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Abstract- This paper begins with the optimisation of
three test functions using a genetic algorithm and
describes a statistical analysis on the effects of the
choice of crossover technique, parent selection
strategy and mutation. The paper then examines the
use of a genetic algorithm to optimize the functional
form of a polynomial fit to experimental data; the aim
being to locate the global optimum of the data.
Genetic programming has already been used to locate
the functional form of a good fit to sets of data, but
genetic programming is more complex than a genetic
algorithm. This paper compares the genetic algorithm
method with a particular genetic programming
approach and shows that equally good results can be
achieved using this simpler technique.

1 Introduction

The aim behind this work has been to locate the optimum
of an objective function, based on a limited sampling of
the function. The first part of the paper describes some
initial work on the use of a simple genetic algorithm
(GA) to optimise test functions chosen to be
representative of the experimental data. The effects of
the choice of crossover, parent selection, population size
and mutation are analysed on these test functions.

Given a set of data it is often the case that some
predictions are required. This may be a prediction of the
optimal value or it may be required to interpolate for
data values lying between those values already obtained.
The method most frequently used to make these
predictions is that of fitting a curve to the data and
making these predictions from the fitted curve. In most
cases the functional form of the fitted curve is pre-
decided. The decision may be to fit a quadratic
polynomial to the data and then use optimization
techniques (usually least square methods) to find the best
coefficients for this quadratic fit.
A common method used at present to derive

information from a set of data is the "Design of
Experiment" method (Montgomery 1997). In this method

the experimental data is analysed by fitting a polynomial,
usually to a small region of the data space, and then
using response surface methods to estimate where the
optimal value lies. The functions chosen to fit the data
are predetermined polynomials that are either linear,
quadratic or cubic. Not all data is suited to these
particular functional fits, and if the fit is poor then poor
predictions will be derived from these functions.

Genetic programming (Koza 1992, 1994) has been
used recently to find a good functional fit to data
(Davidson 1999) and genetic algorithms (GAs) have
been used to locate the best parameter values in some
pre-specified functional fit (Gulsen 1995, VanderNoot
1998). In this paper a GA (rather than genetic
programming) is used to optimize the functional form of
a polynomial fit to experimental data and a least square
method is used to choose the coefficients for the
polynomial.

Davidson (1999) used genetic programming to find a
good polynomial fit to data, choosing the values of the
coefficients in the polynomial with a least square
algorithm. Genetic programming is more complex than a
GA. The simple GA described here performs exactly the
same task as Davidson's genetic program. Davidson
verifies his technique by obtaining a polynomial fit to the
Colebrook-White formula for friction in turbulent pipe
flow. In this paper, it is demonstrated that a simple GA
results in an equally good polynomial fit to the
Colebrook-White formula. Both the Colebrook-White
formula and the other test functions used in this paper do
not involve any noise; future work will investigate the
use of the method on noisy data.

Section 2 of this paper describes the initial work on
the use of a simple GA to optimise three test functions.
Section 3 describes details of the particular GA used to
optimise the functional form of a polynomial fit to a
given data set. Section 4 describes tests on the
performance of this GA, by taking data from known
functions and Section 5 compares the performance of this
GA with the genetic programming technique by
Davidson.
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2 Statistical analysis of the GA

This section describes an analysis of the performance of
a genetic algorithm when tested on three different 240
functions that are representative of the experimental 208
data. There are various selection strategies available for 160-

140
choosing parents, different techniques for performing 120

80
crossover and various ways to mutate the population. It is 60
not clear, when starting a new problem, which of these
options are best. Since each run of a GA can be slightly 0 0.6
different from the next, even when the options chosen 0.2
remain the same, a statistical analysis must be carried out
to obtain a reliable assessment of its performance. The
GA has therefore been run many times to obtain its Figure 1. Function number 1
average performance. The number of runs necessary to
obtain a good estimate of the average performance was
assessed by performing a very large number of runs
(1000 runs) and comparing the statistics from this with
those obtained using smaller sample sizes. It was found 0.6

