the efficacy of anti- angiogenic therapy. Notably, VEGF antago-
nists induce vascular normalization, which concurrently remodels the TAM phenotype (DeNardo and 
Ruffell, 2019; Mantovani et al., 2017). Despite promising preclinical data, the translational benefits 
of TAM- targeting agents in clinical studies have been somewhat modest. Further investigations are 
warranted to evaluate their therapeutic efficacy as monotherapy or in combination therapy settings.

Tumor-Associated Neutrophils
Neutrophils are innate immune cells that are the first cells to infiltrate tissues in infections, injuries, or 
tumors. Several studies have demonstrated that the level of TAN infiltration is positively correlated with 
poor prognosis in patients (Coffelt et al., 2016). TANs come in two different flavors: anti- tumorigenic 
(N1) or protumorigenic (N2). Protumorigenic N2 TANs have the capacity to form decondensed chro-
matin studded with granular and some cytoplasmic proteins, called neutrophil extracellular traps 
(NETs), known to support tumor growth (Cheng et al., 2018; Arvanitakis et al., 2021).

In addition, several studies have demonstrated interactions between tumor cells, TANs, and 
cancer- associated fibroblasts (CAFs) in HCC progression. CAF can inhibit neutrophil function via the 
SDF- 1αglycolytic activation/CXCR4/IL- 6 pathway, and also secrete cardiotrophin- like cytokine factor 1 
(CLCF1), which mediates the tumor’s expression of CXCL6 and TGF-β, respectively, which are respon-
sible for neutrophil recruitment and polarization toward N2 (Figure 1).

N2 neutrophils induce a stem cell phenotype in HCC cells, and co- culture induces the secretion 
of CXCL5, which further promotes tumorigenesis (Zhou et  al., 2019; Zhou et  al., 2012). Several 
studies have shown that a dysregulated neutrophil- to- lymphocyte ratio is strongly associated with 
the prognosis of patients with HCC. This may be due to the release of TGF-β by neutrophils, which 
affect immune regulation and tumor angiogenesis (Gonzalez- Sanchez et  al., 2021). Galunisertib/
LY2157299, a novel TGF‐β receptor 1 kinase inhibitor, is being investigated in phase II trials in combi-
nation with nivolumab (NCT02423343), sorafenib, or ramucirumab (NCT02240433, NCT02178358, 
and NCT01246986) (Donne and Lujambio, 2023).

Dendritic Cells
DCs are important APCs in the immune system and have migratory properties that allow them to 
present antigens to immune killer cells in tissues and lymph nodes (Heras- Murillo et  al., 2024). 
For example, the activation of CD8+ T cells depends on the early activation of DCs by CD4+ T (Th) 
helper cell (Figure  1). The process of antigen presentation requires the formation of an immune 
synapse (Jenne and Kubes, 2013). The complete immune synapse has three regulatory steps: DCs 
are required to present antigens on MHC molecules to T cells individually and interact with co- stimula-
tory molecules of the TNF superfamily (CD40L/CD40, 4- 1BBL/4- 1BB, CD27/CD70, CD30L/CD30, and 
HVEM/LIGHT) to trigger stimulation of CD8+ T cell activation (Figure 1; Thaiss et al., 2011). And one 
of the main mechanisms of cancer cell immune escape is to disrupt this immune synapse by expressing 
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inhibitory ligands for T- cell activation, e.g., PD- 1, CTLA- 4; lymphocyte activation 3, LAG3; hepatitis A 
virus cell receptor 2, TIM3 (McLane et al., 2019).

DC populations can be divided into several categories based on their developmental spectrum 
and stage of differentiation: conventional DCs (cDCs), plasmacytoid DCs (pDCs; CD303+CD304+, 
secreting type I IFN), and inflammatory DCs (Jellinger, 2022).

