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COMPUTATIONAL BIOLOGY

Capturing the unpredictability 
of stem cells
A new mathematical model that can be applied to both single-cell and 
bulk DNA sequencing data sheds light on the processes governing popu-
lation dynamics in stem cells.

ARDA DURMAZ AND VALERIA VISCONTE

Various reservoirs of stem cells exist 
across the adult human body to ensure 
the production of certain populations of 

somatic cells. For instance, hematopoietic stem 
cells (HSCs for short) in the bone marrow contin-
uously create the various types of blood cells that 
our body needs to carry oxygen, heal or defend 
itself. Simultaneously, these stem cells must be 
able to self-renew and increase their pool.

To perform these roles, stem cells rely on two 
types of division: symmetric and asymmetric. In an 
asymmetric division, a stem cell gives rise to one 
daughter cell that will differentiate into a somatic 
cell through further divisions, and one cell that 
retains stemness and ensures self-renewal. In a 
symmetric division, a stem cell generates either 
two differentiated cells or two stem cells.

Mutations accumulate within the genome of 
cells over time and successive divisions. These 
changes emerge due to biological processes such 
as errors in DNA replication or imperfect repair of 
genetic damage. The average frequency at which 
genetic sequences accrue mutations is known as 
the effective mutation rate.

The acquisition of these DNA changes results 
in tissues made up of cells with varied genetic 
information – an effect known as somatic hetero-
geneity – which can create significant diversity 
in the phenotypes of an organism. Evolutionary 
pressures which favor or hinder certain genetic 
variations also help to define these populations. 
However, these changes may result in the expan-
sion of malignant cells or other harmful health 
effects. Clonal hematopoiesis, for example, is an 
age-related condition whereby a mutated HSC 
gives rise to a genetically distinct subpopulation 
of blood cells, and it is associated with higher 
risks of overt hematologic malignancies (Jaiswal 
and Ebert, 2019).

Understanding the dynamics of stem cell 
divisions can give scientists access to a range of 
crucial information, such as the number of stem 
cells in a tissue over time, their mutation rate or 
the frequency at which they engage in different 
types of division. Traditionally, capturing these 
processes has relied on lab-based methods 
such as visualizing cells through flow cytom-
etry, cell barcodes analysis and immunofluores-
cence. In recent years, however, computational 
approaches have increased the knowledge of 
stem cell dynamics while also benefitting the 
clinical application of stem cells (see Pedersen 
et al., 2023a for a review of the importance of 
modelling for HSC dynamics; and Waters et al., 
2021 for a review of how quantitative model-
ling of stem cell growth can impact regenerative 
medicine research). For instance, mathemat-
ical models have provided insights into poorly 
understood parts of the hematopoietic process 

Related research article Moeller ME, 
Mon Père NV, Werner B, Huang W. 
2024. Measures of genetic diversification 
in somatic tissues at bulk and single-
cell resolution. eLife 12:RP89780. doi: 
10.7554/eLife.89780

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.95513
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.89780
http://dx.doi.org/10.7554/eLife.89780
http://dx.doi.org/10.7554/eLife.89780
http://dx.doi.org/10.7554/eLife.89780
http://dx.doi.org/10.7554/eLife.89780
https://doi.org/10.7554/eLife.89780


 ﻿﻿﻿﻿﻿﻿Insight

Durmaz and Visconte. eLife 2024;13:e95513. DOI: https://doi.org/10.7554/eLife.95513 � 2 of 3

Computational Biology | Capturing the unpredictability of stem cells

in health and disease (Pedersen et  al., 2023b; 
Ashcroft et al., 2017), including the simulation of 
how healthy and malignant HSCs compete under 
various conditions (Stiehl et al., 2020). They have 
helped to reconcile contradictory interpretations 
from different in vivo flux experiments (Takahashi 
et al., 2021), and to determine which factors may 
contribute to the successful transplantation of 
hematopoietic stem cells (Nakaoka and Aihara, 
2012).