0.5
that 50 runs gave a reasonable estimate of the statistics. 0.4

The statistical analysis of the GA has been repeated 0.3
0.2

on three test problems and these are the optimization of 0.1
the three functions given by equations (I)-(3). These 0

functions are displayed in figures 1-3 respectively in two ,
dimensions, although the analysis was performed on six .4

dimensional versions of these functions. In the following
figures and tables of results, the test problems will be
referred to as functions 1-3. For all GA runs, the
parameter values which are not varying are chosen to be
flat crossover with tournament selection, population size
500 and a mutation rate m=10 (see section 2.3).

10
9
8
7
6
5

k=3 h{C -X 3 iue3 ucinnme

f (x) = I h, withrk =i (Eu (1) 2
k=1 bk + rk i- kW

0.4

0~~~~~~~~~~

f()= hep )wtr i=n (Ck i) (2) Figure 3. Functionnumber3

k=l il Wk

2.1 Analysis of the Crossover Technique
Five different crossover techniques have been
investigated in this work. If the function to be optimized

f(x)= 5 expt10 (X c)2 is of n variables and parent 1 has values (P,,P2 Pnf()--(n 2

parent 2 is (p2p2p2), child 1 is ( .,')and
child 2 2 . c2), then the following crossover

- i=n I i=n . (3) techniques have been investigated.
- exp -Icos(b,),z(xj - al))+-E sin(b,,T(xj - a,)) 3

n i,l n )=1
Flat crossover (Radcliffe 1991)-Offpring are produced

by choosing a uniformly random number 0 < r, <1 and
for k=1,2
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ck = p I+ r * 2 I ) if i < p2P p i

Simple crossover (Wright 1991, Michalewicz 1992)-
A random number i E{1,2,...n-i} is chosen and two
offspring are produced

(P 19,-*s p 1II+*p2~..2 ) and (p 2 pe2i 1P+l ,In

Arithmetic crossover (Michalewicz 1992)- A random
number r E [-0.5,1.5] is chosen and offspring are

produced

c i = r* p1 + (1 - r)* 2 and c 2 = r p2 + ( - r)*

Discrete crossover (Muhlenbein 1993)- ci is a

randoml (uniformly) chosen value from the set

BLX-ax crossover (Eshelman 1993)- Offspring are

produced where the value of ci is a randomly
(uniformly) chosen value in the interval
[Pmin -axI,pmax +axI] where Pmax = max(pi,pi),
Pmin = min (p1,p 2 ) and I=Pmax-Pmin'

Table 1 contains the results of the statistical analysis
of the performance of the crossover techniques described
above. The table displays the generation numbers
required (averaged over 50 runs) for the GA to reach its
optimal value. It can be seen that flat crossover

converges in the least number of generations for all the
three test functions.

Crossover
technique

Generations

to optimum
function 1

Generations
to optimum
function 2

Flat 32 49
Simple 46 67

Arithmetic 68 95
Discrete 41 56
BLX-a 63 98

Generations
to optimum
function 3

9
17
22
16
23

Table 1. Comparison of various crossover techniques

2.2 Analysis of Parent Selection Strategies

Five different parent selection strategies have been
investigated and are described below.

Tournament selection - A random sample of k
members of the population are selected and the member
whose fitness function is best is chosen as a parent.
Tournament selection has been tested for k = 2, 5, 10.

Roulette wheel selection - Each member P of the
population is selected as parent with a probability of

f (Pi)

z f(P1)

J=l

where f is the fitness function and n is the population
size.

Elitist selection - Members of the population are

sorted into order of fitness, and the best k members are

chosen with equal probability as parents. Here we have
chosen k =100.

Table 2 contains an analysis of the above selection
strategies. The table displays the number of generations
required (averaged over 50 runs of the GA) to reach the
optimal value. The Roulette wheel strategy performs the
poorest and the best performing strategy is Tournament
selection with k =10.

