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Abstract
Background: Physical activity has been associated with preventing the development of type 2 
diabetes and atherosclerotic cardiovascular disease. However, our understanding of the precise 
molecular mechanisms underlying these effects remains incomplete and good biomarkers to objec-
tively assess physical activity are lacking.
Methods: We analyzed 3072 serum proteins in 26 men, normal weight or overweight, undergoing 
12 weeks of a combined strength and endurance exercise intervention. We estimated insulin sensi-
tivity with hyperinsulinemic euglycemic clamp, maximum oxygen uptake, muscle strength, and used 
MRI/MRS to evaluate body composition and organ fat depots. Muscle and subcutaneous adipose 
tissue biopsies were used for mRNA sequencing. Additional association analyses were performed 
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in samples from up to 47,747 individuals in the UK Biobank, as well as using two-sample Mendelian 
randomization and mice models.
Results: Following 12 weeks of exercise intervention, we observed significant changes in 283 serum 
proteins. Notably, 66 of these proteins were elevated in overweight men and positively associated 
with liver fat before the exercise regimen, but were normalized after exercise. Furthermore, for 19.7 
and 12.1% of the exercise-responsive proteins, corresponding changes in mRNA expression levels in 
muscle and fat, respectively, were shown. The protein CD300LG displayed consistent alterations in 
blood, muscle, and fat. Serum CD300LG exhibited positive associations with insulin sensitivity, and 
to angiogenesis-related gene expression in both muscle and fat. Furthermore, serum CD300LG was 
positively associated with physical activity and negatively associated with glucose levels in the UK 
Biobank. In this sample, the association between serum CD300LG and physical activity was signifi-
cantly stronger in men than in women. Mendelian randomization analysis suggested potential causal 
relationships between levels of serum CD300LG and fasting glucose, 2 hr glucose after an oral 
glucose tolerance test, and HbA1c. Additionally, Cd300lg responded to exercise in a mouse model, 
and we observed signs of impaired glucose tolerance in male, but not female, Cd300lg knockout 
mice.
Conclusions: Our study identified several novel proteins in serum whose levels change in response 
to prolonged exercise and were significantly associated with body composition, liver fat, and 
glucose homeostasis. Serum CD300LG increased with physical activity and is a potential causal link 
to improved glucose levels. CD300LG may be a promising exercise biomarker and a therapeutic 
target in type 2 diabetes.
Funding: South-Eastern Norway Regional Health Authority, Simon Fougners Fund, Diabetesfor-
bundet, Johan Selmer Kvanes’ legat til forskning og bekjempelse av sukkersyke. The UK Biobank 
resource reference 53641. Australian National Health and Medical Research Council Investigator 
Grant (APP2017942). Australian Research Council Discovery Early Career Award (DE220101226). 
Research Council of Norway (Project grant: 325640 and Mobility grant: 287198). The Medical 
Student Research Program at the University of Oslo. Novo Nordisk Fonden Excellence Emerging 
Grant in Endocrinology and Metabolism 2023 (NNF23OC0082123).
Clinical trial number: ​clinicaltrials.​gov: NCT01803568.

eLife assessment
This useful article describes a proteomic analysis of plasma from subjects before and after an exer-
cise regime consisting of endurance and resistance exercise. The work identifies a putative new 
exerkine, CD300LG, and finds associations of this protein with aspects of insulin sensitivity and 
angiogenesis. The characterization remains incomplete at present. Because CD300LG may have a 
transmembrane domain, one possibility is that exercise causes the release of extracellular vesicles 
containing this protein. As this study reports associations, additional studies will be needed to estab-
lish causality. The article will hopefully prompt further studies to more fully elucidate the underlying 
biology.

Introduction
Physical activity is a cornerstone in the prevention and treatment of several chronic diseases like 
obesity, non-alcoholic fatty liver disease (NAFLD), atherosclerotic vascular disease, and type 2 diabetes 
mellitus (Piercy et al., 2018). Both acute- and long-term exercise may enhance insulin sensitivity and 
thereby improve glucose tolerance (Hawley and Lessard, 2008). Both resistance and endurance exer-
cises enhance insulin sensitivity, although the most pronounced effect is observed when combining 
these training modalities (Bacchi et al., 2012).

Metabolic adaptations to exercise encompass intricate inter-organ communication facilitated by 
molecules referred to as exerkines (Pedersen et al., 2007; Chow et al., 2022; Görgens et al., 2015; 
Lee-Ødegård et al., 2022). These exerkines are secreted from various tissues and include a variety of 
signal molecules released in response to acute- and/or long-term exercise with endocrine, paracrine, 
and/or autocrine functions (Pedersen et  al., 2007; Chow et al., 2022). Although there has been 
considerable emphasis on exerkines originating from skeletal muscle (SkM) (Pourteymour et  al., 
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2017; Pedersen and Febbraio, 2012), it is also known that exerkines can originate from organs such 
as white (Görgens et al., 2015; Lee et al., 2019; Bouassida et al., 2010) and brown adipose tissue 
(Stanford et al., 2018) or the liver (Lee et al., 2017). The established bona fide exerkine, interleukin-6 
(IL6), is released during muscle contractions, contributing to improved overall glucose homeostasis 
(Pedersen et al., 2007; Kistner et al., 2022). In addition, a range of other exerkines are recognized, 
including IL7 (Haugen et al., 2010), 12,13-diHOME (Stanford et al., 2018), myonectin (Otaka et al., 
2018), myostatin (Hjorth et al., 2016; McPherron et al., 1997), METRNL (Rao et al., 2014), CSF1 
(Pourteymour et al., 2017), decorin (Kanzleiter et al., 2014), SFRP4 Lee et al., 2019, fetuin-A (Lee 
et al., 2017; Malin et al., 2014), and ANGPTL4 (Catoire et al., 2014; Norheim et al., 2014), among 
many others (Chow et al., 2022).

Extensive screening aimed at discovering novel exercise responsive blood proteins have faced 
considerable challenges, primarily due to the technical challenges in quantifying the blood proteome 
on a large scale. However, recent advances in multi-plex technology, such as the proximity extension 
assay (PEA), have made it possible to quantify more than 3000 proteins in blood samples more reli-
ably than traditional untargeted mass spectrometry (https://olink.com/technology/what-is-pea). Some 
recent studies have used other proteomic platforms, such as aptamer-based techniques (https://​
somalogic.com/somascan-platform/), to show that acute- and long-term aerobic exercise affected 
several hundred serum proteins (Contrepois et al., 2020; Diaz-Canestro et al., 2023; Robbins et al., 
2021; Robbins et al., 2023; Mi et al., 2023), but the downstream causal effects of such changes on 
clinical phenotypes are not known. Furthermore, no studies have used the PEA technology to identify 
exerkines potentially underlying the mechanisms through which long-term physical activity, including 
strength exercise, enhances glucose homeostasis.

