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Abstract Substance use, including cigarettes and cannabis, is associated with poorer sustained 
attention in late adolescence and early adulthood. Previous studies were predominantly cross-
sectional or under-powered and could not indicate if impairment in sustained attention was a 
predictor of substance use or a marker of the inclination to engage in such behavior. This study 
explored the relationship between sustained attention and substance use across a longitudinal 
span from ages 14 to 23 in over 1000 participants. Behaviors and brain connectivity associated with 
diminished sustained attention at age 14 predicted subsequent increases in cannabis and cigarette 
smoking, establishing sustained attention as a robust biomarker for vulnerability to substance use. 
Individual differences in network strength relevant to sustained attention were preserved across 
developmental stages and sustained attention networks generalized to participants in an external 
dataset. In summary, brain networks of sustained attention are robust, consistent, and able to 
predict aspects of later substance use.

eLife assessment
This study presents an important finding on the relationship between brain activity related to 
sustained attention and substance use in adolescence/early adulthood with a large longitudinal 
dataset. The evidence supporting the claims of the authors is convincing. The work will be of 
interest to cognitive neuroscientists, psychologists, and clinicians working on substance use or 
addiction.

Introduction
Sustained attention is a critical cognitive process in daily life, playing a significant role in academic 
achievement, social communication, and mental health (Esterman and Rothlein, 2019) and can be 
defined as “the focus on performance on a single task over time, with the goal of explaining both the 
fluctuations within an individual as well as the individual differences in overall ability to maintain stable 
task performance” (p. 174) (Esterman and Rothlein, 2019). Sustained attention notably improves 
between the ages of 9 and 16 (Thomson et al., 2022), concomitant with cognitive maturation and 
brain development during adolescence (Paus, 2005). The functional neuroanatomy of sustained 
attention involves cingulate, prefrontal, and parietal cortices; supplementary motor area; frontal eye 
field; and cerebellum (Bauer et al., 2020; Pinar et al., 2018).

Cross-sectional studies suggest that substance use during adolescence, including cigarette 
smoking (Treur et al., 2015), alcohol consumption (Ueno et al., 2022), and cannabis use (Wallace 
et al., 2019), is associated with poorer sustained attention. For instance, adolescents (14–17 years of 
age) using cannabis a minimum of 4 days per week for at least the last 6 months showed impaired 
sustained attention in the rapid visual information processing (RVP) task, and in the immediate 
memory task versus non-users (Dougherty et al., 2013). Adolescents (12–17 years of age) in a high 
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tetrahydrocannabinol (THC, the primary psychoactive component in cannabis) group exhibited 
lower accuracy on the RVP task than a low THC group (Shannon et al., 2010). Cigarette users aged 
18–29 showed significant cognitive impairments in sustained attention than non-smokers in the RVP 
task (Chamberlain et al., 2012). A systematic review of the next-day cognitive effects of heavy alcohol 
consumption demonstrated impairments in sustained attention during alcohol hangovers using meta-
analysis (Yakir et al., 2007). These findings highlight the negative associations between substance use 
and sustained attention.

Given the cross-sectional nature of the behavioral and neuroimaging studies above, it remains 
unclear if impaired sustained attention predates the initiation of substance use and/or if it is a conse-
quence of substance use. Only one longitudinal study (Harakeh et al., 2012) has examined the asso-
ciation between sustained attention and cigarette smoking, employing measurements across three 
waves and involving a large sample of 1797 adolescents. Poor sustained attention, unlike other neuro-
cognitive functions such as working memory, attention flexibility, or perceptual sensitivity, was associ-
ated with the increased probability of adolescents subsequently initiating cigarette smoking between 
ages 11 and 13 and with a higher chance of being a daily smoker by age 16. Harakeh and colleagues’ 
findings suggest that poor sustained attention may precede the onset of cigarette smoking. However, 
as their study was based on a behavioral level, the neural correlates underlying these associations 
remain untested.

Although lower sustained attention has been associated with subsequent cigarette smoking, indi-
viduals commonly engage in the concurrent use of multiple substances (Crummy et al., 2020), perhaps 
due to shared pathological substrates for substance use. A meta-analysis identified common neural 
alterations in primary dorsal striatal, and frontal circuits, engaged in reward/salience processing, habit 
formation, and executive control across various substances (nicotine, cannabis, alcohol, and cocaine) 
(Thiele and Bellgrove, 2018). Those involved in substance use often co-use both cannabis and ciga-
rettes (Agrawal et  al., 2012; Hindocha et  al., 2016; Weinberger et  al., 2018). Agrawal et  al., 
2012, reported that 90% of cannabis users smoke cigarettes during their lifetime, and the widespread 
co-use of the two may be attributed to genetic sharing (Agrawal et al., 2010; Yadav et al., 2016) and 
similar neural mechanisms (Klugah-Brown et al., 2020).

Functional brain networks can predict various behavioral traits, such as substance use (Yip et al., 
2019) and sustained attention (Rosenberg et al., 2016). Previous studies (e.g. Rosenberg et al., 
2018) have used brain connectivity to develop predictive models of sustained attention that can be 
generalized to healthy and clinical populations. However, while behavioral changes in sustained atten-
tion have been documented and functional brain networks that predict substance use have been iden-
tified (Yip et al., 2019), the underlying change in sustained attention brain networks from adolescence 
to adulthood and their relation to substance use are relatively less well described. Lower sustained 
attention has been accompanied by both stronger reductions in neural activity in the visual cortex and 
stronger recruitment of the right supramarginal gyrus with increasing time on a sustained attention 
task with central cues in cigarette smokers as opposed to non-smokers (Vossel et al., 2011). In a 
resting-state functional magnetic resonance imaging (fMRI) paradigm, cannabis users aged 16–26 had 
stronger connectivity between the left posterior cingulate cortex and the cerebellum, correlated with 
poorer performance on sustained attention/working memory and verbal learning measures (Ritchay 
et al., 2021). Although most brain connectomic research has utilized resting-state fMRI data, func-
tional connectivity (FC) during task performance has demonstrated superiority in predicting individual 
behaviors and traits, due to its potential to capture more behaviorally relevant information (Dhamala 
et  al., 2023; Greene et  al., 2018; Yoo et  al., 2018). Specifically, Zhao et  al., 2023, suggested 
that task-related FC outperforms both typical task-based and resting-state FC in predicting individual 
differences. Hence, we applied task-related FC to predict sustained attention over time.

Previous studies found that FC patterns predicted individual differences in sustained attention 
(Chen et al., 2022; O’Halloran et al., 2018; Sripada et al., 2020), yet relatively little is known about 
the relationship between brain activity related to sustained attention and substance use over time. 
A latent change score model can quantify bidirectional longitudinal relations between substance use 
and both behaviors and brain activity associated with sustained attention, shedding light on how 
substance use impacts sustained attention and its associated brain activity, and vice versa. In this study, 
we used task-fMRI from the IMAGEN dataset, a longitudinal study with >1000 participants at each 
timepoint (ages 14, 19, and 23 years). We first obtained task-related whole-brain connectivity and then 
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used connectome-based predictive modeling (CPM) to predict sustained attention from ages 14 to 
23. Additionally, previous cross-sectional and longitudinal studies (Broyd et al., 2016; Harakeh et al., 
2012; Lisdahl and Price, 2012) have shown that there are linear relationships between substance use 
and sustained attention over time. We therefore employed correlation analyses and a latent change 
score model to estimate the relationship between substance use and both behaviors and brain activity 
associated with sustained attention. Given the substantial sample size and longitudinal design of 
Harakeh et al.’s study, we hypothesized that behavioral and predictive networks associated with lower 
sustained attention would predict increased substance use (particularly cigarette smoking) over time.

