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CHROMATIN REMODELING

The voyage is as important as 
the harbor
To find nucleosomes, chromatin remodelers slide and hop along DNA, 
and their direction of approach affects the direction that nucleosomes 
slide in.

ANTON SABANTSEV AND SEBASTIAN DEINDL

Most of the DNA in eukaryotic cells is 
wrapped around histone proteins in a 
spool- like configuration to form basic 

structural units called nucleosomes, which 
together make up chromatin (Luger et al., 1997; 
Kornberg, 1974). Such tight packaging signifi-
cantly restricts DNA accessibility (Kornberg and 
Lorch, 2020). As a result, the position of nucle-
osomes around a gene promoter – the stretch 
of DNA where gene expression is initiated – can 
dictate whether a gene is turned on or off (Jiang 
and Pugh, 2009).

Chromatin remodelers are proteins powered 
by ATP that play a crucial role in sliding nucle-
osomes along DNA to ensure specific genomic 
sequences are accessible. Some chromatin 
remodelers, like those known as RSC and ISW2 
in yeast, operate at promoters by either pushing 
nucleosomes apart (RSC) or pulling them 
together (ISW2) (Yen et al., 2012). This increases 
or decreases the accessibility of the promotor, 
respectively. Understanding how the chromatin 
remodelers exert these opposing effects is 

essential for comprehending the organization of 
a genome and the pathogenesis of many diseases 
with genetic components – including cancers.

In principle, a protein can find its target simply 
by randomly diffusing in all three spatial dimen-
sions. However, navigating the vast genomic 
landscape using only these random 3D move-
ments would be an exceedingly time- consuming 
endeavor. Therefore, many DNA- binding 
proteins have evolved to bind weakly to any DNA 
sequence and move along it, a process known 
as 1D diffusion. This combination of 3D and 1D 
diffusion greatly speeds up the search process 
(Berg et al., 1981; Marklund et al., 2020). Now, 
in eLife, Carl Wu, Taekjip Ha and colleagues – 
including Jee Min Kim and Claudia Carcamo as 
joint first authors – report that the yeast chro-
matin remodelers RSC and ISW2 diffuse over long 
stretches of DNA to find nucleosomes to slide. 
Moreover, their direction of approach affects 
the direction that nucleosomes slide in. Taken 
together, these findings reveal an intriguing new 
facet of remodeler function (Kim et al., 2023).

The team (who are based at Johns Hopkins 
University and HHMI Janelia Research Campus) 
used optical tweezers to hold stretches of DNA 
in place (van Mameren et al., 2009; Comstock 
et  al., 2011). Combined with confocal fluo-
rescence microscopy techniques, this allowed 
them to visualize individual fluorescently labeled 
molecules of RSC and ISW2 diffusing along DNA 
molecules with widely spaced nucleosomes 
(Figure 1A). The experiments demonstrated that 
both remodelers can diffuse along DNA, but that 
each displays distinct diffusion mechanisms. ISW2 
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slides along the DNA, following its spiral configu-
ration closely, whereas RSC hops between nearby 
positions on the DNA strand (see Figure  1B). 
Additionally, labeling remodelers with different 
fluorescent markers allowed simultaneous 
tracking of their movements on the same DNA 
molecule. Interestingly, when two remodelers 
encounter each other while diffusing along DNA, 
they seldom pass by each other. Instead, they 
either recoil or briefly come together to co- dif-
fuse for less than one second.

When remodelers arrive at a nucleosome, they 
often attach to it and then begin remodeling. In 
the presence of ATP, Kim et al. noted that RSC or 
ISW2 remodelers bind to nucleosomes and then 
slide them in a single direction for considerable 
distances, sometimes exceeding 500 base pairs. 
This behavior distinguishes them from remodelers 
such as Chd1, which frequently alter their direc-
tion (Qiu et al., 2017). The capability to visualize 
individual remodelers locating and subsequently 
moving a nucleosome in real- time also revealed a 
fascinating and unexpected effect – the direction 
of nucleosome sliding depends on the direction 
the remodeler approaches the nucleosome from. 
RSC nudges nucleosomes onward in the same 
direction as it was moving before, while ISW2 
pulls them in the opposite direction from which it 
arrived (Figure 1B).

Until now, real- time single- molecule anal-
ysis of nucleosome sliding was mainly achieved 
using single- molecule FRET – a potent method 
capable of detecting movements of a couple of 
base pairs, but with a limited dynamic range of 
less than 20 base pairs. As a result, very little was 
known about the behavior of chromatin remod-
elers at larger scales. The findings of Kim et al. 
suggest an intriguing new mechanism behind 
the effects of RSC and ISW2 on promoter nucle-
osomes: the stretches of nucleosome- free DNA 
near promoters serve as landing sites for these 

remodelers, allowing them to use 1D diffusion to 
move towards the nucleosomes. This might not 
only help remodelers locate the nucleosomes 
they need to act upon, but also orient them to 
slide nucleosomes in the right direction.

In the future, it would be fascinating to see the 
techniques used by Kim et al. extended to other 
remodelers, including those found in humans, 
to examine how widespread the observed 
effects are. Furthermore, this approach is well- 
positioned to explore the critical question of 
what occurs when a remodeler moves a nucle-
osome into another nucleosome or obstacle. 
Developing a quantitative model that integrates 
1D diffusion could facilitate analysis of the impact 
of these previously unappreciated effects on 
sliding of promoter nucleosomes. Constructing 
such a model necessitates further characteriza-
tion of nucleosome binding rates via both 1D 
and 3D diffusion. Overall, these important find-
ings will undoubtedly shape future research and 
encourage scientists to consider how remodelers 
locate nucleosomes in their experiments and 
the potential consequences for the remodeling 
process.
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Figure 1. How remodelers find nucleosomes. (A) Schematic of the assay used to observe chromatin remodeler 1D 
diffusion and subsequent nucleosome sliding on a sparse nucleosome array. A long DNA molecule (approximately 
50,000 base pairs) with up to 40 nucleosomes is stretched between two microspheres held in optical traps (purple). 
Fluorescence from nucleosomes (green) and chromatin remodeler molecules (red) is monitored using confocal 
fluorescence microscopy. (B) Schematics illustrating the target search mechanisms and resulting nucleosome 
sliding directionality for RSC (left) and ISW2 (right) remodelers.
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