We performed the ‘physical activity, myokines, and glucose metabolism’ (MyoGlu) study (Langleite 
et al., 2016), which was a controlled clinical trial aiming to identify novel secreted factors (‘exerkines’) 
that may serve as links between physical activity and glucose metabolism. We conducted a compre-
hensive serum screening of 3072 proteins in normal weight and overweight men both before and 
after combined endurance and strength exercise. Rigorous phenotyping was carried out, including 
hyperinsulinemic euglycemic clamping, assessments of maximum oxygen uptake, maximum muscle 
strength, and ankle-to-neck MRI/MRS scans.

Exerkines identified with potential effects on glucose homeostasis in the MyoGlu study were subse-
quently subject to analysis across several external data sets. Using data from 47,747 participants in the 
UK Biobank (Sudlow et al., 2015), we assessed correlations between candidate proteins and estimates 
of physical activity and glucometabolic outcomes. These associations were then tested for causality 
using Mendelian randomization (MR). Exerkines of interest were also assessed in a knockout mouse 
model and in a exercise mouse model to further assess potential links with glucose homeostasis.

Methods
The MyoGlu study was conducted as a controlled clinical trial (​clinicaltrials.​gov: NCT01803568) and 
was carried out in adherence to the principles of the Declaration of Helsinki. The study received 
ethical approval from the National Regional Committee for Medical and Health Research Ethics North 
in Tromsø, Norway, with the reference number 2011/882. All participants provided written informed 
consent before undergoing any procedures related to the study. The UK Biobank has ethical approval 
from the North West Multi-Centre Research Ethics Committee (MREC), which covers the UK, and all 
participants provided written informed consent. This particular project from the UK Biobank received 
ethical approval from the Institutional Human Research Ethics committee, University of Queensland 
(approval number 2019002705).

Participants
The MyoGlu study enrolled men aged 40–65 years who were healthy but sedentary (having engaged 
in fewer than one exercise session per week in the previous year) (Langleite et al., 2016; Lee et al., 
2021). These participants were divided into two groups based on their body mass index (BMI) and 
glucose tolerance: overweight (with an average BMI of 29.5 ± 2.3 kg/m2) and normal weight controls 
(with an average BMI of 23.6 ± 2.0 kg/m2). The overweight men had reduced glucose tolerance and/or 
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insulin sensitivity (Supplementary file 1A). Both groups, consisting of 13 individuals each, underwent 
a 12-week regimen of combined strength and endurance training.

Exercise protocols
This 12-week training intervention included two weekly sessions of 60 min each for endurance cycling 
and two sessions of 60 min each for whole-body strength training. Blood samples, and muscle (m. 
vastus lateralis) and subcutaneous white adipose tissue biopsies were taken at baseline before the 
intervention, and then again at least 3 days after the last exercise session of the 12-week intervention 
period (Langleite et al., 2016; Lee et al., 2021).

Clinical data
The euglycemic hyperinsulinemic clamp was performed after an overnight fast (Langleite et al., 2016; 
Lee et al., 2021). A fixed dose of insulin 40 mU/m2∙min–1 was infused, and glucose (200 mg/mL) was 
infused to maintain euglycemia (5.0 mmol/L) for 150 min. Insulin sensitivity is reported as glucose 
infusion rate (GIR) during the last 30 min relative to body weight. Whole blood glucose concentration 
was measured using a glucose oxidase method (YSI 2300, Yellow Springs, OH) and plasma glucose 
concentration was calculated as whole blood glucose × 1.119. Magnetic resonance imaging/spectros-
copy (MRI/MRS) methods were used to quantify fat and lean mass. The ankle-to-neck MRI protocol 
included a 3D DIXON acquisition providing water and lipid quantification, data were then analyzed 
using the nordicICE software package (NordicNeuroLab, Bergen, Norway), and the jMRUI workflow. 
VO2max tests were performed after standardized warm-up at a workload similar to the final load 
of an incremental test in which the relationship between workload (Watt) and oxygen uptake was 
established. Participants cycled for 1 min followed by a 15-Watt increased workload every 30  s until 
exhaustion. Test success was based on O2 consumption increased <0.5  mL·kg−1·min−1 over a 30-Watt 
increase in workload, respiratory exchange ratio values >1.10, and blood lactate  >7.0  mmol/L. We 
obtained scWAT, SkM biopsies, and blood samples as described previously (Langleite et al., 2016). 
Biopsies were obtained from the periumbilical subcutaneous tissue and from m. vastus lateralis. After 
sterilization, a lidocaine-based local anesthetic was injected in the skin and sub cutis prior to both 
SkM and scWAT biopsies. Biopsies were dissected on a cold aluminium plate to remove blood, etc., 
before freezing. For standard serum parameters, measurement were either conducted using standard 
in-house methods or outsourced to a commercial laboratory (Fürst Laboratories, Oslo, Norway).

The Olink proteomics explorer 3072 platform
We utilized antibody-based technology (Olink Proteomics AB, Uppsala, Sweden) to conduct profiling 
of serum samples through the Olink Explore 3072 panel. This PEA technique involves using pairs 
of DNA oligonucleotide-labeled antibodies to bind to the proteins of interest. When two matching 
antibodies attach to a target protein, the linked oligonucleotides hybridize and are extended by 
DNA polymerase, forming a unique DNA ‘barcode’. This barcode is then read using next-generation 
sequencing. The specificity and sensitivity of the PEA technology are notably high because only 
accurately matched DNA pairs generated detectable and measurable signals. To refine the dataset, 
proteins that were not detected or were duplicated were removed, resulting in an analysis of 2886 
proteins. Only a single assay was conducted, eliminating inter-assay variability. Data are presented as 
normalized protein expression (NPX) units, which are logarithmically scaled using a log2 transformation.

Proteomics validations
Duplicate measurements of IL6 and leptin in plasma were conducted using ELISA kits (Leptin; 
Camarillo, CA; and IL6; R&D Systems, Minneapolis, MN) following the manufacturer’s instructions. 
The correlations between PEA or ELISA assays were r = 0.94 (p=1.4 × 10–11), and r = 0.92 (p=2.2 × 
10–11) for IL6 and leptin, respectively (Figure 2—figure supplement 1).

mRNA sequencing
Biopsies were frozen in liquid nitrogen, crushed to powder by a pestle in a liquid nitrogen-cooled 
mortar, transferred into 1 mL QIAzol Lysis Reagent (QIAGEN, Hilden, Germany), and homogenized 
using TissueRuptor (QIAGEN) at full speed for 15 s, twice (Langleite et al., 2016; Lee et al., 2021). 
Total RNA was isolated from the homogenate using miRNeasy Mini Kit (QIAGEN). RNA integrity and 
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concentration were determined using Agilent RNA 6000 Nano Chips on a Bioanalyzer 2100 (Agilent 
Technologies Inc, Santa Clara, CA). RNA was converted to cDNA using High-Capacity cDNA Reverse 
Transcription Kit (Applied Biosystems, Foster, CA). The cDNA reaction mixture was diluted in water 
and cDNA equivalent of 25 ng RNA used for each sample. All muscle and scWAT samples were deep-
sequenced using the Illumina HiSeq 2000 system with multiplex at the Norwegian Sequencing Centre, 
University of Oslo. Illumina HiSeq RTA (real-time analysis) v1.17.21.3 was used. Reads passing Illumi-
na’s recommended parameters were demultiplexed using CASAVA v1.8.2. For prealignment quality 
checks, we used the software FastQC v0.10.1. The mean library size was ~44 millions unstranded 
51 bp single-ended reads for muscle tissue and ~52 millions for scWAT with no differences between 
groups or time points. No batch effects were present. cDNA sequenced reads alignment was done 
using Tophat v2.0.8, Samtools v0.1.18, and Bowtie v2.1.0 with default settings against the UCSC hg19 
annotated transcriptome and genome dated May 14, 2013. Post-alignment quality controls were 
performed using the Integrative Genome Viewer v2.3 and BED tools v2.19.1. Reads were counted 
using the intersection strict mode in HTSeq v0.6.1.