Results
Behavioral changes over time
Reaction time (RT) variability is a straightforward measure of sustained attention, with increasing vari-
ability thought to reflect poor sustained attention. RT variability can be defined as the intra-individual 
coefficient of variation (ICV), calculated as the standard deviation of Go RT divided by the mean Go 
RT from Go trials in the stop signal task. Lower ICV indicates better sustained attention. Participants’ 
demographic information for all analyses is shown in Table 1 (see also Supplementary file 1a and b). 
A linear mixed model analysis showed significant fixed effects of age (i.e. timepoint) on ICV (F1895.3 = 
51.14, p<0.001) (Figure 1A). Post hoc analysis showed that ICV decreased with age: ICV at age 14 
was significantly higher than ICV at ages 19 (t=6.535, p<0.001) and 23 (t=10.109, p<0.001). ICV at age 
19 was also significantly higher than that at age 23 (t=4.768, p<0.001). The full results of the linear 
mixed model analysis are shown in Supplementary file 1c and d. In addition, we found that individual 
differences in ICV were significantly correlated between the three timepoints (Figure 1B and Supple-
mentary file 1e, all p<2.8e–7).

Cross-sectional brain connectivity
This study employed CPM, a data-driven neuroscience approach, to identify three predictive networks 
– positive, negative, and combined – to predict ICV from brain connectivity. CPM typically uses the 
strength of the predictive networks to predict individual differences in traits and behaviors. The 
predictive networks were obtained based on connectivity analyses of the whole brain. Specifically, 

Table 1. Demographic information of adolescents in the linear mixed model across three timepoints.

Age 14 Age 19 Age 23

N (three timepoints) 2148

Sex (M/F) 1055/1093

Age (years) 14.4±0.4 19±0.7 22.6±0.7

Mean FD (mm) 0.28±0.32 0.18±0.17 0.18±0.12

GO RT (ms) 466.6±80 400.7±71.8 403.9±73.8

ICV 0.234±0.038 0.224±0.051 0.217±0.052

Stop RT (ms) 461.5±114.8 360±82.4 363.6±78.2

SSD (ms) 319.3±148.1 188.1±132.4 190±158.4

SSRT (ms) 217.8±37.2 213.3±43.3 216.2±42.6

pOmission (%) 4.4±10.5 2.6±8.6 3.7±11.1

pChoiceError (%) 4.7±6.6 4.8±4.7 5.2±7.6

pCommission (%) 47.9±6.3 47.5±6 47.2±6.9

Note: These data pertain to the participants included in the behavioural analyses. N, number of subjects; FD, 
framewise displacement of MR images; ICV, intra-individual coefficient of variation (assay for sustained attention); 
SSRT, stop signal reaction time; GO RT, reaction time in Go trials; Stop RT, reaction time in stop fail trials; SSD, 
stop signal delay; pOmisssion, probability of go omissions (no response); pChoiceError, probability of choice 
errors on Go trials; pCommission, probability of commission on Stop trials.

https://doi.org/10.7554/eLife.97150
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we assessed whether connections between brain areas (i.e. edges) in a task-related FC matrix 
derived from generalized psychophysiological interaction (gPPI) analysis were positively or negatively 
correlated with ICV using a significance threshold of p<0.01. These positively or negatively correlated 
connections were regarded as positive or negative networks, respectively. The network strength of 
positive networks (or negative networks) was determined for each individual by summing the connec-
tion strength of each positively (or negatively) correlated edge. The combined network was deter-
mined by subtracting the strength of the negative network from the positive network. We then built 
a linear model between network strength and ICV in the training set and applied these predictive 
networks to yield network strength and a linear model in the test set to calculate predicted ICV using 
k-fold cross-validation (CV).

Positive, negative, and combined networks derived from Go trials significantly predicted ICV: at 
age 14 (r=0.25, r=0.25, and r=0.28, respectively, all p<0.001) (Figure 2A), at age 19 (r=0.27, r=0.25, 
r=0.28, respectively, all p<0.001) (Figure 2B), and at age 23 (r=0.38, r=0.33, and r=0.37, respectively, 
all p<0.001) (Figure 2C). The connectome patterns of predictive networks are shown in Figure 2D–I. 
Figure 2—figure supplement 1 summarizes the connectivity within and between functional networks 
and depicts their respective contribution to the predictive network. The above results were vali-
dated using 10-fold CV; similar results were obtained when using 5-fold CV and leave-site-out CV 
(Supplementary file 1f). The predictive networks had similar connectome patterns when different 
exclusion criteria for head motion were used (mean framewise displacement, mean FD <0.2–0.4 mm) 
(Figure 3—figure supplements 2–4A). In addition, we found that network strength of positive, nega-
tive, and combined networks derived from Go trials was significantly correlated between the three 
timepoints (Supplementary file 1g , all p<0.003).

Positive, negative, and combined networks derived from Successful stop trials significantly predicted 
ICV: at age 14 (r=0.22, p<0.001; r=0.12, p=0.017; and r=0.20, p<0.001, respectively) (Figure 3A), at 
age 19 (r=0.19, p<0.001; r=0.15, p=0.001; and r=0.18, p<0.001, respectively) (Figure 3B), and at 
age 23 (r=0.24, r=0.21, and r=0.23, respectively, all p<0.001) (Figure 3C). The connectome patterns 
of predictive networks are shown in Figure 3D–I. Figure 3—figure supplement 1 summarizes the 
connectivity within and between functional networks and the proportion of brain networks involved in 
the predictive network. We obtained similar results using a 5-fold CV and leave-site-out CV (Supple-
mentary file 1e). The predictive networks had similar connectome patterns when different exclusion 
criteria for head motion were used (mean FD <0.2–0.4 mm) (Figure 3—figure supplements 2–4B). In 
addition, we found that network strength of positive, negative, and combined networks derived from 

Figure 1. Intra-individual coefficient of variation (ICV) changes over time. (A) ICV changes over time. (B) Correlation of ICV between timepoints within 
participants. †, p<0.001.

https://doi.org/10.7554/eLife.97150
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Figure 2. The predictive performances and networks of intra-individual coefficient of variation (ICV) per timepoint derived from Go trials. Correlation 
between observed and predicted ICV in positive, negative, and combined networks at (A) age 14, (B) age 19, and (C) age 23. Predictive networks for ICV 
are at (D) age 14, (E) age 19, and (F) age 23. Connectome of positive and negative networks of ICV at (G) age 14, (H) age 19, and (I) age 23. The edges 
depicted above are those selected in at least 95% of cross-validation folds. Red, blue, and green spheres/lines/scatters represent positive, negative, and 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.97150
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Successful stop trials was significantly correlated between the three timepoints (Supplementary file 
1f, all p<0.001).

To examine the specificity of sustained attention networks identified from CPM analysis, the 
correlations between the network strength of positive and negative networks and performances from 
a neuropsychology battery (Cambridge Neuropsychological Test Automated Battery [CANTAB]) (Fray 
et al., 1996) were calculated at each timepoint separately. All positive and negative networks derived 
from Go and Successful stop trials were significantly correlated with a behavioral assay of sustained 
attention – the RVP task – at ages 14 and 19 (all p<0.028). Age 23 had no RVP task data in the 
IMAGEN study. There were sporadic significant correlations between constructs such as delay aver-
sion/impulsivity and negative network strength, for example, but the most robust correlations were 
with the RVP. Detailed information is shown in Appendix 1 and Supplementary file 1l.