Several studies have observed reduced circulating pDCs and cDCs in the peripheral blood of HCC 
patients compared to healthy controls, and lower expression of co- stimulatory molecules on these 
DCs (Pirillo et al., 2023). BDCA2+ pDCs in tumor tissue were associated with high alpha- fetoprotein 
(AFP) levels, advanced tumor- node- metastasis staging, and increased tumor infiltration by Tregs and 
IL- 17- producing cells (Zhou et al., 2017). In vitro experiments revealed that pDCs induced the differ-
entiation of CD4+ T cells into IL- 10- producing Tr1 cells. In addition, tumor cDCs from patients with 
HCC were found to express inhibitory ligands such as PD- L1, Gal9 (ligand for TIM3), MHC- II (LAG3), 
CD86 and CD80 (CTLA- 4) (Sun et  al., 2021). Therapeutic strategies targeting DCs, such as overt 
immunotherapy and DC vaccines, are available to restore anti- tumor responses. A meta- analysis high-
lighted that immunotherapy based on DCs cells could improve CD4+ T/CD8+ T ratio while ensuring 
safety (Chen et al., 2018). streptococcal- derived DC- OK432 that produce large amounts of Th1 cyto-
kines (IL- 12 and IFN-γ) and enhance cytotoxic T- cell activity via CD40/CD40L co- stimulatory molecules 
(Nakamoto et al., 2011), which is effective in combination immunotherapy (Teng et al., 2021). Mouse 
liver cancer model treated with DC vaccine in combination with PD- 1 inhibitor has longer OS and 
significantly reduced tumor volume (Nakai and Matsumura, 2021). There is also clinical trial data that 
suggests this combination therapy could be a potential treatment for cancer patients (Vogt et al., 
2021).

Cancer-Associated Fibroblasts
Within stromal components, CAFs play a pivotal role, upregulating multiple membrane surface molec-
ular markers including alpha- smooth muscle actin, fibroblast activation protein, fibroblast- specific 
protein 1, platelet- derived growth factor receptor (PDGFR)-α/β, and vimentin (Figure  1; Giraldo 
et al., 2019; Barrett and Puré, 2020). While a small subset of CAFs may restrict tumor growth, the 
majority of CAF populations have been consistently shown across numerous studies to promote tumor 
cell proliferation (Mizutani et al., 2019; Fiori et al., 2019; Hinshaw and Shevde, 2019; Joshi et al., 
2021).

(1) Tumorigenesis leads to ECM reprogramming by matrix metalloproteinases (MMPs), fostering 
the creation of a specific extracellular milieu conducive to cancer progression (Chen and Song, 2019). 
CAFs are central to maintaining ECM homeostasis, synthesizing and secreting ECM proteins under 
pathological conditions (Miles and Sikes, 2014).

CAFs rely on protease- and force- mediated ECM remodeling to facilitate tumor cell invasion and 
metastasis. Moreover, the hypoxic TME regulates ECM remodeling by CAFs, with HIF- 1α-expressing 
CAFs promoting tumorigenesis and metastasis (Calvo et al., 2013; Gilkes et al., 2014).

(2) The most thoroughly studied paracrine pathway of CAFs is TGF-β (Mariathasan et al., 2018). 
TGF-β binds to transmembrane surface receptor serine/threonine kinase complexes, inducing down-
stream Smad complex activation, which regulates target gene expression (Colak and Ten Dijke, 2017; 
Mu et al., 2012). Recently, a strong association has emerged between stem cell- like properties and 
the mesenchymal- like phenotype of tumor cells (Morel et al., 2012; Todaro et al., 2014). Cancer 
cells undergoing epithelial- mesenchymal transition (EMT) often acquire stem cell- like traits, facilitated 
by upregulation of TGF-β and secretion of SPP1, allowing simultaneous acquisition of stemness and 
completion of EMT (Fessler et al., 2016; Heldin et al., 2012). Additionally, various pathways such as 
MAPK, PI3K/Akt, Wnt/β-catenin, hepatocyte growth factor (HGF)/c- MET, and JAK/STAT contribute to 
tumor cell phenotypic transitions, forming intricate feedback loops crucial for tumor survival, stem-
ness, EMT, metastasis, and clonal potential (Ding et al., 2018; Comoglio et al., 2018; Lozano et al., 
2023). Patients with heightened expression of signaling molecules like TGF-β, MAPK, and PI3K/Akt 
typically exhibit disease progression and poor prognosis (Calon et al., 2015).

(3) CAFs also exert a significant influence on tumor angiogenesis, primarily through the upregu-
lation of pro- angiogenic factors such as VEGF and PDGF (Fukumura et al., 1998). In addition, CAFs 
secrete high levels of CXCL12 to recruit endothelial progenitors to participate in revascularization 
(Feig et al., 2013). Furthermore, CAFs contribute to tumor progression by modulating the expression 
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of various proteases involved in ECM remodeling, thereby promoting tumor cell colonization and 
metastasis (Bronisz et al., 2012). NF-κB plays an important role in CAFs, mediating the upregulation 
of proteases such as COX2, CXCL1, CXCL2, CYR61/CCN1, IL- 1β, IL- 6, and osteopontin, thus promote 
tumor growth, recruit macrophages, and form tumor vasculature (Erez et al., 2010).