Statistics and bioinformatics
Olink data were analyzed using the ‘AnalyzeOlink’ R package for pre-processing, testing using mixed 
linear regression and annotation. Pathway and Gene Ontology overrepresentation analyses were 
performed using MSigDB data sets (Hallmark pathways and biological processes). mRNA sequencing 
data were normalized as reads per kilobase per million mapped read (RPKM) and analyzed using 
mixed linear regression from the ‘lme4’ R package. Normality was determined by quantile–quantile 
plots. p-values were corrected using the Benjamini–Hochberg approach set at a false discovery rate 
(FDR) of 5%. For univariate correlations, Pearson’s or Spearman’s method was applied as appropriate. 
Principal component analysis was performed using the ‘prcomp’ R package. Key driver analysis was 
performed using the ‘Mergeomics’ R package. Mediation analysis was performed using the ‘Media-
tion’ R package with 1000 bootstraps and the ​set.​seed function to ensure reproducibility.

UK Biobank
The UK Biobank is a large prospective population-based cohort containing  ~500,000 individuals 
(~273,000 women), with a variety of phenotypic and genome-wide genetic data available (Sudlow 
et al., 2015). The UK Biobank has ethical approval from the North West Multi-Centre Research Ethics 
Committee (MREC), which covers the UK, and all participants provided written informed consent.

We utilized imputed genetic data from the October 2019 (version 3) release of the UK Biobank for 
our analyses (application ID: 53641). In addition to the quality control metrics performed centrally by 
the UK Biobank (Bycroft et al., 2018), we defined a subset of unrelated ‘white European’ individuals. 
We excluded those with putative sex chromosome aneuploidy, high heterozygosity or missing rate, 
or a mismatch between submitted and inferred sex as identified by the UK Biobank (total N = 1932). 
We excluded individuals who we did not identify as ancestrally European using K-means clustering 
applied to the first four genetic principal components generated from the 1000 Genomes Project 
(1000 Genomes Project Consortium et al., 2015). We also excluded individuals who had withdrawn 
their consent to participate in the study as of February 2021.

The Olink proteomics explorer 1536 platform
All analysis were done using the UK Biobank Olink data containing a total of 58,699 samples and 54309 
individuals, after excluding individuals as mentioned above we had 47,747 samples with measured 
serum CD300LG levels. Data was generated according to Olink’s standard procedures.

Observational analyses
For the physical activity measurements, we investigated if the degree of physical activity was associ-
ated with serum levels of protein (serum levels of protein regressed on physical activity); alternatively 
for the metabolic measurements we investigated if the protein expression affected the metabolic 
measurements (trait regressed on serum levels of protein), for both we used a linear regression model. 
We performed analyses stratified by sex and adjusting for age, protein batch, UK Biobank assessment 
centre, the time the sample was stored and BMI. All analyses were performed in R version 3.4.3.

https://doi.org/10.7554/eLife.96535
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Genome-wide association analysis
A GWAS of serum CD300LG levels (log2 transformed) measured in the UK Biobank was performed 
using BOLT-LMM (Loh et al., 2015) on individuals of European descent who had proteomic data avail-
able (N = 45,788). We included sex, year of birth, protein and genotyping batch, time from sample 
collection to processing time (in weeks), and five ancestry informative principal components as covari-
ates in the analysis.

Post GWAS quality control included the removal of SNPs with (minor allele frequency) MAF  ≤ 
0.05 and info score ≤0.4 (nSNPs = 6,945,819). The previously generated LD reference panel for clumping 
consisted of a random sample of 47,674 unrelated British UK Biobank individuals identified using 
GCTA (Wu et al., 2022) with identity by state (IBS) < 0.025 and identity by descent (IBD) sharing 
of   <0.1. LD score regression analysis (Lee et al., 2018) was used to investigate whether genomic 
inflation was likely due to polygenicity or population stratification/cryptic relatedness.

Prior to gene annotation, palindromic SNPs were excluded (nSNPs = 6,882,889 remaining). Vari-
ants were classified as either cis- or trans-pQTLs based on SNP proximity to the protein-encoding 
gene (CD300LG) of interest. Variant annotation was performed using ANNOVAR (Wang et  al., 
2010), labeling genes ±500  kb from variants. A pQTL was considered a cis-pQTL if the gene 
annotation in the 1 Mb window matched the protein name, all remaining variants were considered 
trans-pQTLs.

To extract independent genome-wide significant pQTLs (p<5  ×  10−8), clumping was performed 
using the PLINK v1.90b3.31 software package (Purcell et al., 2007); variants with r2 > 0.001 with 
the index SNP were removed using a 1  Mb window. Variants that lied within the human major 
histocompatibility complex region were removed, excluding pQTLs on chromosome 6 from 26 Mb 
to 34 Mb.

Mendelian randomization
To obtain valid instrumental variables (SNPs) for our analysis, we assessed them against the three 
core assumptions for MR analysis: (1) that the SNPs were robustly associated with the exposure of 
interest. For that, we obtained summary result statistics on genome-wide significant SNPs from our 
own GWAS. (2) That the SNPs were not associated with any known or unknown confounders. This 
is not an assumption that can be fully tested; however, we used PhenoScanner (Staley et al., 2016; 
Kamat et al., 2019) to assess whether any SNPs were associated with known confounders (described 
below). (3) That the SNPs were not associated with the outcomes through any other path than through 
the exposure. To test this assumption, we searched PhenoScanner (Staley et al., 2016; Kamat et al., 
2019) (detailed below) to see if our exposures of interest were associated with other potentially pleio-
tropic phenotypes.

MR statistical analysis
We used the TwoSampleMR package (Hemani et  al., 2018; https://github.com/MRCIEU/TwoSam-
pleMR; Palmer and Hemani, 2024) in R version 4.2.2 (https://cran.r-project.org/). The outcome 
studies were obtained from http://magicinvestigators.org/ (Chen et al., 2021) and were external to 
the UK Biobank. Specifically, we used the outcomes ‘fasting glucose adjusted for BMI’ (mmol/L, n = 
200,622), ‘2 hr post OGTT glucose adjusted for BMI’ (mmol/L, n = 63,396), ‘fasting insulin adjusted for 
BMI’ (pmol/L, n = 151,013), and ‘HbA1c’ (%, n = 146,806) (Chen et al., 2021).