ICV prediction across time
Positive, negative, and combined networks derived from Go trials defined at age 14 predicted ICV 
at ages 19 (r=0.16, r=0.14, and r=0.16, all p<0.001) (Figure 4A, top row) and 23 (r=0.20, r=0.12, and 
r=0.17, all p<0.001) (Figure 4A, middle row). Likewise, positive, negative, and combined networks 
derived from Go trials defined at age 19 predicted ICV at age 23 (r=0.30, r=0.26, and r=0.31, respec-
tively, all p<0.001) (Figure 4A, bottom row).

Positive, negative, and combined networks derived from Successful stop trials defined at age 14 
predicted ICV at age 19 (r=0.11, r=0.12, and r=0.13, all p<0.001) (Figure 4B, top row) and 23 (r=0.14, 
r=0.15, and r=0.15, all p<0.001) (Figure 4B, middle row). Positive, negative, and combined networks 
derived from Successful stop trials defined at age 19 predicted ICV at age 23 (r=0.17, r=0.16, and 
r=0.17, respectively, all p<0.001) (Figure 4B, bottom row).

Generalization of ICV brain networks
We tested if the predictive networks defined at age 23 in IMAGEN would generalize to an external 
dataset, namely STRATIFY (N = ~300), comprising individuals also aged 23. When applied to the 
whole STRATIFY sample, positive, negative, and combined networks derived from Go trials at age 
23 in IMAGEN predicted ICV in STRATIFY (r=0.34, r=0.34, and r=0.35, respectively, all p<0.001) 
(Figure 4C), as did networks derived from Successful stop trials (r=0.26, r=0.22, and r=0.26, respec-
tively, all p<0.001) (Figure 4D).

Factor analysis of substance use
Exploratory factor analysis on data from the Timeline Followback (TLFB) (Sobell et  al., 1996), an 
instrument for measuring the consumption of alcohol, drugs, and smoking for participants, yielded 
two common factors at age 14 and three common factors at ages 19 and 23. According to the rotated 
factor loading analysis, at age 14, two common factors were identified, which we labeled as (i) alcohol 
and (ii) cigarette and cannabis use (Cig+CB). At ages 19 and 23, three common factors were identified, 
which we labeled as (i) alcohol, (ii) Cig+CB, and (iii) drug (including cocaine, ecstasy, and ketamine) 
use. Additional details about this data reduction step are shown in Figure 5—figure supplement 1 
and Supplementary file 1k.

Correlation between behavior and brain to cannabis and cigarette use
We calculated the Spearman correlation between ICV/sustained brain activity and TLFB factor score 
per timepoint and across timepoints. Brain activity was measured by the strength of positive and 
negative networks predicting sustained attention. The p values were corrected by false discovery 
rate (FDR) correction (q<0.05). Figure 5A–C summarizes the results showing the correlation between 
ICV/brain activity and Cig+CB per timepoint and across timepoints. Figure 5A shows correlations 

combined networks respectively. MF, medial frontal; FP, frontoparietal; DMN, default mode; MOT, motor; VI, visual I; VII, visual II; VAs, visual association; 
SAL, salience; SC, subcortical; CBL, cerebellar. R/L, right/left hemisphere. ***, p<0.001.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The predictive networks predicting intra-individual coefficient of variation (ICV) per timepoint derived from Go trials.

Figure 2 continued

https://doi.org/10.7554/eLife.97150


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Weng et al. eLife 2024;13:RP97150. DOI: https://doi.org/10.7554/eLife.97150 � 8 of 29

Figure 3. The predictive performances and networks of intra-individual coefficient of variation (ICV) per timepoint derived from Successful stop trials. 
Correlation between observed and predicted ICV in positive, negative, and combined networks at (A) age 14, (B) age 19, and (C) age 23. Predictive 
networks for ICV are at (D) age 14, (E) age 19, and (F) age 23. Connectome of positive and negative networks of ICV at (G) age 14, (H) age 19, and (I) 
age 23. The edges depicted above are those selected in at least 95% of cross-validation folds. Red, blue, and green spheres/lines/scatters represent 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.97150
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between ICV and Cig+CB (Supplementary file 1n-o). ICV was correlated with Cig+CB at ages 19 
(Rho = 0.13, p<0.001) and 23 (Rho = 0.17, p<0.001). ICV at ages 14 (Rho = 0.13, p=0.007) and 19 
(Rho = 0.13, p=0.0003) were correlated with Cig+CB at age 23. Cig+CB at age 19 was correlated 
with ICV at age 23 (Rho = 0.13, p=9.38E-05). Figure 5B shows correlations between brain activity 
derived from Go trials and Cig+CB (Supplementary file 1r-s). Brain activities of positive and negative 
networks derived from Go trials were correlated with Cig+CB at age 23 (positive network: Rhop = 0.12, 

positive, negative, and combined networks respectively. MF, medial frontal; FP, frontoparietal; DMN, default mode; MOT, motor; VI, visual I; VII, visual II; 
VAs, visual association; SAL, salience; SC, subcortical; CBL, cerebellar. R/L, right/left hemisphere. *, p<0.05; **, p<0.01; ***, p<0.001.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The predictive networks predicting intra-individual coefficient of variation (ICV) per timepoint derived from Successful stop trials.

Figure supplement 2. Connectome of positive and negative networks predicting intra-individual coefficient of variation (ICV) at age 14 with mean 
framewise displacement (meanFD) from 0.2 mm to 0.5 mm.

Figure supplement 3. Connectome of positive and negative networks predicting intra-individual coefficient of variation (ICV) at age 19 with mean 
framewise displacement (meanFD) from 0.2 mm to 0.5 mm.

Figure supplement 4. Connectome of positive and negative networks predicting intra-individual coefficient of variation (ICV) at age 23 with mean 
framewise displacement (meanFD) from 0.2 mm to 0.5 mm.

Figure 3 continued

Figure 4. The predictive performances of intra-individual coefficient of variation (ICV) across timepoints and generalization in STRATIFY. Predictive 
performances of ICV (A) derived from Go trials and (B) derived from Successful stop trials. The top, middle, and bottom rows of (A) and (B) panels show 
the predictive performance: using models defined at age 14 to predict age 19 (i.e. 14 years → 19 years), using models defined at age 14 to predict age 
23 (i.e. 14 years → 23 years), and using models defined at age 19 to predict age 23 (i.e. 19 years → 23 years) respectively. Generalization of predictive 
networks predicting ICV defined at age 23 in STRATIFY (i.e. 23 years → STRATIFY) derived from (C) Go trials and (D) Successful stop trials. The red, blue, 
and green scatter represent positive, negative, and combined networks. †, p<0.001.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Generalization in subgroups in STRATIFY.

https://doi.org/10.7554/eLife.97150
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p<0.001; negative network: Rhon = –0.11, p<0.001). Brain activity of the negative network derived 
from Go trials at age 14 was correlated with Cig+CB at age 23 (Rhon = –0.16, p=0.001). Cig+CB at 
age 19 was correlated with brain activity of the positive network derived from Go trials at age 23 (Rhop 
= 0.10, p=0.002). Figure 5C shows the correlations between brain activity derived from Successful 
stop and Cig+CB (Supplementary file 1r-s). Brain activities of positive and negative networks derived 
from Successful stop were correlated with Cig+CB at ages 19 (positive network: Rhop = 0.10, p=0.001; 
negative network: Rhon = –0.08, p=0.013) and 23 (positive network: Rhop = 0.13, p<0.001; negative 
network: Rhon = –0.11, p=0.001). No correlation between alcohol use and ICV/brain activity was found 
after FDR correction. Detailed results on the correlation between ICV/brain activity and substance use 
can be found in the Supplementary file 1n-u.