Sophisticated models have also been able 
to reconstruct the ‘phylogenetic tree’ of HSCs, 
as well as estimate the size of this population 
and how it changes through life (Lee-Six et al., 
2018). These types of mathematical models rely 
on the fact that mutations accumulate over time 
per each division, and they have been applied 
to genome data collected from either single-
cell or bulk DNA sequencing, with each level of 
resolution providing different information and 
being constrained by specific limitations. Now, 

in eLife, Marius Moeller, Nathaniel Mon Père, 
Weini Huang and Benjamin Werner report having 
developed a model that can capture key param-
eters of stem cell dynamics from both bulk and 
single-cell data, and shed light on somatic evolu-
tion (Moeller et al., 2024).

The team (who are based at Queen Mary 
University of London and institutes in Belgium 
and China) started by establishing a theoret-
ical model of how mutations would accumulate 
through life in a healthy HSC population; this 
was based on cells dividing asymmetrically and 
symmetrically at different rates, and with spon-
taneous mutations taking place at each division. 
Three developmental stages were included: 
(i) an early phase during which the number of 
HSCs rapidly expands from a single cell through 
symmetric divisions; (ii) a maintenance phase 
where the overall population grows at a steady 
rate while also undergoing turnover via asym-
metric divisions; and (iii) a final phase during 

Figure 1. Modelling stem cell dynamics across development. The stochastic model designed by Moeller et al. 
establishes three phases, with each phase quantifying the number of stem cells and the dynamics of growth and/or 
removal due to differentiation or cell death. In the early developmental phase (left), the population grows rapidly 
due to stem cells engaging principally in symmetrical divisions (rate of divisions is represented as γ) to create either 
two stem cells (pink) or two cells that will differentiate into cells of the somatic tissue (red). In the maintenance 
phase (middle), the population grows at a slower pace, which includes ensuring the replacement of dead stem 
cells (rate ρ) and self-renewal via asymmetrical divisions (rate φ). In the plateau phase (right), the population size 
remains constant. 
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which cells continue to divide asymmetrically but 
population numbers plateau (Figure 1).

Next, Moeller et al. applied this model to 
bulk sequencing data from healthy oesophagus 
stem cells collected from individuals of various 
ages. The simulations suggested that the esti-
mated effective mutation rate increased linearly 
with age. This could be interpreted as older cells 
having a higher mutation rate than younger ones; 
if so, this would lead to the total number of muta-
tions in a cell increasing at a faster pace with age, 
which is known not to be the case. Instead, the 
team proposes that this result reflects the stem 
cell population slowly and linearly expanding in 
size with age, which upon sampling could mask 
as an increased mutation rate.

As bulk sequencing can only provide an average 
estimate of cell divisions and effective mutation 
rates, Moeller et al. then turned to single-cell data 
from HSCs obtained from one volunteer. While 
acknowledging the limitations inherent to working 
with relatively low cell numbers, they showed 
that their model was able to extract important 
population-level parameters from such a dataset, 
potentially allowing for qualitative analysis based on 
single-cell data. For instance, they could infer the 
proportion of asymmetric divisions in the HSC pool, 
as well as the maximal size of the population.

Based on this dataset, the model also provided 
an estimated effective mutation rate which was 
higher than expected based on the current 
understanding of the mechanisms that create 
random mutations. This led the team to suggest 
that existing models of somatic evolution may be 
incomplete, with biological processes which are 
not currently accounted for likely participating in 
mutation generation.

By coupling mathematic modelling with distinct 
aspects of genome sequencing technologies, the 
work by Moeller et al. offers an important examina-
tion of how mutations accumulate in somatic stem 
cells, like HSCs. As the team points out, it remains 
to be seen how other processes beyond mutation 
accumulation also help shape somatic heteroge-
neity throughout development, such as the effects 
of positive and neutral selection in young versus old 
age.
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