We performed a two-sample inverse variance weighted (IVW) analysis to assess the causal effect of 
CD300LG on metabolic factors (Supplementary file 1H and I). To explore potential violations of the 
core assumptions when using the full set of SNPs, we performed a heterogeneity test using Cochran’s 
Q, and a test for directional pleiotropy was conducted by assessing the degree to which the MR 
Egger intercept differed from zero (Bowden et al., 2015). We also performed additional sensitivity 
analyses using MR Egger regression (Bowden et al., 2015), weighted median (Bowden et al., 2016), 
simple and weighted mode estimation methods (Hartwig et al., 2017). Effect estimates from the 
different sensitivity analysis were compared as a way of assessing the robustness of the results. To 
assess potential heterogeneity in the MR estimates, we further performed MR-PRESSO (Chen et al., 
2021; Verbanck et al., 2018) to detect (MR-PRESSO global test) and correct for horizontal pleiotropy 
via outlier removal (MR-PRESSO outlier test).

https://doi.org/10.7554/eLife.96535
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Investigation of potentially pleiotropic SNPs
SNPs robustly associated with the exposure investigated in the MR analyses (serum CD300LG levels) 
were checked for other possible associations (PhenoScanner v2; Staley et al., 2016; Kamat et al., 
2019, http://www.phenoscanner.medschl.cam.ac.uk/), which may contribute to a pleiotropic effect on 
the metabolic outcomes. Supplementary file 1J lists the SNPs used in our analysis that many influ-
ence related phenotypes. Phenotypes from PhenoScanner were listed if they were associated with 
the SNPs or nearby variants in high LD (r2 = 0.8) at p-value level <1 × 10–5 and could have potential 
pleiotropic effects in the analysis.

Results
Cohort characteristics
We studied 26 male participants, including 13 with normal weight, and another 13 with overweight, as 
described previously (Langleite et al., 2016). They were subjected to 12 weeks of high-intensity resis-
tance and endurance exercise (Figure 1). The overweight participants had lower glucose tolerance 
and insulin sensitivity compared to the normal weight participants (Supplementary file 1A). After the 
12-week intervention, body fat mass decreased and lean body mass increased, together with signifi-
cant improvements in insulin sensitivity (~40%), maximum oxygen uptake and muscle strength in both 
groups (Supplementary file 1A).

Serum proteome responses to prolonged exercise
Recognizing that circulating proteins could mediate exercise-induced metabolic improvements, we 
next investigated alterations in the serum proteome in response to the 12-week intervention using 
PEA technology. Of the 3072 proteins quantified, we detected increased serum concentrations 
of 126 proteins and decreased serum concentrations of 157 proteins following the 12-week inter-
vention at an FDR below 5% (Figure 2A–C; Supplementary file 1B–D). Among these, 20 proteins 
increased exclusively in normal weight men, whereas 19 proteins increased exclusively in overweight 
men (Figure 2D). Four proteins were uniquely reduced in normal weight men, and 66 proteins were 
uniquely reduced in overweight men (Figure 2E).

Several of the exercise-responsive proteins had potential roles in muscle adaptation and metabo-
lism. For example, platelet-derived growth factor subunit B (PDGFB) and IL7 are both myokines with 
potential effects on muscle differentiation (Haugen et al., 2010; Hamaguchi et al., 2023). Further, 
fibroblast growth factor-binding protein 3 (FGFBP3) may influence running capacity (Lories et al., 
2009) and muscle strength (Casas-Fraile et al., 2020). NADH-cytochrome b5 reductase 2 (CYB5R2) 
can preserve SkM mitochondria function in aging mice (López-Bellón et  al., 2022). FGFBP3 and 
switch-associated protein 70 (SWAP70) may protect against weight gain (Tassi et  al., 2018) and 
cardiac hypertrophy (Qian et al., 2023), respectively. Finally, dual specificity protein phosphatase 13 
isoform A (DUSP13A) is highly specific to SkM (Chen et al., 2004), making it a potential novel muscle-
specific marker for long-term exercise. Detailed results for 2885 proteins in response to prolonged 
exercise are shown in Supplementary file 1B.

A proteomic liver fat signature in overweight men
In response to the 12-week exercise intervention, a larger number of serum proteins responded in 
overweight men than in normal weight men (Figure 2B and C). In particular, 66 proteins decreased 
in serum after 12 weeks in overweight men (Figure 2E). Gene Ontology analyses revealed known 
pathways only for the proteins that decreased in overweight men (Figure 3A and B), and one of the 
most enriched pathways is related to metabolism of organic acids (Figure 3C). A key driver analysis of 
the 66 proteins identified SLC22A1, a hepatocyte transporter related to liver fat content (Figure 3D). 
Furthermore, the 66 proteins also displayed a 24% overlap with a known human serum proteomic 
signature of NAFLD (Figure  3E; Govaere et  al., 2023), but no common proteins with signatures 
of specific liver cells (The Human Liver Cell Atlas: Aizarani et  al., 2019). Baseline serum protein 
concentrations in the identified signature of 66 proteins were higher among men with overweight 
compared to those with normal weight, but were reduced or normalized in overweight men following 
prolonged exercise (Figure  3F). Using principal component analysis of the 66 proteins, the first 
component correlated positively to liver fat content at baseline (Figure 3G), but not after prolonged 

https://doi.org/10.7554/eLife.96535
http://www.phenoscanner.medschl.cam.ac.uk/
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exercise (Figure 3H). Similarly, the first component also correlated positively with several liver-related 
markers at baseline (Figure 3L) and negatively to insulin sensitivity at baseline (Figure 3I), but not 
after prolonged exercise (Figure 3J). The first component mediated 37% of the association between 
baseline insulin sensitivity and liver fat content (Figure  3K). We observed no enrichments for the 
remaining proteins (Figure 3A and B).

Figure 1. Study overview. We recruited sedentary men with either normal weight or overweight for deep phenotyping before and after a prolonged 
exercise intervention. Multi-omic analyses, including serum proteomics, clinical traits, and muscle and fat transcriptomics, identified changed proteins 
and potential exerkines. Candidate exerkines were subsequently analyzed in serum samples from the UK Biobank and tested for associations with 
physical activity and glucometabolic traits. Top candidates were then subjected to Mendelian randomization and investigated in a mouse exercise 
model and in a mouse knock-out model to assess casual links between exerkines and glucometabolic traits.

https://doi.org/10.7554/eLife.96535
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Secretory proteins
Among the 96 upregulated and 110 down-egulated serum proteins responding to the 12-week exer-
cise intervention (Figure 2D and E), 37 are curated secretory proteins, and another 46 proteins are 
predicted as highly likely secretory proteins (Figure 4A–C). We assessed the corresponding mRNA 
responses in SkM and subcutaneous white adipose tissue (ScWAT) following the 12-week intervention 
(Figure 4A–C). In total, 19.7% of the serum secretory proteins displayed a directionally consistent 
significant change mRNA levels in SkM, whereas 12.1% of the serum secretory proteins exhibited a 
corresponding mRNA response in ScWAT (Figure 4C). COL1A1 was the most responsive SkM mRNA 
that also had a corresponding increase in serum COL1A1 after prolonged exercise (Figure 4D and E). 
CCL3 was the most responsive ScWAT mRNA that also had a corresponding decrease in serum after 
prolonged exercise (Figure 4F and G). To prioritize proteins for follow-up analyses, we focused on 
SMOC1 and CD300LG, which had similar exercise responses in blood, SkM and ScWAT (Figure 4H). 
SMOC1 is a known hepatokine with effects on insulin sensitivity in mice (Montgomery et al., 2020), 