Bivariate latent change score model
We used a bivariate latent change score model to explore the relationship between substance use 
(specifically Cig+CB and alcohol use) and ICV/brain activity. This approach tests for bidirectional asso-
ciations, examining how substance use at age 14 predicts changes in ICV/brain activity from ages 
14 to 23 and vice versa (Figure 6). Below, we present the findings regarding the lagged effects of 
substance use on ICV/brain activity and the lagged effects of ICV/brain activity on substance use 
(Table 2). The p values were corrected by FDR correction (q<0.05).

Lagged effects of Cig+CB on changes in ICV and brain activity
We examined if Cig+CB use at age 14 predicted the changes in ICV or brain activity (i.e. predic-
tive network strength) associated with sustained attention across ages 14–23. No significance was 
observed in the lagged effects of Cig+CB on changes in ICV and brain activity (all p>0.172).

Lagged effects of ICV and brain activity on changes in Cig+CB
We examined if ICV or brain activity associated with sustained attention at age 14 predicted changes 
in Cig+CB use across ages 14–23. Behaviors and brain activity associated with poor sustained atten-
tion predicted a greater increase in subsequent cigarette and cannabis use. Specifically, higher ICV 
at age 14 predicted a greater increase in Cig+CB from ages 14 to 23 (Std. β=0.12, p<0.001). Higher 

Figure 5. Significant correlations between sustained attention and substance use across timepoints (false discovery rate [FDR] correction, q<0.05). (A) 
Correlations between the intra-individual coefficient of variation (ICV) and cigarette and cannabis use (Cig+CB) across timepoints. Correlations between 
sustained attention network strength and Cig+CB across timepoints (B) derived from Go trials and (C) derived from Successful stop trials. Rhop: r value 
between network strength of the positive network. Rhon: r value between network strength of the negative network.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Exploratory factor analysis of Timeline Followback (TLFB) at each timepoint.

Figure supplement 2. Significant correlations between sustained attention and substance use across timepoints (false discovery rate [FDR] correction, 
q<0.05).

https://doi.org/10.7554/eLife.97150
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sustained attention network strength for positive network derived from Go trials at age 14 predicted 
a greater increase in Cig+CB from ages 14 to 23 (Std. β=0.09, p=0.006). Lower sustained atten-
tion network strength for the negative network, also derived from Go trials at age 14, predicted a 
greater increase in Cig+CB from ages 14 to 23 (Std. β=–0.09, p=0.006). No other lagged effects of 
brain activity on changes in Cig+CB remained significant after FDR correction (all p>0.047). Figure 7 
illustrates the changes in raw scores of cigarette and cannabis use from the TLFB for individuals at 
age 14 with higher sustained attention (i.e. lower ICV, lower strength of positive network, or higher 
strength of negative network) and lower sustained attention (i.e. higher ICV, higher strength of posi-
tive network, or lower strength of negative network).

Figure 6. A simplified bivariate latent change score model for substance use and ICV/brain activity. SUB, substance use (alcohol, cigarette, and cannabis 
use); Brain, brain network strength of positive/negative network of sustained attention derived from Go trials/Successful stop trials. ICV, intra-individual 
coefficient of variation. T1, timepoint 1 (age 14); T2, timepoint 2 (age 19); T3, timepoint 3 (age 23). γ1, lagged effects of substance use on ICV or brain 
activity. γ2, lagged effects of ICV or brain activity on substance use. The square/circle represents the observation/true score in the model.

Table 2. Bivariate latent change score model showing the bidirectional association between 
substance use and ICV/brain networks (false discovery rate corrected).

Cig+CB Alcohol use

Lagged effects of 
Cig+CB (γ1)

Lagged effects of ICV/
brain networks (γ2)

Lagged effects of 
alcohol use (γ1)

Lagged 
effects of 
ICV/brain 
networks (γ2)

Std. β (SE) Std. β (SE) Std. β (SE) Std. β (SE)

ICV 0.017 (0.039) 0.117 (0.031)*** 0.005 (0.029) 0.057 (0.030)

SA GT PosNet –0.026 (0.030) 0.087 (0.032)** 0.025 (0.030) 0.022 (0.036)

SA GT NegNet 0.012 (0.026) –0.094 (0.035)** –0.012 (0.030) –0.059 (0.034)

SA SS PosNet 0.005 (0.025) 0.070 (0.036) 0.101 (0.040) 0.046 (0.039)

SA SS NegNet 0.038 (0.028) –0.061 (0.031) –0.003 (0.035) –0.069 (0.031)

https://doi.org/10.7554/eLife.97150
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Association between alcohol use and ICV/brain activity
We examined if alcohol use at age 14 predicted changes in ICV or brain activity associated with 
sustained attention across ages 14–23, or vice versa. No significant results were found for the 
lagged effects of alcohol use on changes in ICV and brain activity, nor the lagged effects of ICV 
and brain activity on changes in alcohol use. The p values were insignificant after FDR correction 
(all p>0.011).

Discussion
It is well known that increased substance use, including cigarettes and cannabis, is associated with 
poorer sustained attention in late adolescence and early adulthood (Chamberlain et  al., 2012; 
Dougherty et  al., 2013). However, previous studies, which were predominantly cross-sectional or 
under-powered, left a critical question unanswered. That is, was the impairment in sustained atten-
tion a predictor of substance use or a marker of the inclination to engage in such behavior? Using 
a substantial sample size, our results indicate that behavior and brain connectivity associated with 
poorer sustained attention at age 14 predicted a larger increase in cannabis and cigarette smoking 
from ages 14 to 23. Furthermore, our findings highlight the robustness of the brain network associ-
ated with sustained attention over time, making the latter a potentially useful biomarker for vulnera-
bility to substance use.

Figure 7. Cigarette and cannabis score in Timeline Followback changes in individuals with high sustained attention (High SA) and low sustained 
attention (Low SA) from ages 14 to 23. Participants were categorized into five equal groups based on the intra-individual coefficient of variation (ICV), 
strength of positive network, and strength of negative network at age 14. (A) Top ICV (Low SA) and bottom ICV (High SA) groups. (B) The top strength of 
the positive network (Low SA) and bottom strength of the positive network (High SA) groups derived from Go trials. (C) The top strength of the negative 
network (High SA) and bottom strength of the negative network (Low SA) groups derived from Go trials. Note that the higher strength of the negative 
network reflects lower ICV and higher sustained attention.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Cigarette and cannabis score in Timeline Followback change in individuals with good working memory (Good WM) and poor 
working memory (Poor WM) from ages 14 to 23.

https://doi.org/10.7554/eLife.97150
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Substance use and the sustained attention network
Our study applied a latent change score model on a large longitudinal dataset, testing the prece-
dence between substance use and sustained attention. In contrast to prior research suggesting that 
substance use impaired sustained attention (Broyd et al., 2016; Figueiredo et al., 2020), our results 
indicate that lower sustained attention also predates substance use. A link between substance use 
and sustained attention is plausible, given the underlying neurobiology of this sustained attention. 
Substantial evidence from neuropharmacological studies in rats and humans has shown the modula-
tory role of neurotransmitters in sustained attention (Bloomfield et al., 2016; Granon et al., 2000; 
Marshall et al., 2019). Elevated dopamine and noradrenaline levels in the prefrontal cortex lead to 
improved sustained attention in a dose-dependent manner (Marshall et al., 2019). In humans, meth-
ylphenidate, a psychostimulant commonly used to treat ADHD, increases both noradrenaline and 
dopamine signaling and improves sustained attention (Dockree et al., 2017). Thus, poorer sustained 
attention may reflect a lower basal level of dopamine and noradrenaline. More importantly, studies 
in primates (Morgan et al., 2002; Nader et al., 2006), rodents (Dalley et al., 2007; Trifilieff et al., 
2017), and humans (Casey et al., 2014; Trifilieff and Martinez, 2014; Volkow et al., 2006) have 
indicated that low basal dopamine levels are markers of vulnerability for increased drug administra-
tion. For example, Casey et al., 2014, demonstrated that blunted dopamine release may precede 
the development of addiction in humans. Nader et al., 2006, found a negative correlation between 
baseline D2 receptor availability and rates of cocaine self-administration in monkeys. Thus, these find-
ings collectively suggest that sustained attention and its brain network could serve as a biomarker of 
vulnerability to substance use.