Multiple studies have highlighted the importance of cross- talk between tumor cells, TANs, and 
CAFs in influencing HCC progression. CAFs can inhibit neutrophil function via the SDF- 1α/CXCR4/IL- 6 
pathway, which in turn induces the expression of CD66b, PD- L1, CXCL8/IL- 8, TNF, and CCL2, and can 
inhibit T- cell function and proliferation in vitro (Johnson et al., 2018). Secretion of CLCF1 by CAFs can 
mediate tumoral expression of CXCL6 and TGF-β, responsible for neutrophil recruitment and N2 type 
polarization, respectively (Colak and Ten Dijke, 2017). These multifaceted interactions underscore 
the critical role of CAFs in tumor progression and suggest their potential as therapeutic targets.

Interactions Between Immunosuppressive Cell Populations and Tumor 
Cells
Cancer cells manipulate their microenvironment by modulating immune cells and the ECM, creating 
an environment conducive to tumor sustenance. This intercellular communication occurs through 
direct cell- to- cell interactions involving adhesion molecules like integrins, cadherins, and selectins, 
as well as through paracrine signaling pathways (Dobie and Skropeta, 2021). Notably, the PD- L1/
PD- 1 pathway is exploited by tumor cells to evade immune surveillance (van Niel et al., 2022; Lucotti 
et al., 2022). Additionally, tumor cells remodel their microenvironment by releasing cytokines, chemo-
kines, growth factors, and proteases. The ECM serves as a critical medium through receptors such as 
integrins and CD44 for intercellular communication, providing a surface for cell adhesion and migra-
tion and sequestering secreted molecules (Dey et al., 2021; Xiao et al., 2019). Immune cells, partic-
ularly M2 polarized macrophages, play a pivotal role in shaping the tumor stroma by secreting growth 
factors like fibroblast growth factor, and PDGF-β, and by producing TGF-β, which triggers fibroblast 
activation and collagen deposition (Dhanasekaran et al., 2016; Llovet et al., 2016). The impact of 
these factors is amplified by the ability of various leukocytes to secrete matrix proteolytic enzymes 
such as MMP9, which liberate ECM- bound factors capable of inducing stromal mitogenesis (Munitz 
and Levi‐Schaffer, 2004). As a consequence, macrophages emerge as critical orchestrators within the 
TME, capable of inducing myofibroblast differentiation, fostering fibrosis, and sustaining stromal cell 
viability.

The interaction between myeloid and stromal cells has received considerable attention, but other 
immune cell infiltrates, such as Tregs, TH2, TH17, and NKT cells, also significantly influence TME 
(Coulouarn and Clément, 2014). Understanding these interactions is crucial for elucidating the immu-
nosuppressive mechanisms disrupting the cancer immunity cycle and improving responsiveness to 
immunotherapy.

The Relationship Between TME Components and Immunotherapy 
Resistance
Lymphocytes and Immunotherapy Resistance
As previously discussed, the depletion of CD8+ T cells in TME stands as a primary impediment to 
effective tumor immunotherapy, given its heavy reliance on T- cell functionality. Upregulation of 
immune checkpoints is a leading mechanism behind immunotherapy resistance, directly linked to 
the exhaustion of CD8+ T  cells. Ma et al.’s research underscores that disease progression in HCC 
correlates with an enrichment of PD- 1high CD8+ T cells within the TME (Ma et al., 2019; Wang et al., 
2023). Targeting immune checkpoints such as PD- L1, TIM- 3, or LAG- 3 with ICIs in HCC can reverse the 
exhausted state of infiltrating T cells within the TME, thereby enabling them to exert their anti- tumor 
functions. Pro- inflammatory cytokines, particularly IFN- I, within the TME initially stimulate T- cell acti-
vation, thus fostering an environment conducive to tumor immunotherapy (Yu et al., 2022). However, 
recent findings reveal that sustained signaling of inflammatory cytokines, specifically IFN- I, exacer-
bates the terminal exhaustion of CD8+ T  cells, leading to resistance to ICIs therapy and a poorer 
prognosis in cancer patients (Zheng et al., 2021). Chronic stimulation by the inflammatory cytokine 
IFN- I can induce lipid peroxidation, intensify the exhaustion program of CD8+ T cells, and dampen the 
effector function of exhausted CD8+ T cells. Notably, studies have demonstrated that treatment with 
either anti- PD- 1 or anti- type I interferon receptor- 1 (IFNAR- 1) alone failed to improve the survival rate 
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in a mouse model of HCC. However, combined therapy with anti- PD- 1 and anti- IFNAR- 1 significantly 
prolonged the survival rate of the mice (Chen et al., 2022a).