Figure 2. Serum proteomic responses to prolonged exercise. (A) A volcano plot showing responses in all participants. The x-axis shows log2(fold-
changes) and the y-axis shows negative log10(Q-values). The red dots indicate statistical significance (Q < 0.05). Only the top three up-/downregulated 
proteins are annotated. (B, C) Similar to (A), but in normal weight and overweight men only. (D, E) Venn diagrams of the significant change in proteins 
shown in (A–C). NPX = normalized protein expression; Q = p-values corrected using Benjamini–Hochberg’s method; NW = normal weight; OW = 
overweight.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Olink vs. ELISA for (A) serum leptin and (B) IL6 protein levels.

https://doi.org/10.7554/eLife.96535
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but probably with no causal link to insulin sensitivity in humans (Montgomery et al., 2020; Ghodsian 
et al., 2021). Thus, we focused on CD300LG in subsequent analyses.

CD300LG
CD300LG displayed increased concentration in serum (+20%, p<0.001) together with increased levels 
in both SkM (+60%, p<0.001) and scWAT (+13%, p=0.01) mRNA following the 12-week exercise 
intervention (Figure 5A–C). Changes in serum CD300LG correlated positively with changes in insulin 
sensitivity after the intervention (rho = 0.59, p=0.002; Figure 5D). In addition, serum CD300LG concen-
tration was lower in overweight than normal weight men (–51%, p=0.014) and positively correlated 
with insulin sensitivity before as well as after the 12-week intervention (pretrained: r = 0.50, p=0.001, 
and post-trained: r = 0.43, p=0.028).

To investigate the potential effect of serum CD300LG on SkM and ScWAT, we performed an over-
representation analysis on the top 500 mRNAs that were positively correlated (p<0.05) with serum 
CD300LG levels in each tissue (Figure 5E–H). Pathway analyses revealed that the change in serum 
CD300LG concentrations correlated with changes in expression of genes involved in oxidative phos-
phorylation, G2M check point and hypoxia both in ScWAT and SkM (Figure 5E and F). In ScWAT, serum 
CD300LG levels also showed the strongest enrichment with angiogenesis pathways (Figure 5E). In 
ScWAT, the change in ScWAT CD300LG mRNA levels correlated positively with the change in ScWAT 
mRNA of genes related to angiogenesis/vasculature development (Figure 5G). Similar correlations 
between CD300LG mRNA and angiogenesis genes were observed in SkM as well (Figure 5H). For 

Figure 3. A serum proteomic liver fat signature. (A) No upregulated proteins after prolonged exercise overlapped with known pathways. (B) Only the 66 
downregulated proteins in the OW group overlapped with known pathways. (C) Top 10 gene sets overlapping with these 66 proteins. (D) SLC22A1 is a 
key driver among these 66 proteins. (E) These 66 proteins overlapped with a known human serum proteomic nonalcoholic fatty liver disease signature 
from Govaere et al., 2023. (F) The downregulated proteins in the OW group were elevated in OW vs. NW at baseline but normalized in the OW group 
after prolonged exercise. The principal component of these 66 proteins correlated with (G) liver fat content at baseline, but (H) not after prolonged 
exercise, with (I) the clamp M value at baseline, but (J) not after prolonged exercise. (K) The principal component (PC) of these 66 proteins mediated 
36.9% of the association between liver fat and M. (L) The principal component of these 66 proteins correlated with several liver-related markers at 
baseline, but not after prolonged exercise except for aspartate transaminase (ASAT) and alanin aminotransferase (ALAT). White = nonsignificant, red/
blue = significant. *p<0.05 and **p<0.01.

https://doi.org/10.7554/eLife.96535
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example, 60% of the mRNAs in the angiogenesis pathway correlated with CD300LG (Figure 5H). 
However, serum CD300LG levels were also correlated positively with pathways related to fatty acid 
metabolism in both ScWAT (Figure 5E) and SkM (Figure 5H).

To explore tissue-specific expression of CD300LG, we utilized data from a publicly available human 
tissue panel (Uhlén et al., 2015). CD300LG is highly expressed in adipose tissue compared to other 
tissues (Figure 5—figure supplement 1A), supporting our observation that ScWAT expression was 
substantially higher than in SkM (Figure 5B and C). To further investigate which cells in ScWAT that 
express CD300LG, we utilized data from a single-cell mRNA sequencing atlas of human ScWAT 
(https://singlecell.broadinstitute.org/single_cell) generated by Emont et al., 2022. CD300LG mRNA 
in ScWAT was primarily expressed in venular endothelial cells, but not adipocytes or other cell types 
present in ScWAT (Figure 5—figure supplement 1B–E).

We next explored whether CD300LG mediates tissue–tissue cross-talk using data from the GD-CAT 
(Genetically Derived Correlations Across Tissues) database (Zhou et al., 2024; Battle et al., 2017), 

Figure 4. Comparison of secretory protein responses to prolonged exercise in blood with corresponding mRNA levels in skeletal muscle and adipose 
tissue. (A) mRNA levels in skeletal muscle and (B) adipose tissue for proteins that responded significantly to prolonged exercise. (C) A heatmap of log2 
(fold-changes) in blood, skeletal muscle, and adipose tissue. (D) The most responding mRNA in skeletal muscle, and (E) the response in the blood 
protein. (F) The most responding mRNA in adipose tissue, and (G) the response in the blood. (H, I) Venn diagrams of significant changes in blood, 
skeletal muscle, and adipose tissue. FC = fold-change; SkM = skeletal muscle; ScWAT = subcutaneous adipose tissue; NPX = normalized protein 
expression; RPKM = reads per kilobase per million mapped read. *p<0.05, **p<0.01, and ***p<0.001.

https://doi.org/10.7554/eLife.96535
https://singlecell.broadinstitute.org/single_cell
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which is a tool for analyzing human gene expression correlations in and across multiple tissues. In 
men, ScWAT CD300LG correlated strongly with ScWAT, SkM, and aortic gene expression (Figure 5—
figure supplement 2). Consistent with our observations in the MyoGlu exercise intervention study, 
the top network of gene expression in ScWAT related to ScWAT CD300LG mRNA was angiogenesis 
(Figure 5—figure supplement 2A). Like ScWAT, SkM CD300LG also correlated strongly with ScWAT, 
SkM, and aortic gene expression (Figure 5—figure supplement 2B). The proteasome complex was 
the top network of gene expression related to SkM CD300LG mRNA (Figure 5—figure supplement 
2B). In contrast, running the same analyses in women did not reveal associations between CD300LG 
and angiogenesis (Figure 5—figure supplement 3A and B).