These results emphasize the specificity of sustained attention and its associated brain networks, 
rather than other cognitive abilities, for predicting substance use over time. Unlike sustained attention, 
no significant differences in cigarette and cannabis use were observed between individuals with lower 
and higher working memory at baseline during the strategy working memory (SWM) task (Supplemen-
tary file 1w and Figure 7—figure supplement 1). Our results support the behavioral-only findings of 
a previous study (Harakeh et al., 2012), which found that individuals with poorer sustained attention, 
rather than other cognitive functions, were more likely to initiate smoking cigarettes. Our study goes 
further by showing that sustained attention brain networks can predict substance use in the future.

Neural associations between cigarette and cannabis use
We constructed composite scores of substance use. An exploratory factor analysis identified cigarettes 
and cannabis items as a common factor, aligning with previous studies (Ferland and Hurd, 2020; 
Hindocha et al., 2016; Weinberger et al., 2018) that indicate concurrent cannabis and cigarette use 
among users. A national survey in America indicated that 18–23% of cigarette smokers aged 12–17 
met the criteria for cannabis use disorder, in contrast to only 2% of non-smoking youth (Weinberger 
et  al., 2018). Another national online survey in the UK reported that 80.8% of cigarette smokers 
engage in cannabis consumption, indicating a prevalent practice of co-administering cannabis and 
tobacco through smoking (Hindocha et al., 2021). Shared genetic factors (Agrawal et  al., 2010; 
Yadav et al., 2016) and similar neural associations (Wetherill et al., 2015) contribute to the co-use of 
cannabis and cigarettes. Yadav et al., 2016, demonstrated a strong and significant genetic correlation 
between lifetime cannabis use and lifetime cigarette smoking within a large cohort of 32,330 partici-
pants, suggesting a high degree of genetic sharing between the two. Using neuroimaging techniques, 
Wetherill et al., 2015, indicated that individuals who used cannabis, smoked tobacco, or engaged in 
co-use exhibited larger gray matter volumes in the left putamen compared to healthy controls. Both 
nicotine and cannabis have similar effects on mesolimbic dopaminergic pathways engaged, modu-
lating dopamine release in the striatum (Bossong et al., 2009; Dongelmans et al., 2021). Collectively, 
these findings suggest a similar neural association between cigarette and cannabis use.

Specificity and robustness of sustained attention networks
The brain networks we describe were specific to sustained attention. The strength of the sustained 
attention brain network was robustly correlated with RVP task performance, a typical sustained atten-
tion task, rather than other cognitive measures (Supplementary file 1l). Importantly, as highlighted 
in a previous study (Cwiek et al., 2022), emphasizing the importance of generalization in an external 
dataset, our study found that the sustained attention network derived from Go trials and Successful 
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stop trials generalized to an external dataset (see further discussion on the generalization in subgroups 
in STRATIFY in Appendix 1).

We also replicated and extended the developmental pattern of sustained attention and its 
networks from mid-adolescence to young adulthood. A notable enhancement in sustained atten-
tion (i.e. decreased ICV) was observed from ages 14 to 23, as expected (Fortenbaugh et al., 2015; 
Williams et  al., 2005). Sustained attention networks derived from Go and Successful stop trials 
predicted behavior at different timepoints, implying that individual differences in sustained attention 
and associated networks were preserved throughout development. Previously, in neurodiverse youth, 
attention networks in individuals remained stable across months to years (Sisk et al., 2022). Rosen-
berg et al., 2020, also illustrated that the same functional connections predicting overall sustained 
attention ability also forecasted attentional changes observed over minutes, days, weeks, and months. 
Here, we contribute to these insights by extending the understanding that attention network stability 
is not only applicable to neurodiverse populations but also holds in a sizeable cohort of healthy partici-
pants. Furthermore, our findings indicate that sustained attention networks remain stable over several 
years, providing valuable insights into the potential for sustained attention to function as a robust 
and efficient biomarker for substance use. However, there are still some individual variabilities not 
captured in this study, which could be attributed to the diversity in genetic, environmental, and devel-
opmental factors influencing sustained attention and substance use. Future research should aim to 
explore these variabilities in greater depth to gain better understanding of the relationship between 
sustained attention and substance use.

In conclusion, robust sustained attention networks were identifiable from ages 14 to 23. Individual 
differences in sustained attention network strength were predictable across time. Poorer sustained 
attention and strength of the associated brain networks at age 14 predicted greater increases in 
cannabis and cigarette smoking from ages 14 to 23.

Materials and methods
Participants
All neuroimaging data and behavioral data were obtained from the IMAGEN study. IMAGEN is a large 
longitudinal study that recruited over 2000 participants aged 14–23 in Europe (Kaiser et al., 2022). 
This study used the stop signal task fMRI data at ages 14, 19, and 23. In addition, we used an indepen-
dent dataset STRATIFY as external validation for age 23. STRATIFY (N = ~300) is a sub-dataset within 
IMAGEN that recruits fMRI data from patients aged 23. Written and informed consent was obtained 
from all participants by the IMAGEN consortium and the study was approved by the institutional ethics 
committee of King’s College London (PNM/10/11-126), University of Nottingham (D/11/2007), Trinity 
College Dublin (SPREC092007-01), Technische Universitat Dresden (EK 235092007), Commissariat 
a l'Energie Atomique et aux Energies Alternatives, INSERM (2007-A00778-45), University Medical 
Center at the University of Hamburg (M-191/07) and in Germany at medical ethics committee of the 
University of Heidelberg (2007-024N-MA) in accordance with the Declaration of Helsinki. We followed 
the exclusion criteria outlined in previous studies (O’Halloran et al., 2018; Whelan et al., 2014). 
Participants were excluded from the CPM analysis if they had more than 20% errors on the Go trials 
(incorrect responses or responses that were too late) or if they had a mean framewise displacement 
(mean FD)>0.5 mm. Finally, 717 participants at age 14, 1081 participants at age 19, and 1120 partic-
ipants at age 23 were used to predict ICV. In STRATIFY, 304 participants were used to predict ICV.