Ellitist 13 21 5

Table 2. Various selection strategies and their performance

2.3 Analysis of the Mutation Rate
If a small mutation rate is chosen the GA will converge
very quickly but is not guaranteed to converge to the
global optimum. If, on the other hand, a large mutation
rate is used the GA will more consistently converge to
the global optimum but will take a very large number of
generations in order to converge. The convergence rate
of the GA can be improved by introducing a variable
mutation rate (i.e. one that varies with generation
number). In this paper a mutation rate has been used
which is given by

Probability that xi mutates = m * exp(-0.002882 * (n -1))

where n=generation number. Figure 4 shows an example
of how small, large and variable mutation rates perform
in a GA. The x axis represents generation number and
the y axis is the fitness function.

930

Selection Generations Generations Generations
strategy to optimum to optimum to optimum

function 1 function 2 function 3

Roulette 197 46 19

Tournament 2 33 47 9

Tournament 5 13 19 5

Tournament 10 11 18 4
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Figure 4. Comparison of convergence with mutation rate

Table 3 displays convergence rates (averaged over 50
runs) for the three test functions with different values of
variable mutation rate m. The mutation rate m=10 was

found to be the best performing, since this was the least
value (and consequently the fastest converging) such that
the global optimal was reached for all 50 runs of the GA.
With m=4 some runs of the GA would converge to local
optima rather than the global optimum.

20 252 394 112

10 65 150 21

4 25 35 11

Table 3. Effects of mutation rate on converence of GA

2.4 Changing the population size
Increasing the population size in the GA means that more
of the space is sampled at each generation; and therefore
one might expect that fewer generations would be
required to achieve convergence. But it does not
necessarily follow that 10 generations of population size
100 performs the same as 20 generations of size 50 (i.e.
convergence does not depend linearly on the number of
evaluations of its population members). Figure 5 displays
the fitness function plotted against the number of fitness
evaluations with five different population sizes for
function 1 (functions 2 and 3 behave similarly).

It can be seen that there are large differences in the
convergence of the GA for population sizes 30, 100 and
200, whereas population sizes 300, 400 and 500
converge at very similar speeds. It can be deduced that
there is not much to be gained from using a population
size of 500, rather than one of 300.

0

rt

5000 10000 15000
Function evaluations (or experiments)

200C

Figure 5. Convergence of GA with respect to number
of fitness evaluations for different population sizes

3 Description of the GA for finding
polynomial formula

In this section, a GA is described that is used to find the
best polynomial fit to a set of data. The population in this
particular GA consists of strings of integers, each string
of integers representing one particular polynomial. A
maximum power for each term in the polynomial and a

maximum number of terms in the polynomial are pre-set
before the GA begins. Each term in a general polynomial
consists of a constant multiplying a term of the form

XP1XP2 XP3.X Pn1 2 3 ...
n

where n is the number of variables and p, must be
i=t

less than or equal to the maximum power. Note that a

constant term in the polynomial will have p,=0 for all i.
An example of how a particular polynomial is
represented by a string of integers is given by the
polynomial

ax521I+a 0 2 3+ 17x0 0ax o00a1x1 x2x3 + a21 x2x3 + a3x1x2x3 + a41 x2x3

which has four terms and three variables. This
polynomial is represented within the GA by the string of
integers

(5,2,1), (0,2,3), (1,7,0), (0,0,0) 1.

The cost function (or fitness function) in the GA is
defined as the value of/2 after a linear least square fit
has been performed to find the optimal values of the
coefficients a, .. a4

Note that none of the terms in the polynomial should
be the same since

a1x5x2x3 + a2x1x2x3 +a3xlx2x3 + a4XOXOx3 + a5X5X2X3
=(a1 +a)X5X2X1+ a2xX2X3 +a3xx x0 + a4XOXOX (4)
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Large mutation rate-
Vlariable mutation rate--

Small mutation rate- - -

.II1

L
L
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Generations Generations Generations
to optimum to optimum to optimum
function 1 function 2 function 3

Mutation
rate m

40 496 628 259



932

If a polynomial were represented with a repeat term
as in the LHS of equation (4) the least square algorithm
would be over specified and the equations in the
algorithm would become singular. The least square
software implements singular value decomposition and
therefore would be able to deal with singularities such as
these, but it is better to avoid this situation if possible.