MDSCs and Immunotherapy Resistance
MDSCs are capable of producing MMP9. Kumar et al., 2016 observed in a tumor model of immu-
nodeficient mice, co- injected with fibroblasts and tumor cells, an increased expression of MMP9 and 
angiogenic factors. MDSCs and TAMs were attracted to the tumor site through the specific chemo-
tactic action of CCL2, enabling the tumor to evade immune surveillance. Crucially, the caspase 
recruitment domain protein 9 (CARD9) regulates tumor growth in the TME by modulating IDO in 
collaboration with MDSCs (Wu et al., 2019a). MDSCs secrete cytokines like IL- 6, IL- 10, and IL- 23, 
promoting cell survival, as evidenced in studies co- culturing MDSCs with multiple myeloma cells (De 
Veirman et al., 2019). Additionally, MDSCs facilitate tumor progression by activating Tregs, inhibiting 
tumor immunity via immunosuppressive cytokines (IL- 10, TGF-β), and producing NO and ROS (Lin 
et al., 2019). Notably, MDSC- derived EVs contribute to immunosuppression through increased PD- L1 
expression and TGF-β secretion (Lin et al., 2019; Fleming et al., 2019; Iwata et al., 2016). Moreover, 
high ARG1 levels in TME deplete L- arginine, impairing T- cell function, while MDSC- derived iNOS and 
NOX2 induce oxidative stress, inhibiting T- cell proliferation and migration (Feng et al., 2018; Fiaschi 
and Chiarugi, 2012). Besides, NO and peroxynitrite derived from MDSCs can inhibit T- cell migration 
to tumor sites by reducing the expression of adhesion molecules such as E- selectin on endothelial 
cells and disrupting chemokine- mediated recruitment (Gehad et al., 2012). Additionally, MDSCs can 
inhibit the expression of IFN-γ and TNF by NK cells, as well as antibody- dependent cellular cytotox-
icity, through the generation of NO (Stiff et al., 2018). Ultimately, MDSCs directly suppress effector 
T cells and natural killer cells, while also fostering an immunosuppressive milieu by stimulating other 
suppressive immune cell types.

TAMs and Immunotherapy Resistance
TAMs exert their immunosuppressive function by expressing immune inhibitory receptors such as 
PD- L1/2 and CD80/CD86, which lead to the depletion of T cells. Interaction between PD- L1 on TAMs 
and PD- 1 on T cells inhibits downstream signaling transduction of TCR, consequently inducing T- cell 
exhaustion (Chen et al., 2012; Liu et al., 2020). Additionally, TAMs can reshape TME by secreting 
immunosuppressive factors such as VISTA, TGF-β, IDO, and anti- inflammatory mediators (Hmeljak 
et al., 2018; Llosa et al., 2015). Furthermore, TAMs can induce an immunosuppressive niche involving 
Tregs, CAFs, DCs, MDSCs, and other cells. Our previous research has demonstrated that TAMs upreg-
ulate the expression of SPP1 in hypoxic microenvironments and interact with CAFs, leading to meta-
bolic reprogramming and the formation of a ‘TIB’ within the microenvironment. This distinctive spatial 
structure weakens the therapeutic efficacy of immune- based therapies (Hashimoto et  al., 2016). 
Furthermore, multiple studies indicate that TAMs can directly impact tumor cells by enhancing their 
resistance to apoptosis- inducing drugs. Angiopoietin- 2 serves as a regulator of vascular integrity and 
is functionally linked to TAMs, endowing tumor cells with an anti- VEGF escape capability (Coffelt 
et al., 2010; Mantovani et al., 2017). Additionally, studies have reported that the sustained glyco-
lytic activation in TAMs microenvironment may deprive immune effector cells of glucose, thereby 
attenuating the efficacy of immunotherapy (Chang et al., 2015). Arlauckas et al., 2017 found that 
TAM populations expressing high levels of Fcγ receptors can sequester immune checkpoint blockers, 
preventing their pharmacological interaction with their targets, thus contributing to the develop-
ment of resistance. Concurrently, Neubert et  al., 2018 observed that PD- 1 therapy- induced acti-
vation of T cells results in increased secretion of CSF1, promoting M2 polarization of TAMs, which 
emerges as a crucial determinant of resistance. Consequently, this provides compelling rationale for 
the combination inhibition of CSF1R and PD- 1 (Zhu et al., 2014). As previously discussed, the meta-
bolic programming of TAMs and their cross- talk with various immune components within the TME 
represent promising therapeutic targets for the development of novel immunotherapies.