Stop signal task
The stop signal task required participants to respond to a Go signal (arrows pointing left/right) by 
pressing the left/right button while withholding their response if the Go signal was unpredictably 
followed by a Stop signal (arrows pointing upward). The Go signal was displayed on the screen for 
1000 ms in the Go trials, while the Stop signal appeared for 100–300 ms following the Go signal on 
average 300 ms later in unpredictable Stop trials. To adjust task difficulty dynamically, we used a 
tracking algorithm on the delay between the Go signal and Stop signal (stop signal delay, 250–900 
ms in 50 ms increments) (Verbruggen et al., 2019), to produce 50% successful and 50% unsuccessful 
inhibition trials. The task at age 14 included 400 Go trials and 80 variable delay Stop trials, with 3 and 
7 Go trials between successive Stop trials. The task at ages 19 and 23 consisted of 300 Go trials and 60 
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variable delay Stop trials. Before the MRI scan, participants also performed a practice session with a 
block of 60 trials to become familiar with the task. ICV is used to assess sustained attention in this task 
for each participant. ICV reflects short-term within-person variations in task performance (O’Halloran 
et al., 2018). Specifically, ICV is computed by dividing the standard deviation of Go RT by the mean 
Go RT. Lower ICV indicates better sustained attention.

Self-report questionnaires
Puberty development scale
The puberty development scale (PDS), an 8-item self-report assessment, measures the pubertal devel-
opment of adolescents (Petersen et  al., 1988). The PDS evaluates physical development using a 
5-point scale where 1 corresponds to prepubertal, 2 to beginning pubertal, 3 to mid-pubertal, 4 to 
advanced pubertal, and 5 to postpubertal. In addition, the items are adapted for sex, such as voice 
changes for males or menarche for females.

Timeline Followback
We used the TLFB, a retrospective self-report instrument that uses a calendar method to evaluate 
prior substance use consumption over the past 30 days (Sobell et al., 1996). The TLFB has strong 
reliability and validity for assessing alcohol consumption, and we used it to measure the use of alcohol, 
drugs, and smoking for participants.

MRI acquisition and pre-processing
Functional MRI data of the stop signal task in the IMAGEN study were collected at eight scan sites 
(London, Nottingham, Dublin, Mannheim, Dresden, Berlin, Hamburg, and Paris), and data in STRATIFY 
were collected at three scan sites (Berlin, two scanners in London) with 3T MRI scanners. The MR scan-
ning protocols, cross-site standardization, and quality checks are further described in Whelan et al., 
2012. All images were obtained using echo-planar imaging (EPI) sequence with the following param-
eters: repetition time=2.2 s, echo time=30 ms, flip angle = 75°, field of view=224 mm × 224 mm, 
data matrix = 64 × 64, slice thickness = 2.4 mm with 1 mm slice gap, voxel size = 3.5 mm × 3.5 mm 
× 4.38 mm, 40 transversal interleaved slices. The MRI data has 444 volumes at age 14 and 320–350 
volumes at ages 19 and 23. Standardized hardware was used for visual stimulus presentation (Nordic 
Neurolab, Bergen, Norway) at all scan sites.

All fMRI data from the IMAGEN study were pre-processed centrally using SPM12 (Statistical Para-
metric Mapping, http://www.fil.ion.ucl.ac.uk/spm/) with an automated pipeline. The images were 
corrected for slice timing and then realigned to the first volumes to correct head motions. Participants 
were excluded from the study if they had a mean FD >0.5 mm. Subsequently, the data were non-
linearly transformed to the Montreal Neurological Institute Coordinate System space using a custom 
EPI template with the voxels resampled at 3  mm× 3 mm ×3 mm resolution. Finally, the images were 
smoothed with a Gaussian kernel at a full-width-at-half-maximum of 5 mm.

Generalized psychophysiological interaction analysis
In this study, we adopted gPPI analysis to generate task-related FC matrices and applied CPM analysis 
to investigate predictive brain networks from adolescents to young adults. PPI analysis describes task-
dependent FC between brain regions, traditionally examining connectivity between a seed region of 
interest (ROI) and the voxels of the whole rest brain. However, this study conducted a gPPI analysis, 
which is on ROI-to-ROI basis (Di et al., 2021), to yield a gPPI matrix across the whole brain instead 
of just a single seed region. First, we conducted a general linear model (GLM) analysis on the pre-
processed fMRI data to examine brain activity during the stop signal task. Two separate GLMs were 
created for Go trials and Successful stop trials. The Go trials model included three task regressors 
(Go trials, Failed stop trials, and Successful stop trials) and 36 nuisance regressors, which accounted 
for factors such as head motion and the signal from white matter and cerebrospinal fluid. The 36 
nuisance regressors are 3 translations, 3 rotations, mean white matter signal, mean cerebrospinal fluid 
signal, mean gray matter signal, their derivatives, and the squares of all these variables. Given the 
high frequency of Go trials in SST, it is common to treat Go trials as an implicit baseline, as in previous 
IMAGEN studies (D’Alberto et al., 2018; Whelan et al., 2012). Hence, we built a separate GLM for 
Successful stop trials, which included two task regressors (Failed and Successful stop trials) and 36 
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nuisance regressors. All task regressors were modeled by convolving with the canonical hemodynamic 
response function (HRF) and high pass filtered (128 s). We then conducted a gPPI analysis across the 
entire brain using the Shen atlas with 268 regions (Shen et al., 2013) for both Go and Successful 
stop trials. The gPPI analysis involved deconvolving the time series of each ROI with the HRF, multi-
plying it by the psychological variables of interest to yield a neural level PPI term, and convolving the 
resulting PPI term with the HRF to obtain the BOLD level PPI effects (Di and Biswal, 2019). Separate 
GLM models were used to estimate the PPI effect of each ROI for Go trials and Successful stop trials, 
regressing the eigenvariate of the seed ROI. The GLM of the Go trials included one regressor of 
another ROI eigenvariate, three regressors of task condition, three regressors of the PPI effects, and 
one contrast term (Equation 1). The GLM of Successful stop trials included one regressor of another 
ROI eigenvariate, two regressors of task condition, two regressors of the PPI effects, and one contrast 
term (Equation 2), shown as follows:

	﻿‍

Y = β0 + β1 ∗ Xphysio + β2 ∗ Xpsycho(SS) + β3 ∗ Xpsycho(FS) + β4 ∗ Xpsycho(GO) + β5 ∗ Xphysio ∗ Xpsycho(SS) +

β6 ∗ Xphysio ∗ Xpsycho(FS) + β7 ∗ Xphysio ∗ Xpsycho(GO) + ε ‍�
(1)

	﻿‍ Y = β0+β1∗Xphysio+β2∗Xpsycho(SS)+β3∗Xpsycho(FS)+β4∗Xphysio∗Xpsycho(SS)+β5∗Xphysio∗Xpsycho(FS)+ε‍�(2)

Note: SS, Successful stop trials; FS, Failed stop trials; GO, Go trials.

Figure 8. Schematic of connectome-based predictive modeling. (i) Feature selection. The correlation between each edge in the generalized 
psychophysiological interaction (gPPI) matrix and the behavioral phenotype is calculated while controlling for several covariates in the training set. 
These covariates include age, gender, mean framewise displacement (mean FD), scan sites, and mode-centered PDS (only for age 14). The r value with 
the associated p value for each edge is obtained using partial correlation, and a threshold of p=0.01 is used to select the edges. Positively or negatively 
correlated edges are regarded as positive or negative networks. Network strength is then calculated by summing the selected edges in the gPPI matrix 
for both positive and negative networks, as well as by subtracting the strength of the negative network from the strength of the positive network to 
obtain the combined network strength. (ii) Model building. Linear models are constructed between the network strength of the positive, negative, 
combined network, and behavioral phenotype in the training set. The network strength is then calculated for each participants in the testing set and 
input into the predictive model along with covariates to yield a predicted behavioral phenotype (e.g. predicted intra-individual coefficient of variation 
[ICV]) for each network. (iii) Model validation. The predictive performance is evaluated by calculating the correlation between predicted and observed 
values.
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where Y is the time series of seed ROI, ‍Xphysio‍ is the time series of another ROI, ‍Xpsycho‍ is the task 
design term, and ε is the residual term. The gPPI analysis was performed across each ROI from the 
Shen atlas, resulting in a 268*268 gPPI matrix for each participant derived from Go trials and Successful 
stop trials separately. The matrices were transposed and averaged with the original matrices to yield 
symmetrical matrices (Di et al., 2021), and prepared for further analysis.