Figure 5. CD300LG. (A) The response from baseline to week 12 in serum CD300LG and CD300LG mRNA in (B) subcutaneous adipose tissue (ScWAT) 
and (C) skeletal muscle (SkM). (D) Correlation between the change from before to after prolonged exercise in serum CD300LG and insulin sensitivity. 
(E–H) Pathway enrichment analyses were performed on the top 500 most correlated (and p<0.05) genes in (E) ScWAT or (F) SkM to the change in serum 
CD300LG levels, or to the change in CD300LG mRNA levels in (G) ScWAT or (H) SkM. Only the top 10 pathways with Q < 0.05 are presented. *p<0.05, 
**p<0.01, and ***p<0.001.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Tissue- and cell-specific expression of CD300LG.

Figure supplement 2. CD300LG mRNA correlations in men.

Figure supplement 3. CD300LG mRNA correlations in women.

Figure supplement 4. Manhattan plot for serum CD300LG protein levels GWAS.

Figure supplement 5. Quantile–quantile plot for CD300LG protein GWAS.

Figure supplement 6. Functional validations.

https://doi.org/10.7554/eLife.96535
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We then evaluated serum CD300LG levels in up to 47,747  samples in the UK Biobank (see 
‘Methods’). Descriptive statistics of the UK Biobank cohort are presented in Supplementary file 1E. 
Serum CD300LG levels were positively associated with several measures of physical activity (all meta-
bolic equivalent tasks, results from the international physical activity questionnaire and meeting the 
recommended amount of weekly physical activity or not; Table  1). Interestingly, serum CD300LG 

Table 1. Multiple regression analyses between serum CD300LG, and measures of physical activity and glucometabolic traits in the UK 
Biobank.

Women Men Interaction

Beta-
estimate SE p

Beta-
estimate SE p

Beta-
estimate SE p Description

No. of 
women

No. of 
men

NPX ~ physical activity

MET per week all activity 1.0E-06 1.2E-06 0.384 4.5E-06 9.9E-07 <0.001 4.3E-06 1.5E-06 0.005 MET minutes per week 22,527 20,726

MET minutes walking –6.0E-07 2.6E-06 0.818 –1.8E-06 2.6E-06 0.478 1.7E-07 3.7E-06 0.962 MET minutes per week 22,527 20,726

MET minutes moderate 
activity –2.5E-06 2.4E-06 0.294 1.9E-07 2.3E-06 0.932 1.9E-06 3.3E-06 0.554 MET minutes per week 22,527 20,726

MET minutes vigorous 
activity 1.0E-05 2.8E-06 <0.001 2.2E-05 2.1E-06 <2e-16 1.5E-05 3.5E-06 <0.001 MET minutes per week 22,527 20,726

Sedentary overall average 0.077 0.053 0.147 0.042 0.054 0.441 –0.100 0.075 0.185
Proportion sedentary 
activity. 7430 5825

Light overall average –0.119 0.062 0.053 –0.420 0.071 <0.001 –0.232 0.094 0.013 Proportion light activity. 7430 5825

Moderate/vigorous overall 
average 0.633 0.171 <0.001 1.357 0.194 <0.001 1.043 0.254 <0.001

Proportion moderate/
vigorous activity. 7430 5825

IPAQ activity group 9.6E-03 3.8E-03 0.012 3.1E-02 3.8E-03 <0.001 2.6E-02 5.4E-03 <0.001 IPAQ category 22,527 20,726

Summed days activity 1.9E-03 5.9E-04 <0.001 3.8E-03 5.7E-04 <0.001 2.7E-03 8.1E-04 <0.001

Days performing walking, 
moderate and vigorous 
activity 23,199 21,138

Summed minutes activity –1.8E-05 3.0E-05 0.550 6.4E-05 2.7E-05 0.017 9.9E-05 4.0E-05 0.013

Mins performing walking, 
moderate and vigorous 
activity 22,527 20,726

Moderate/vigorous 
recommendation* 7.5E-03 5.6E-03 0.186 4.8E-02 5.8E-03 <2e-16 4.6E-02 8.0E-03 <0.001 Yes/no 22,527 20,726

Moderate/vigorous walking 
recommendation* –1.3E-05 7.2E-03 0.999 4.0E-02 7.4E-03 <0.001 4.6E-02 1.0E-02 <0.001 Yes/no 22,521 20,723

Trait ~ NPX 28,108 23,841

Body fat percentage 
impedance –0.137 0.051 0.007 –0.552 0.052 <0.001 –0.375 0.073 <0.001 Body fat percentage 28,099 23,802

Whole body fat mass 
impedance 0.345 0.049 <0.001 0.023 0.051 0.656 –0.209 0.071 0.003 Fat mass (kg) 28,108 23,866

Whole body fat free mass 
impedance 0.450 0.050 <0.001 1.045 0,090 <0.001 0.622 0,101 <0.001 Fat free mass (kg) 28,107 23,870

Body mass index - - - - - - - - - kg/m2 24,810 21,509

Glucose –0.066 0.016 <0.001 –0.041 0.022 0.062 0.033 0.026 0.202 mmol/L 27,271 23,294

HbA1c –0.898 0.078 <0.001 –0.911 0.107 <0.001 –0.010 0.130 0.936 mmol/mol 27,323 23,292

Triglycerides –0.399 0.011 <0.001 –0.413 0.017 <0.001 –0.058 0.020 0.004 mmol/L 28,387 24,332

Type 2 diabetes –0.012 0.002 <0.001 –0.018 0.004 <0.001 0.000 0.004 0.982 Yes/no 24,802 21,483

TyG –2.189 0.074 <0.001 –2.228 0.120 <0.001 –0.203 0.136 0.138 mmol/L × mmol/L 22,527 23,841

Model 1 (NPX ~ physical activity) was a linear regression model of NPX values as a function of a measure of physical activity.

Model 2 (Trait ~ NPX) indicates the measures of body composition and glucometabolic traits were the outcomes and NPX values were set as the exposure.

Models 1 and 2 were adjusted for age, batch, study centre, storage time, and BMI.

*Indicates whether a person met the 2017 UK Physical activity guidelines of 150 min of moderate activity per week or 75 min of vigorous activity.

MET = metabolic equivalent of task. NPX = normalized protein expression. SE = standard error. IPAQ = International Physical Activity Questionnaire. TyG = triglyceride glucose index 
on insulin resistance.

https://doi.org/10.7554/eLife.96535
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levels were most strongly related to vigorous activity (Table 1). Furthermore, the associations between 
serum CD300LG and physical activity were significantly stronger in men than in women (Table 1). 
Serum CD300LG levels were also positively associated with fat mass and fat free mass, and negatively 
associated with glucometabolic traits, including serum glucose levels, Hb1Ac, and the risk of having 
type 2 diabetes (Table 1). These associations were independent of BMI.

GWAS of serum CD300LG levels
GWAS analyses of CD300LG levels detected 43 independent genome-wide significant genetic asso-
ciations across the genome (Figure  5—figure supplement 4). The genomic inflation factor (λ = 
1.0966) and LD score intercept (1.039) were consistent with our GWAS being well controlled for 
population stratification and other possible biases (Figure 5—figure supplement 5). The most signif-
icant SNPs lay along chromosome 17, with these SNPs mapping to the genomic region encoding 
the CD300LG gene (Figure 5—figure supplement 4). Follow-up analyses revealed three significant, 
independent cis-pQTLs associated with the protein CD300LG (Supplementary file 1F) and a number 
of trans-pQTLs (Supplementary file 1G).