TANs and Immunotherapy Resistance
Increasing evidence suggests that TANs contribute to immunoresistance in HCC. Neutrophils have 
been shown to release various cytokines, thereby promoting inflammatory responses and immune 
modulation within the TME. These cytokines include HGF, oncostatin M, β2- integrin, neutrophil 
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elastase, MMP9, and VEGF (Kuang et al., 2011). Furthermore, multiple studies have indicated that 
TANs can directly promote cancer cell growth, migration, and invasion. Additionally, Fan et al. found 
that TANs can also secrete chemokines such as CCL2 and CCL17, thereby modulating the microenvi-
ronment and recruiting macrophages to infiltrate tumor sites, thus advancing HCC progression (Zhou 
et al., 2016). Murine model studies have shown that the depletion of TANs significantly augments 
the therapeutic efficacy of sorafenib (De Bock et al., 2011). Research utilizing samples from patients 
with HCC undergoing anti- PD- 1 immunotherapy and multi- site specimens from animal models has 
enabled the construction of a single- cell neutrophil atlas. This atlas revealed a higher prevalence of 
CD10+ALPL+ neutrophils in anti- PD- 1- resistant patients. These neutrophils exhibit an immunosuppres-
sive phenotype by promoting irreversible T- cell exhaustion and reducing their cytotoxicity. Further-
more, these neutrophils originate from tumor cell reprogramming (Meng et al., 2023).

Upon specific stimuli, neutrophils can extrude NETs, a web- like structure comprising DNA, histones, 
and antimicrobial proteins, closely linked to cancer progression (Yang et al., 2020). In the context 
of liver fibrosis, increased NETs in the tumor- associated ECM, together with collagen type I (Col1) 
enveloping tumor cells, hinder their physical contact with cytotoxic T cells, thereby impairing ICI 
response. Additionally, shield- like structures formed by NETs and Col1 around HCC cells trap and 
directly deplete activated T cells through proteases and immunosuppressive molecules decorated 
on the chromatin scaffold of NETs (Schauer et al., 2014; Kaltenmeier et al., 2021). In addition to 
protecting HCC cells from invasion by adherent activated T cells, we have also observed that the 
synergistic action of liver fibrosis- associated ECM, Col1 and NETs prevents distant T- cell infiltration 
into the tumor area, thereby creating a region locally enriched in neutrophils/NETs but depleted of T 
cells. Other studies have documented an antagonistic distribution of neutrophils/NETs and T cells in 
the liver fibrosis- associated ECM/Col1- enriched area (Rømer et al., 2021; Chen et al., 2022b). The 
enrichment of NETs and the scarcity of T cells in the TME also elucidate the more aggressive nature of 
intrahepatic metastasis in patients with liver cirrhosis- associated HCC.

DCs and Immunotherapy Resistance
DCs play pivotal roles in eliciting and modulating immune responses. However, under steady- state 
conditions devoid of pro- inflammatory stimuli, the activation of T cells by DCs results in T- cell toler-
ance (Jones et al., 2016). The activation of CD8+ T cells relies on the immunological synapse, where 
a complete immunological synapse is formed by DCs presenting antigens on MHC molecules and 
engaging in interactions with co- stimulatory molecules, thereby triggering the production of cyto-
kines crucial for the proliferation and differentiation of CD8+ T  cells. Dysfunction in DC- mediated 
antigen presentation and subsequent T- cell suppression constitute the core mechanisms underlying 
immune evasion in HCC (Barry et al., 2018).

CAFs and Immunotherapy Resistance
Öhlund and colleagues have delineated two distinct subsets of CAFs, namely inflammatory CAFs 
and myofibroblastic CAFs (myCAFs) (Northey et  al., 2017). Utilizing single- cell RNA sequencing 
technology, Kieffer et al. further identified two subgroups within myCAFs, ECM- myCAF and TGF-β-
myCAF, which play critical roles in shaping the immunosuppressive milieu and conferring resistance 
to immunotherapy (Costa et al., 2018). Their study demonstrated that ECM- myCAFs stimulate the 
expression of PD- 1 and CTLA- 4 proteins on the surface of CD4+CD25+ T lymphocytes, while PD- 1+ 
CTLA- 4+ Tregs can reciprocally alter the proportion of TGF-β-myCAFs by converting ECM- myCAFs 
into TGF-β-myCAFs (Costa et  al., 2018). Concurrently, CAFs produce abundant collagen, poten-
tially erecting physical barriers that impede the migration of adaptive immune cells to new antigen- 
presenting sites (Mariathasan et al., 2018). Additionally, studies have suggested that the activation 
of pathways associated with smooth muscle cell contraction and innate immune cell activation within 
myCAFs may be linked to the establishment of an immunosuppressive microenvironment, potentially 
explaining their resistance (Galbo et al., 2021).