Connectome-based predictive modeling
ICV prediction
CPM is a data-driven method that can examine individual differences in brain connectivity (Shen et al., 
2017). CPM identifies pairwise connections between brain regions most highly correlated with a given 
phenotype. Using the PPI matrix, we employed CPM to predict ICV, for ages 14, 19, and 23. The CPM 
analysis process includes feature selection, model building, and validation (Figure 8). We applied CV 
to divide all participants into training and testing sets. (i) First, we used partial correlation to calculate 
the relationship between each edge in the gPPI matrix and behavioral phenotype while controlling 
several covariates in the training set. These covariates included ages, genders, mode-centered PDS 
(at age 14 only), mean FD, and scan sites, regarded as a dummy variable. The r value with an asso-
ciated p value for each edge was obtained, and a threshold p=0.01 (Feng et al., 2024; Ren et al., 
2021; Yoo et al., 2018) was set to select edges. The positive or negative correlated edges in feature 
selection were regarded as positive or negative networks. (ii) Second, we calculated network strength 
for each participant in the training set by summing the selected edges in the gPPI matrix for both 
positive and negative networks. We also estimated the network strength of a combined network by 
subtracting the strength of the negative from the strength of the positive network. (iii) Finally, we 
constructed predictive models based on the assumption of a linear relationship between network 
strength of the positive, negative, and combined networks, and behavioral phenotype in the training 
set. The covariates were also adjusted in this linear model. The network strengths for each participant 
in the testing set were calculated and input into the predictive model along with the covariates to 
predict each network’s behavioral phenotypes.

Three CV schemes
We used three CV schemes to test the robustness of predictive performance: k-fold (10-fold and 
5-fold) and leave-site-out CV. For the k-fold CV, we randomly divided participants into 10 or 5 approx-
imately equal-sized groups. For each fold, we trained the model on nine or four groups, respectively, 
and used it to predict the behavioral phenotype of the remaining group. We then assessed the predic-
tive performance by comparing the predicted and observed values. For the leave-site-out CV, we 
divided participants into eight groups based on their scan site. To account for the random splits of 
the k-fold CV, we repeated the process 50 times and calculated the average predictive performance 
for both the 10-fold and 5-fold CV (Lichenstein et al., 2021). In addition, we set a 95% threshold 
for selecting edges present in at least 48 out of 50 iterations to visualize the results. We also ran the 
CPM analysis with mean FD thresholds of 0.2, 0.3, and 0.4 mm to account for the influence of head 
motion on the predictive performance. Furthermore, we conducted the CPM analysis using a range of 
thresholds for feature selection and observed similar results across different thresholds (see Appendix 
1, Supplementary file 1h). The main text shows the results of the 10-fold CPM. The 5-fold CPM and 
leave-site-out CV results are shown in Appendix 1.

Prediction across timepoints and STRATIFY
To assess the ability of models developed at one timepoint to predict ICV at different timepoints, we 
applied predictive models developed at ages 14 and 19 to predict ICV at subsequent timepoints. 
Specifically, we used predictive models (including the parameters and selected edges) developed 
at age 14 to predict ICV at ages 19 and 23. We first calculated the network strength using the gPPI 
matrix at age 19 or 23 based on the selected edges identified from CPM analysis at age 14. We 
then used the linear model parameters (slope and intercept) from CPM analysis at age 14 to fit the 
network strength and predict ICV at age 19 or 23. Finally, we evaluated the predictive performance by 
calculating the correlation between the predicted and observed values at age 19 or 23. Similarly, we 
applied models developed at age 19 to predict ICV at age 23. In addition, we examined the general-
izability of predictive models at age 23 by applying them to the STRATIFY dataset, which also includes 
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participants who were 23 years of age. Furthermore, we estimated the predictive performances of 
ICV across patient groups in the STRATIFY. The correlation between the residual network strength of 
predictive networks and ICV was calculated across groups in the STRATIFY. The covariates, including 
age, sex, and mean FD, were regressed for network strength before the correlation analysis. It is worth 
noting that when applying models developed at one timepoint to predict at another timepoint or to 
generalize to a different dataset, the model was built using all participants from the timepoint at which 
the model was developed.

Statistical analysis
Exploratory factor analysis
To explore the underlying structure of adolescent substance use, we performed an exploratory factor 
analysis using principal component extraction (Gaskin and Happell, 2014) on TLFB using Predictive 
Analytics Software (SPSS) version 20. Factor analysis explores the underlying structure of a set of 
observed variables without imposing a preconceived structure on the outcome. We used six items 
at age 14 and nine items at ages 19 and 23 of TLFB, including alcohol, tobacco, cannabis, cocaine, 
ecstasy, and ketamine (as shown in Supplementary file 1k). We excluded items assessing the use of 
other drugs due to high proportions of missing data, standard deviations close to 0, or a Kaiser-Meyer-
Olkin (KMO) statistic for individual variables below 0.5, considered the minimum value for a sample 
to be adequate. The KMO measure of sampling adequacy was 0.66 at age 14, 0.81 at age 19, and 
0.77 at age 23. In addition, all Bartlett’s tests of sphericity were significant (age 14: χ2(15)=5137.067, 
p<0.001; age 19: χ2(36)=5031.641, p<0.001; age 23: χ2(36)=5106.265, p<0.001), indicating that 
there was an underlying correlation structure, and that factor analysis was appropriate. We rotated the 
factors using the varimax method with kaiser normalization to make it easier to discern the underlying 
measured constructs.

Linear mixed model
We constructed a linear mixed model to examine the change in ICV over time using the lme4 and 
lmerTest packages in RStudio (version: 1.4; http://www.rstudio.com/) and R (version 4.1.1; https://
www.r-project.org/). The timepoint was the fixed effect of interest in the model, while the participants 
was a random effect. Several covariates, including sex, scan sites, mode-center PDS, and age at 14, 
were also included as fixed effects in the models. The linear mixed model is shown as follows:

	﻿‍ ICV ∼ Timepoint + Sex + Scan site + Mode_center PDS + Age at 14 + (1 | Participant)‍�  (3)

Correlation between network strength and substance use
To examine the relationship between ICV/brain activity and substance use, we correlated the network 
strength of predictive networks with the factor scores of substance use at each timepoint and across 
all three timepoints separately. To control for potential confounders, we calculated residual network 
strength and residual factor scores by regressing the effects of age, sex, scan sites, mean FD (for 
network strength), and mode-centered PDS (for age 14). We used Spearman correlation to assess the 
association between residual network strength and residual TLFB, as their distributions did not follow 
a normal distribution. We used an FDR correction (q<0.05) for the multiple correlations.