The initial population is a set of randomly chosen
polynomials. A random number is chosen to represent
the number of terms in the polynomial (which must be
less than the maximum number of terms) and random
sequences of integers are chosen as the powers (with the
restriction that their sum for each term must be less than
the maximum power). If one term is a term already
chosen for the current polynomial then it is rejected,
since repeat terms are not allowed.

To describe the crossover technique used, consider
that each parent consists of a selection of polynomial
terms. Crossover should somehow randomly distribute
the terms of the parents to terms in the offspring, i.e.
offspring number 1 would have some of parent l's terms
and some of parent 2's terms, and likewise with offspring
2. The crossover technique must also take into account
that repeated terms are not allowed.

Suppose the two selected parents are:-

{ (5,2,1), (0,2,3), (1,7,0), (0,0,0) } parent 1
and

{ (0,0,8), (0,2,3), (0,2,4), (3,0,1) } parent 2

then for each chromosome/term in parent 1 a random
number between 0 and 1 is picked. For the first
chromosome in parent 1, (5,2,1), suppose the random
number picked is 0.75, then (5,2,1) will go to child 1
with probability 0.75 and child 2 with probability 0.25.
This is repeated for all chromosomes in parent 1, so we
may finish with offsprings

{ (0,2,3), (0,0,0), .......... I
{ (5,2,1), (1,7,0), .......... I

child 1
child 2.

The same procedure is repeated for the chromosomes
of parent 2. When the chromosome (0,2,3) is picked
from parent 2 (note that it already exists in child 1),
probabilities are not used because repeat terms are not
allowed, and it automatically goes to child 2.

Mutation is performed by randomly introducing a
completely new term in the polynomial, checking that
this particular term does not already exist. Variable
mutation rate has been used with m=10 and population
size 500.

4 Trial run of the GA for polynomial fits

The GA described in the previous section was tested
using data sets taken from 100 randomly selected

polynomials of two variables (the choice of two variables
was to enable plotting of the surface in order to visually
check the fit). For the 100 polynomials selected, the GA
found a fitted polynomial whose %2 value was less than
1.Oe-21 for 95 out of the 100 polynomials and for the
remaining 5 polynomials, the value of *2 was no more
than 1.2e-5. Therefore, even in the worst of the 100 test
cases, the GA managed to find a very good fit.

The GA was also tested using a data set taken from
the function f (x, y) = sin(5Sxy). The traditional way to

approximate this function for x<1, y<i is to use the
series expansion of sin(x) and this would give us the
polynomial approximation (using terms up to a power 7
in xy)

sin(5xy) = 5xy- (5XY) + (5-Y)- (5xy)
3! 5! 7!

(5)

After running the GA for its best polynomial fit, a
polynomial was found that was a far better fit than the
above traditional approximation in this range. The GA
found the following polynomial fit

sin(5xy)=-6.8x2y5-29.2x2y3-0.44x/- 16.4x3y3-
31 .7x3y2+ 1 .06xy3+0.008+20.7x2y2+4.3xy+20.8x4y2
+12.2x4y3+ 14.9x3y4+ 16.8x2y4-7.7x5y2+0.56x3y. (6)

Figure 6 displays the function sin(xy), together with
the series approximation in (5) and the polynomial fit
from the GA given by (6). The series approximation is
poor near the point x=l, y=l and yet the polynomial
produced by the GA is a good fit for all values of x and
Y.