Current Status of Immunotherapy for HCC
The latest Barcelona Clinic Liver Cancer (BCLC) staging system is established based on tumor burden, 
liver function, performance status, and cancer- related symptoms. This staging system enables clinicians 
to tailor treatment strategies and prognostic predictions, ultimately improving patient management 
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and outcomes (Figure 2). Surgical resection, radiofrequency ablation, and transarterial chemoemboli-
zation (TACE) are available for early and intermediate stage patients, while systemic therapy, including 
immunotherapy, is indicated for BCLC C stage patients (Figure 2).

Clinical trials exploring adjuvant and neoadjuvant immunotherapies in early- or intermediate- 
stage HCC have shown promising results. Phase III studies are evaluating adjuvant anti- PD- 1/PD- L1 
antibody monotherapy or co- inhibition of the PD- L1- PD- 1 and VEGF- VEGFR pathways after surgery. 
Pilot neoadjuvant studies assessing anti- PD- 1 antibodies alone or with anti- CTLA- 4 antibodies are 
also underway (Pinato et al., 2021; Topalian et al., 2020; Haber et al., 2021; Lee et al., 2015; 
Liu et al., 2016). Neoadjuvant immunotherapies, including nivolumab, ipilimumab, cemiplimab, and 

Figure 2. Barcelona Clinic Liver Cancer (BCLC) and immune checkpoint inhibitors (ICIs) clinical trials by BCLC staging. BCLC staging are based on 
tumor number and size, vascular invasion or metastases, preserved liver function and performance status. Presented on the right side of the figure 
are the clinical trials carried out for patients with liver cancer, categorized according to the BCLC staging system, alongside the primary therapeutic 
interventions applied.
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cabozantinib, have demonstrated encouraging outcomes in early- stage HCC, with increased T- cell 
infiltration and pathological complete response rates observed (Topalian et al., 2019; Galle et al., 
2018). However, these treatments have not been integrated into clinical guidelines due to trial design 
limitations and lack of validation studies. Further validation through phase III trials is needed before 
incorporating these strategies into clinical practice. Despite multiple clinical trials incorporating early- 
stage BCLC patients into immunotherapy cohorts, BCLC stage C patients consistently represent the 
majority population (78–91%) (Bruix et al., 2021).

In intermediate- stage HCC, the synergy between immunotherapy and locoregional therapies is 
better understood compared to surgery. Immunotherapy following locoregional treatments like tumor 
ablation, TACE, or transarterial radioembolization shows promise due to increased antigen presen-
tation resulting from tumor cell destruction (Gudd et al., 2021; Dolladille et al., 2020). Subsequent 
immune effects, known as ‘abscopal’ effects, can be augmented with ICIs. Tremelimumab immuno-
therapy has shown increased infiltration of tumor CD8+ T cells in HCC patients, suggesting its combi-
nation with subtotal ablation or TACE (Pinato et al., 2020; Nogueira et al., 2019). Preliminary results 
from the PETAL study on pembrolizumab post- TACE indicate tolerability. Combinations of other ICIs 
with TACE are in phase III trials (Kelley et al., 2021; Fukumura et al., 2018). Adding anti- angiogenic 
drugs to locoregional therapy and ICIs may enhance efficacy, with ongoing phase III trials investigating 
this approach. Comparative studies between systemic therapies like atezolizumab and bevacizumab 
versus TACE in intermediate- stage HCC are underway in phase III trials like RENOTACE and ABC- HCC.

Immunotherapy is also applicable to patients who have failed initial treatment but remain in stages 
preceding BCLC stage C. Since the initiation of the Imbrave150 study, immunotherapy has been 
formally incorporated into the first- line treatment of advanced liver cancer patients (Figure 2). The 
latest advancements and strategies in immunotherapy are as follows.

ICIs Combination Therapy
PD- 1/PD- L1 inhibitors combined with CTLA- 4 inhibitors, such as nivolumab in combination with ipili-
mumab, and tremelimumab plus durvalumab regimen. Additionally, phase II studies investigating the 
combination of immunosuppressive agents with TACE or 90Y radioembolization are also underway.

Immunotherapy Combined with Targeted Agents
Currently, several combination regimens have been approved, including atezolizumab plus bevaci-
zumab, pembrolizumab plus lenvatinib, camrelizumab plus apatinib, and sintilimab plus bevacizumab 
analogues. Additionally, ongoing clinical studies include the TALENTACE trial evaluating the combi-
nation of atezolizumab with sorafenib or lenvatinib in phase III clinical research for patients who have 
received prior treatment with atezolizumab plus bevacizumab, the SHR- 1210- III- 310 trial assessing the 
combination of camrelizumab with apatinib as first- line therapy for advanced HCC, and the LEAP- 012 
trial investigating the combination of pembrolizumab with regorafenib for patients with advanced 
HCC who have experienced immunotherapy failure or progression (Llovet et al., 2022b; Kudo et al., 
2022).

