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COMPUTATIONAL NEUROSCIENCE

Building a mathematical model 
of the brain
Automatic leveraging of information in a hippocampal neuron data-
base to generate mathematical models should help foster interactions 
between experimental and computational neuroscientists.

FRANCES SKINNER

The amount of data that can be gathered 
about the human brain has been growing 
exponentially in recent years, but it could 

be argued that relatively little progress has been 
made in actually understanding how the brain 
works. While there may be sociological and phil-
osophical reasons for this lack of progress (see, 
for example, Thompson, 2021), a main reason is 
the low level of interactions between the experi-
mental and theoretical/modeling communities in 
neuroscience (Marder, 2015). Bridging this divide 
will be difficult because it requires researchers 
on both sides to leave their comfort zones and 
learn more about each other’s work, including 
the constraints that both sides work under. If not, 
there is a risk that the results of beautiful exper-
iments, or the outputs of thoughtful models, will 
not be fully appreciated by everyone working in 
that particular field of neuroscience.

Where does one begin when trying to build a 
mathematical model of a biological system? In the 
case of the brain, besides deciding which region 
of the brain one wants to model and being clear 

about the goals of the study (Shou et al., 2015), 
choices need to be made about the level of 
abstraction. Understanding how the brain works, 
in both health and disease, requires studying 
neural circuits at the level of the cell, particularly 
as neurological diseases are cell-specific (see, for 
example, Gallo et al., 2020). Furthermore, many 
studies have made it abundantly clear that circuit 
function cannot be understood without a greater 
understanding of the individual cell types making 
up the circuit (see, for example, Daur et al., 2016 
regarding the stomatogastric nervous system). 
Indeed, when considering a theoretical basis for 
biology, it is often argued that the correct level of 
abstraction is the cell (Brenner, 2010).

​Hippocampome.​org is a database that 
contains a vast amount of information about 
the different types of neuronal cells found in the 
hippocampus – a region of the brain that has 
major roles in learning and memory – in rodents. 
The first version of the database contained infor-
mation on 122 types of neuronal cells based on 
the shapes of their axons and dendrites, their 
main neurotransmitters, and various molecular 
and biophysical properties (Wheeler et al., 2015). 
Subsequent versions of the database included 
information on a range of topics including the 
physiology of the synapses that connect neurons 
and the electrical behaviour of various neurons.

Now, in eLife, Giorgio Ascoli and colleagues 
at George Mason University – including Diek 
Wheeler as first author – present ​Hippocam-
pome.​org v2.0, which enables users to automat-
ically build models that can be used to simulate 
the electrical behaviour of networks of neurons 
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(Wheeler et  al., 2024). Moreover, ​Hippocam-
pome.​org v2.0 includes data and information on 
over 50 new neuron types. Now, with the click 
of a button, a user can choose the region (or 
regions) of the hippocampus they are interested 
in and the cell types they would like to include 
in their model, and ​Hippocampome.​org v2.0 will 
build a model in which the properties of the indi-
vidual cells and their connections are based on 
experimental data from multiple research papers. 
Furthermore, the data come with important meta-
data (such as the age of the animals), so users 
can evaluate the values of the various parame-
ters that are included in any model. Indeed, the 
richness of the data is such that some researchers 
have been able to make discoveries by applying 
data-mining techniques to ​Hippocampome.​org 
(Sanchez-Aguilera et al., 2021).

Deciding how much detail to include in a 
model is a non-trivial consideration, but it is 
naturally dependent on the question being 
asked and the availability of experimental 
data. Choosing to represent each neuron by a 
single compartment, rather than including its 
structure and properties, and using a relatively 
simple mathematical model called an Izhikevich 
model (Izhikevich, 2003) to describe the 
spiking process is both sensible and necessary. 
Izhikevich models can encompass many, if not 
all, of the firing properties of biological cells, and 
although more complex neuron models exist – 
such as conductance-based models that include 
ion-channel types – they would make an already 
complex ‘automated network model building’ 
challenge even more complex.

With ​Hippocampome.​org v2.0 in hand, it is 
now possible to start bridging the gap between 
theory and experiment without having to make 
a heroic effort to parse the experimental liter-
ature. That is, theoretical ’bones’ can be given 
experimental ‘meat’, as Wheeler et al. demon-
strate in simulations of grid cells. Essentially, this 
resource can be used to bind hypothesis-driven 
and data-driven modeling (Eriksson et  al., 
2022).

To truly understand how the brain works, and 
to help the many individuals suffering from brain 
disorders, there needs to be stronger collabora-
tions between experimentalists and modellers. 
This new resource developed by Wheeler et al. 
provides a practical path towards this outcome.
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