Polynomial fit by GA
>_sin(5xy)

ries approximation

0
-1
-2
-3
-4
-5
-6

0~~~~~~~~~~~~~~~~~~.
.4

m> 0.2

Figure 6. Series approximation to sin(xy) compared to
polynomial fit from GA

As a further test the GA is used to locate the best
polynomial fit to a radial basis type function as displayed
in Figure 7. This is a good test for the GA since this
function will be very difficult to fit with a polynomial,
because of the sharp peaks.
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The GA has managed to find a polynomial which is
Gaussian function almost as good a fit to the data using only 99 terms,

compared to the least square best possible fit using all
1681 terms.

Figure 7. A radial basis type function

Figure 8 displays the polynomial fit from the GA
allowing powers of up to 40, with maximum number of
terms 100. It can be seen that the polynomial fit in
Figure 8 is very good considering the type of surface it
has to fit.

Gaussian function - - -

GA polynomial fit - power 40

0.6

-0.4

Figure 8. Optimal polynomial of degree 40 from the GA

By comparison, if we use the least square software on
a polynomial consisting of all possible terms of a
polynomial of order 40 (i.e. 1681 terms) to find the best
possible coefficients we find that the best possible fit is
as displayed in Figure 9.

Gaussian function- - -

Least squares polynomial fit - degree 40

Figure 9. Best possible polynomial of degree 40 all
terms

5 Comparison with a genetic programming
technique

The idea of using evolutionary techniques to choose the
terms of a polynomial fit and then performing a least
square fit for its coefficients has been done before,
except that genetic programming was used rather than a
genetic algorithm. Davidson (1999) uses genetic
programming to choose the terms of the fitting
polynomial followed by a least square fit to find the best
coefficients in that polynomial. He demonstrates his
work by finding a polynomial approximation to the
Colebrook-White formula that calculates the friction
factor in a pipe depending on the Reynolds number and
its relative roughness. Davidson's method follows from
work by Babovic (1997a,b).

In genetic programming the members of the
population are represented by trees in which each node
of the tree is some operation (e.g. addition or
multiplication). Davidson finds he needs to introduce an
algorithm (called a rule-based component) operating on
the tree in order to eliminate linear dependent terms and
redundancies. He also manipulates the trees in the
genetic program at each iteration in order to express
power terms as multiple multiplications and to introduce
a constant term. He adapts the normal method of
crossover and mutation in a genetic program in order that
each term in the polynomial is not split into separate
parts.

Davidson's algorithm runs in a sequence of steps
given by the following: (1) perform the rule-base
component, (2) introduce a constant term, (3) perform a
least square fit, (4) perform the rule base component a
second time, (5) replace powers with multiplications in
the tree and finally perform the adapted crossover and
mutation. All these steps are repeated as the iterations of
the genetic program proceed.

In order to compare our method with that of
Davidson, we used our software to find its best
polynomial fit to the Colebrook-White formula and
compared it with Davidson's polynomial fit. To make
comparisons, we look at the absolute difference between
the value of the Colebrook-White formula and the
polynomial approximation at the 100 data points, both
the largest absolute difference and the sum of these
absolute differences. The maximum absolute difference
over the data points is 0.000194 for Davidson's
polynomial and 0.000133 for our polynomial; the sum of
the absolute differences is 0.00297 for Davidson and
0.00356 for our polynomial. So both Davidson's method
and the method described in this paper give very similar
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results, the difference being that the GA described here is
far simpler.

6 Conclusions

This paper describes a statistical analysis of a simple
genetic algorithm when tested on three different
problems. Analysis is performed on various parent
selection strategies, crossover techniques and methods of
mutation.
A genetic algorithm has also been described which

takes a set of data and searches for the best possible
functional form of a polynomial fit to the data. The
algorithm has been tested on various data sets and has
also been compared to a genetic program implemented
by Davidson (1999). It has been shown that the simple
genetic algorithm described here locates an equally good
fit to the Colebrook-White formula as that achieved by
Davidson, who has used a more complex method. Future
work will involve investigating the effects of noise
within the data.
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