Combining Immunotherapy with Local Therapy
Several preclinical studies suggest that incorporating radiotherapy into immunosuppressive therapy 
not only directly kills tumor cells but also enhances immune surveillance by activating immune 
responses, thereby improving immune resistance (Bu et  al., 2023; Wang et  al., 2022). Research 
has reported that PD- L1 combined with radiotherapy can restore the normal function of CD8 T cells 
in tumor tissue, thereby exerting anti- tumor immune effects. In a study combining nivolumab with 
radiotherapy, all patients responded to the combination therapy. Interestingly, the development and 
application of some nanoparticles can induce cancer cell death, further activating the immune system 
(Zhang et al., 2024).

Oncolytic Virus Therapy
Oncolytic virus (OV) therapy involves the selection or genetic engineering of viruses to preferentially 
infect, replicate within, and lyse tumor cells. The principle behind this therapy is that the overexpres-
sion of receptors on the surface of tumor cells and various signaling pathways associated with viral 
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clearance enable OV to enter tumor cells and induce their destruction (Shi et al., 2020). Nakatake 
et al., 2018 investigated the anti- tumor activity and immune response of the third- generation HSV T- 01 
in animal models. Additionally, the recombinant OVs M1- c6v1 and VG161 have received FDA approval, 
and there are several ongoing clinical studies evaluating their combination with immunotherapy.

Tumor Vaccines
These vaccines work by amplifying tumor- specific T- cell responses through active immunization. They 
primarily target AFP and glypican 3 (GPC3) in HCC (Hong et al., 2014). UCPVax (a telomerase- derived 
CD4+ helper T- cell- inducing tumor vaccine) in combination with atezolizumab plus bevacizumab has 
entered phase II clinical trials (Vienot et al., 2023).

Cell-Based Therapies
Cell- based therapies refer to the process of genetically modifying patient immune cells to express 
chimeric antigen receptors (CARs) and then reinfusing them back into the patient’s body. These engi-
neered cells are capable of binding to specific tumor antigens, stimulating immune- mediated destruc-
tion of tumor cells, thereby enhancing overall tumor- specific anti- tumor effects (Akce et al., 2018; 
Zhang et al., 2019b). Major cell- based therapies include NK cell therapy, TIL therapy, and CAR T- cell 
therapy, among others. In HCC, adoptive cell therapies primarily target GPC3, with multiple related 
studies progressing into phase I clinical trials (Rochigneux et al., 2021; Zhu et al., 2018b; Zheng 
et al., 2022).

Frequently employed immunotherapies encompass combination therapy with ICIs and ICIs plus 
targeted agents. This section highlights those that have transitioned into practical clinical application, 
focusing on ICI therapy and combination approaches (Table 1).

First-Line Setting
The results of the IMbrave150 demonstrated that atezolizumab in combination with bevacizumab 
achieved significant improvements in both overall and progression- free survival, with median OS not 
yet reached in the combination therapy group and median OS of 13.2 months (10.4 months~NE) in 
the sorafenib group (Cheng et al., 2022). Analysis of 194 Chinese patients from a subgroup revealed 
a hazard ratio (HR) for OS of 0.44, suggesting a 56% relative reduction in the risk of death with the 
immunotherapy combination regimen versus sorafenib, and a 6- month survival rate of 86.6% (Table 1; 
Finn et al., 2020; Galle et al., 2021). The GO30140 trial also evaluated atezolizumab in combination 
with bevacizumab, showing an objective remission rate (ORR) of 36% by independent review facility 
(IRF) based on RECIST 1.1 criteria and 39% by IRF using HCC mRECIST criteria, with a median OS of 
17.1 months and no new safety concerns related to the combination therapy (Finn et al., 2020; Cheng 
et al., 2022; Lee et al., 2020).

The ORIENT- 32 study demonstrated superior OS and PFS with sindilizumab plus bevacizumab over 
sorafenib alone, with respective medians not reached and 10.4 months for OS (HR = 0.569, 95% CI 
0.431–0.751, p<0.0001) and 4.5 vs 2.8 months for PFS (HR = 0.567, 95% CI 0.457–0.704, p<0.0001) 
(Ren et al., 2021). Conversely, the CheckMate 459 study did not show significant prolongation of 
OS but reported a higher ORR (Yau et al., 2022). Notably, previous HCC studies have highlighted 
better outcomes with immunotherapy in patients with hepatitis virus infection; the CheckMate 459 
cohort, which included more patients without hepatitis virus infection, exhibited diminished efficacy 
with nivolumab, potentially affecting overall efficacy (Yau et al., 2022).