MR analysis
The independent genome-wide significant SNPs from the CD300LG GWAS were used for two-sample 
MR (see ‘Methods’ for details), where 39 SNPs were also available in the outcome GWAS (Chen et al., 
2021). We first performed IVW MR analysis to test the causal relationship between CD300LG and 
fasting glucose, 2 hr post oral glucose tolerance test (OGTT) glucose levels and HbA1c using only cis-
SNPs (Supplementary file 1H) and all SNPs (Supplementary file 1I). The cis IVW MR analysis showed 
some evidence for a negative causal effect of CD300LG on fasting insulin (p=0.01), but due to only 
three SNPs in these analyses, we could not perform additional sensitivity analyses (except for tests 
of heterogeneity in estimates of the causal effect across SNPs) and could not determine whether the 
absence of strong evidence for a causal effect on the glycemic parameters was genuine or whether our 
analyses just lacked power. Although some of the analyses involving all the genome-wide significant 
SNPs indicated a potential causal link between increased serum CD300LG concentration and these 
outcomes (Supplementary file 1I), the analysis showed significant heterogeneity. We did not detect 
strong evidence of directional pleiotropy (significant MR Egger intercept, Supplementary file 1I). The 
heterogeneity in the analysis is possibly due to the fact that many of the SNPs found in the GWAS 
of CD300LG are associated with related phenotypes that could exert pleiotropic effects on diabetes 
related outcomes, and so the results should be interpreted with care (Supplementary file 1J). Due to 
the heterogeneity in our results, we therefore performed MR PRESSO to account for outliers. The MR 
PRESSO analysis showed a significant negative effect of CD300LG on all outcomes (Table 2).

Table 2. Mendelian randomization (MR) of serum CD300LG levels and glucose outcomes using MR PRESSO.

Outcome MR analysis Number of outliers Effect SD p-value

2 hr post OGTT glucose (mmol/L) Raw –0.3722 0.0998 6.2 × 10–4

2 hr post OGTT glucose (mmol/L) Outlier-corrected 2 –0.3049 0.0855 1.04 × 10–2

Fasting glucose (mmol/L) Raw –0.0307 0.0358 0.3963

Fasting glucose (mmol/L) Outlier-corrected 2 –0.0556 0.0133 1.73 × 10–4

Fasting insulin (pmol/L) Raw –0.0870 0.0558 0.1271

Fasting insulin (pmol/L) Outlier-corrected 10 –0.0534 0.0252 0.0432

HbA1c (%) Raw –0.0485 0.0155 3.28 × 10–3

HbA1c (%) Outlier-corrected 3 –0.0560 0.0155 1.04 × 10–4

For detailed results, see Supplementary file 1H and I. Fasting glucose adjusted for body mass index (BMI) n = 200,622, 2 hr post oral glucose 
tolerance test (OGTT) glucose adjusted for BMI n = 63,396, fasting insulin adjusted for BMI n = 15,1013, and HbA1c n = 146,806.

https://doi.org/10.7554/eLife.96535
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Mouse models
To functionally validate association of CD300LG with metabolic homeostasis, we leveraged pheno-
typic data for exercising mice and for Cd300lg deficient (Cd300lg-/-) mice that both were publicly 
available through the MoTrPAC (Sanford et al., 2020) study and the international mouse phenotyping 
consortium (PhenoMouse) (Dickinson et al., 2016).

There is a 51% homology between human CD300LG and mouse Cd300lg (Takatsu et al., 2006), 
and also in mice, Cd300lg is predominantly expressed in adipose tissue endothelial cells (Emont 
et al., 2022).

In MoTrPAC (Sanford et al., 2020), Cd300lg levels in scWAT from n = 12–15 male and female 
mice were increased after exercise for 8 weeks (~30% in both female [p=0.03] and male [p=0.01] 
mice) (Figure 5—figure supplement 6A–C). Based on data from n = 3050 mice from PhenoMouse 
male, but not female, mutants for the Cd300lgtm1a(KOMP)Wtsi allele displayed impaired glucose toler-
ance (Figure 5—figure supplement 6D), but no change in fasting glucose and insulin (Figure 5—
figure supplement 6E and F). Mutant male, but not female, mice also displayed increased lean mass 
(Figure 5—figure supplement 6G) and less fat mass (Figure 5—figure supplement 6H). Detailed 
PhenoMouse results are presented in Supplementary file 1K.

Discussion
In the present study, we characterized the effects of strength and endurance exercise on the serum 
proteome of sedentary normal weight and overweight men. We identified significant changes in 283 
serum proteins related to many signaling pathways after the 12-week intervention. Some of these 
proteins were related to the mitochondria, muscle differentiation, and exercise capacity. Among 
known secretory proteins, 19.7 and 12.1% displayed corresponding mRNA changes in SkM and 
ScWAT, respectively. Although some proteins may be myokines, others may be adipokines or other 
types of exerkines. A multi-tissue responding protein was CD300LG, which also correlated positively 
to insulin sensitivity. CD300LG was particularly interesting because we could replicate the finding in an 
external cohort, find evidence of a causal link to glucose homeostasis, and perform functionally valida-
tion in mice models. Furthermore, the association between CD300LG, physical activity, and glycemic 
traits might display sex dimorphic relationships.

One of the protein signatures observed in response to exercise was based on strong associations 
with markers of liver fat content in overweight men. This was related to SLC22A1, which regulates 
the hepatic glucose fatty acid cycle affecting gluconeogenesis and lipid metabolism (Liang et al., 
2018), and may influence liver fat accumulation (Chen et al., 2014). This signature also shared many 
common proteins with a known serum NAFLD proteomic signature (Govaere et al., 2023). However, 
we did not detect overlaps between proteins in this signature and specific gene expression patterns of 
liver cells (e.g., hepatocytes, immune cells) (Aizarani et al., 2019). This observation suggests that the 
proteins detected do not relate to liver protein synthesis per se, but may accumulate in serum due to 
being released in the blood stream as a result of impaired liver protein catabolism or cell damage as 
a consequence of overweight/obesity. Notably, this protein signature in overweight men normalized 
after 12 weeks of exercise and resembled the signature observed in normal weight men. These data 
suggest prolonged exercise leads to improvements of liver function in overweight men.

Several proteins responding to prolonged exercise had a known signal sequence. These secre-
tory proteins are of particular interest because they could mediate inter-tissue adaptations to exer-
cise. For example, COL1A1 was substantially increased in serum and its corresponding mRNA level 
was increased in SkM. However, COL1A1 is a collagen peptide that is related to muscle damage, 
turnover, and extracellular matrix remodeling in response to exercise (Jacob et al., 2022) and may 
mostly reflect muscle restructuring and not represent signaling effects to distant tissues. The large 
overlap between serum proteins and SkM mRNA most likely suggests a similar phenomenon, where 
tissue restructuring following exercise is reflected in blood. However, there are probably also several 
myokines with distant signaling effects among the identified proteins. CCL3 was reduced in serum in 
parallel with a reduction in its mRNA level in ScWAT. CCL3 is a monocyte chemoattractant protein 
that may be related to immune cell infiltration in adipose tissue (Barry et al., 2017). Hence, this may 
reflect a positive effect of prolonged exercise on adipose tissue inflammation, which is in line with our 

https://doi.org/10.7554/eLife.96535
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previous results showing normalization of adipose tissue inflammation following prolonged exercise 
(Lee et al., 2019).

A particularly interesting protein was CD300LG, which responded to prolonged exercise in serum, 
and, judged by its mRNA levels, in SkM and ScWAT. Serum CD300LG levels were lower in over-
weight compared to normal weight men. Furthermore, the exercise-induced response in CD300LG 
correlated positively to improvements in insulin sensitivity, and there was also a significant correlation 
between serum CD300LG and insulin sensitivity both before and after the intervention. We there-
fore analyzed CD300LG in an external data set, the UK Biobank, and again we observed positive 
associations between especially vigorous exercise and serum CD300LG. Moreover, serum CD300LG 
levels were negatively associated with glucose levels and type 2 diabetes in the UK Biobank, and 
these associations might be causal based on MR analysis. These findings were functionally corrobo-
rated by the alterations in glucose tolerance and parameters related to insulin sensitivity observed 
in Cd300lg-/- mice. Thus, CD300LG may represent an exerkine with a causal link to glucose homeo-
stasis. However, whether CD300LG can mediate tissue-tissue crosstalk is unknown. CD300LG is a cell 
surface protein with a transmembrane domain, but is also a predicted secretory protein (Meinken 
et al., 2015). Whether the protein is released from the cell surface in a regulated manner to mediate 
cross-tissue signaling needs further investigation. Furthermore, the exact link between CD300LG and 
glucose metabolism is not clear, but possibly related to the fact that CD300LG is expressed in endo-
thelial cells (Umemoto et al., 2013), linked to blood pressure (Støy et al., 2014), lymphocyte binding 
(Umemoto et al., 2006), blood triacylglycerol levels (Surakka et al., 2015; Støy et al., 2015), and 
molecular traffic across the capillary endothelium (Takatsu et al., 2006). Both MyoGlu and GD-CAT 
data also suggested that CD300LG may be related to angiogenesis in ScWAT (Van Pelt et al., 2017) 
and SkM (Van Pelt et al., 2017; Ross et al., 2023), at least in men. Hence, we speculate that the 
link between CD300LG and glucose metabolism is related to improved tissue capillarization/vascular 
function following prolonged exercise. Furthermore, since vigorous exercise leads to angiogenesis in 
ScWAT and SkM (Van Pelt et al., 2017), serum CD300LG may be a maker of exercise intensity.

Strengths and limitations
Although MyoGlu included only 26 sedentary men, they were extensively phenotyped with eugly-
cemic hyperinsulinemic clamp, fitness tests, whole body imaging (MRI/MRS), and mRNA sequencing 
of ScWAT and SkM. We also supplied our study with data from 47,747 persons in the UK Biobank to 
enhance the validity and generalization of the results. Furthermore, to assess sex differences we strat-
ified analyses for men and women in the UK Biobank, in external data bases (GD-CAT; Zhou et al., 
2024) and analyzed data from both male and female mice. Since correlations with the clamp data 
only imply a role for a protein with regard to glucose homeostasis, so we also tested associations with 
related glucometabolic traits in the UK Biobank and tested these associations for causality using MR. 
We also included data from exercised mice and mutant mice to further strengthen the results. Our 
serum proteome study assessed 3072 proteins, and therefore we do not cover the complete human 
proteome. However, the Olink platform is based on dual recognition of correctly matched DNA-
labeled antibodies and DNA sequence-specific protein-to-DNA conversion to generate a signal. This 
is a highly scalable method with an exceptional specificity (https://olink.com/technology/what-is-pea). 
Previous exercise-proteomic studies has looked at ~600 proteins in overweight men after endurance 
exercise (Diaz-Canestro et al., 2023), and three papers were published from the HERITAGE study 
analyzing ~5000 proteins in response to endurance exercise (Robbins et al., 2021; Robbins et al., 
2023; Mi et al., 2023). However, our study is the first and largest exercise study using PEA in both 
overweight and normal weight men, and also including strength exercise.

However, CD300LG’s role related to angiogenesis is only suggested through association analyses 
in our data, necessitating follow-up studies to confirm any causal role of CD300LG in angiogenesis. 
Although the open-source cd300lgtm1a(KOMP)Wtsi mice provided interesting indications, a future 
study should directly phenotype mice with alterations in the CD300LG gene and measure the effects 
on circulating CD300LG levels and potential regulatory mechanisms related to angiogenesis and 
glucose tolerance. Furthermore, it is also unknown if circulating CD300LG is full-length or a cleaved 
fragment, and the mechanisms for CD300LG secretion should be further studied in vitro. Finally, 
future experiments should also identify the epitope for O-link binding, and confirm its specificity using 
targeted mass spectrometry or antibody-based validations.

https://doi.org/10.7554/eLife.96535
https://olink.com/technology/what-is-pea
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Conclusion
Our study provided a detailed analysis of serum proteins responding to 3 months of strength and 
endurance exercise in both normal weight and overweight men. Our results identified a novel NAFLD-
related serum protein signature in overweight men that was normalized after prolonged exercise. 
We also identified hundreds of tissue-specific and multi-tissue serum markers of, for example,, mito-
chondrial function, muscle differentiation, exercise capacity, and insulin sensitivity. Our results were 
enriched for secretory proteins (exerkines), such as CD300LG, which may be a marker of exercise 
intensity especially in men, and may also have causal roles in improved glucose homeostasis after 
physical activity.
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uk/ukb/. Glucometabolic outcomes used in MR analyses are available at: http://magicinvestigators.​
org/ Chen et al., 2021. Data from the GD-CAT database Zhou et al., 2024 is available from: https://​
pipeline.biochem.uci.edu/gtex/demo2/. Mice exercise data are available at https://motrpac-data.org/ 
and knock-out data at https://www.mousephenotype.org/. CD300LG expression values from a human 
tissue panel were obtained from Uhlén et al., 2015. The single nuclei mRNA sequencing data from 
human adipose tissue was plotted in Seurat v. 4 by downloading processed data from the Single 
Cell Portal Emont et al., 2022. The data can also be explored at: https://singlecell.broadinstitute.​
org/single_cell/study/SCP1376/a-single-cell-atlas-of-human-and-mouse-white-adipose-tissue). UK 
Biobank (https://www.ukbiobank.ac.uk/) data are available to researchers upon application to the indi-
vidual cohorts via their websites. All other data used are publicly available and referenced according in 
the main text. For additional details and data inquiries, please contact Sindre Lee-Ødegård.
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exerkine with a potential 
causal link to glucose 
homeostasis
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GSE227419

NCBI Gene Expression 
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The following previously published datasets were used:
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Meinken J, Walker G, 
Cooper CR, Min XJ
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knowledgebase for human/
animal secretomes as well 
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located in other subcellular 
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ysu.​edu/​secretomes/​
animal/​index.​php

Database Commons, 
MetazSecKB
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