The KEYNOTE- 524 study investigated lenvatinib with pembrolizumab, revealing an ORR of 46% by 
mRECIST and 36% by RECIST v1.1 criteria, with 83% of patients experiencing target lesion reduction. 
However, there was a high incidence of grade 3 or higher treatment- related adverse events at 67%, 
including 3% of drug- related deaths (Sun et al., 2022).

Second-Line Setting
The RATIONALE 208 study, an open- label, global, multicenter phase II clinical trial, observed that 
patients with advanced HCC previously treated with sorafenib/lenvatinib systemic therapy exhibited 
an independently reviewed ORR of 13.6% (95% CI: 9.5, 18.7) and a median OS of 13.5 months (95% CI: 
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10.9, 15.8) after a median follow- up of 12.5 months. Tirilizumab was well tolerated, with generally low 
severity of adverse events (Table 1; Serrano et al., 2022; Ren et al., 2023).

Similarly, pembrolizumab demonstrated an ORR of 18.3% and an OS of 13.9 months in the global 
Phase III KEYNOTE- 240 trial (Table  1). These findings are consistent with earlier phase II studies 
involving nivolumab in CheckMate 040 and pembrolizumab in KEYNOTE- 224 as second- line treat-
ments for advanced HCC, showing ORRs ranging from 13.8% to 15.7% and median OS durations 
of 12.9–15 months (Table 1; Sangro et al., 2020; Yau et al., 2020; Kudo et al., 2021). RESCUE is a 
domestic multicenter phase II clinical study in which all patients received karelizumab in combination 
with apatinib. The results also showed better anti- tumor activity and safety (Table 1; Xu et al., 2021).

These clinical trials underscore the unique immunoregulatory role of immune checkpoints within the 
tumor immune microenvironment. They target various markers, application phases, and sequences, 
thereby benefiting distinct clinical populations. The limited responsiveness to immunotherapy further 
highlights the necessity for comprehensive analysis of the HCC immune microenvironment to modu-
late immune resistance mechanisms, which could inform the development of novel therapeutics and 
facilitate translational advancement.

Conclusion and Future Perspective
In summary, the immune microenvironment of HCC is composed of immune cells, fibroblasts, and 
stromal cells, which play an important role in tumor cell proliferation, invasion, and angiogenesis 
(Hanahan and Weinberg, 2011). The phenomenon of resistance to immunotherapy in HCC is primarily 
due to the intricate regulatory network within the TME. The results of single- cell sequencing analysis 
reflect the spatiotemporal specificity of TME and the dynamic change of cellular composition ratio. 
Moreover, the data suggest that because of tumor heterogeneity, targeting the TME may be a more 
effective strategy than targeting tumor cells (Lujambio et al., 2013; Zhu et al., 2022). HCC patients 
can benefit from various therapeutic approaches that consider the immune characteristics of the TME. 
Several avenues of research and development can be considered.

Biomarker Identification
Investigate novel biomarkers associated with HCC immune response and immunotherapy outcomes. 
This could include identifying immune cell signatures, TME characteristics, or genetic markers that 
predict response to immunotherapy.

Personalized Medicine
Develop personalized treatment strategies based on the individual patient’s tumor characteristics, 
immune profile, and genetic makeup. This may involve the use of biomarkers to tailor treatment selec-
tion and optimize patient outcomes.

Immune Checkpoint Inhibitors
Continue to evaluate the efficacy and safety of ICIs (e.g. anti- PD- 1, anti- PD- L1, anti- CTLA- 4) in HCC, 
both as monotherapy and in combination with other agents. Investigate novel immune checkpoints 
and immune checkpoint combinations for improved responses. Furthermore, in conjunction with 
AlphaFold3 and its associated applications, computer- aided target prediction can assist in narrowing 
down the range of potential targets for identification (Abramson et al., 2024).

Preclinical Models and Translational Research
Utilize advanced preclinical models, patient- derived organoids, and patient- derived xenografts to 
better understand the complex interactions between the immune system and HCC tumors. Translate 
preclinical findings into clinical trials and patient care.

Clinical Trials and Data Analysis
Conduct well- designed clinical trials to evaluate the safety and efficacy of novel immunotherapy 
approaches in HCC patients. Analyze clinical trial data to identify predictors of response, mechanisms 
of resistance, and potential biomarkers for patient stratification.

https://doi.org/10.7554/eLife.95009
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By pursuing these research directions and leveraging advances in immunotherapy, precision medi-

cine, and translational oncology, we can enhance our understanding of HCC immunotherapy and 

improve treatment outcomes for patients with this challenging disease.
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