Furthermore, we employed a three-wave bivariate latent change score model using the lavvan 
package in R and RStudio to detect the linear change over time. This model allows us to quantify 
the longitudinal bidirectional influence between substance use and ICV over time (Nweze et  al., 
2023). Specifically, it facilitated an understanding of whether substance use predicted ICV and its 
brain activity, and vice versa. The key feature of this model is its ability to assess linear increases or 
decreases within the same construct across two adjacent waves. Change scores were calculated by 
regressing the observable score at a given timepoint from the previous timepoint (e.g. ΔCig+CB in 
T1–T2 or ΔCig+CB in T2–T3, where T1=timepoint 1, T2=timepoint 2, and T3=timepoint 3). Addition-
ally, cross-lagged dynamic coupling (i.e. bidirectionality) was employed to explore individual differ-
ences in the relationships between substance use and linear changes in ICV/brain activity, as well as 
the relationship between ICV/brain activity and linear change in substance use. The model accounted 
for covariates such as age, sex, and scan sites. For more details about the latent change score model, 
refer to the reference Nweze et al., 2023.
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As Figure 6 shows, the latent change score model was specifically applied to examine the associa-
tion between substance use and behaviors and brain activity associated with sustained attention. We 
focused on the relationship between the network strength of positive and negative networks, derived 
from Go and Successful stop trials, and two types of substance use (Cig+CB and alcohol use). Notably, 
drug use data were excluded as adolescents at age 14 have no drug score. A total of 10 models 
were performed, and all model fit indices met the predefined criteria: CFI>0.92, RMSEA<0.05, and 
SRMR<0.03. An FDR correction (q<0.05) was applied for multiple correlations. It is worth noting that 
all the correlations between substance use and sustained attention were conducted using the same 
sample across three timepoints.

Permutation test
For the CPM analysis, we used a permutation test to assess the significance of the predictive perfor-
mance, which is the correlation between the observed and predicted values. To generate a null distri-
bution of these correlation values, we randomly shuffled the correspondence of the behavioral data 
and the PPI matrix of all participants and reran the CPM pipeline with the shuffled data 1000 times. 
Based on this distribution, we set a threshold of p<0.05 to determine the significance level at 95% for 
the predictive performance using 10-fold, 5-fold, and leave-site-out CV.

To estimate the significance of the predictive performance across timepoints and the external 
validation in the STRATIFY dataset, we shuffled the predictive values 1000 times. Then, we correlated 
the shuffled values with observed values to yield a null distribution of predictive correlation values. 
We also set a threshold of p<0.05 to determine the significance level at 95% for the predictive perfor-
mance across timepoints and generalization in STRATIFY.
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Appendix 1

Method
Cambridge Neuropsychological Test Automated Battery
Several CANTAB tasks were used to examine cognitive abilities: the affective go/no-go task (AGN); 
the RVP task, the SWM task, and the Cambridge guessing task (CGT). Only the participants at age 
23 completed the CGT task. The RVP measures sustained attention. The AGN measures inhibitory 
control in the context of emotionally salient information, the CGT assesses impulsivity, the SWM 
assesses working memory. Detailed information on CANTAB was described in Kühn et al., 2020.

To examine the sustained attention network specificity, we correlated the network strength of 
predictive networks predicting ICV with CANTAB task at each timepoint separately. To control for 
potential confounders, we calculated residual network strength and residual performances of three 
CANTAB tasks by regressing the effects of age, sex, scan sites, mean FD for network strength and 
mode-centered PDS for age 14. Finally, we used Spearman correlation to assess the association 
between residual sustained attention network strength and CANTAB performances.

To examine the specificity of sustained attention at baseline in influencing substance use, a 
two-sample t-test was performed to detect the significant difference in cigarette and cannabis 
use between high and lower cognition groups at baseline. Participants were categorized into five 
groups based on the ICV, network strength of positive and negative networks at age 14. The top of 
participants with the highest ICV/network strength of positive network, or lowest network strength 
of negative strength comprised the low sustained attention group, while the bottom of participants 
with lowest ICV/network strength of positive network, or highest network strength of negative 
strength constituted the high sustained attention group. Cig+CB were then compared between the 
higher and lower sustained attention groups at each timepoint. We found the significant coupling 
effect between Cig+CB and network strength derived from Go trials, instead of Successful stop trials. 
Here, we only tested the difference in Cig+CB using positive and negative network derived from Go 
trials. We performed the similar analysis by stratifying the participants into higher strategy working 
memory between error (SWM_BE) group and lower SWM_BE group according to the between error 
value from the SWM task.

Generalization in subgroups from STRATIFY
We tested if the predictive networks defined at age 23 in IMAGEN would generalize to distinct 
patient groups in STRATIFY. STRATIFY includes several subgroups of individuals aged 23 with alcohol 
use disorder (AUD), major depression disorder (MDD), bulimia nervosa (BN), anorexia nervosa (AN), 
and 19 healthy controls.

Dice coefficient
We calculated the Dice coefficient (DC) to quantify the similarity of predictive networks across 
the three timepoints. A permutation test was also performed to estimate the predictive network 
similarity’s significance. First, we shuffled the ICV at each timepoint and performed feature selection 
based on random behavioral phenotypes to yield random predictive networks, including positive 
and negative. Then we calculated DC from predictive networks between each pair of timepoint. 
These steps were iterated 1000 times to generate a null distribution of DC values. Finally, we set 
a threshold of p<0.05 to determine the significance level at 95% for the similarity of the predictive 
networks between each timepoint.

Comparison of predictive networks identified at one timepoint versus 
another
Steiger’s Z value was employed to compare predictive performances of networks identified at 
different timepoints. This analysis involved comparing the R values derived from networks defined 
at distinct ages to predict ICV at the same age. For example, we compared the r values of brain 
networks defined at age 14 when predicting ICV at 19 (i.e. positive network: r=0.25, negative 
network: r=0.25, combined network: r=0.28) with those R values of brain networks defined at age 
19 itself (i.e. positive network: r=0.16, negative network: r=0.14, combined network: r=0.16) derived 
from Go trials using Steiger’s Z test (age 14 → age 19 vs. age 19 → 19). Similarly, comparisons were 
made between networks defined at age 14 predicting ICV at age 23 and those at age 23 predicting 
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ICV at age 23 (age 14 → age 23 vs. age 23 → 23), as well as between networks defined at age 19 
predicting ICV at age 23 and those at age 23 predicting ICV at age 23 (age 19 → age 23 vs. age 23 
→ age 23). These comparisons were performed separately for Go trials and Successful stop trials.

CPM analysis using Failed stop trials
We performed another CPM analysis using Failed stop trials using gPPI matrix obtained from the 
second GLM, described in the main text. The CPM analysis was conducted using 10-fold CV, 5-fold 
CV, and leave-site-out CV.

Prediction across timepoints controlling for ICV at age 14
To examine whether connectivity predictors shared variations of sustained attention across 
timepoints, we applied predictive models developed at ages 14 and 19 to predict ICV at subsequent 
timepoints controlling for ICV at age 14. Specifically, we used predictive models (including parameters 
and selected edges) developed at age 14 to predict ICV at ages 19 and 23 separately. First, we 
calculated the network strength using the gPPI matrix at ages 19 and 23 based on the selected 
edges identified from CPM analysis at age 14. We then estimated the predicted ICV at ages 19 
and 23 by applying the linear model parameters (slope and intercept) obtained from CPM analysis 
at age 14 to the network strength. Finally, we evaluated the predictive performance by calculating 
the partial correlation between the predicted and observed values at ages 19 and 23, controlling 
for ICV at age 14. Similarly, we applied models developed at age 19 to predict ICV at age 23, also 
controlling for ICV at age 14. To assess the significance of the predictive performance, we used a 
permutation test, shuffling the predicted ICV values and calculating partial correlation to a general 
random distribution over 1000 iterations.

Results
Specificity of sustained attention network
Sustained attention network strength derived from Go trials and Successful stop trials was significantly 
correlated with the accuracy of the RVP task (all p<0.05) for both negative and positive networks 
at ages 14 and 19 but not with AGN task performance (all p>0.05) (Supplementary file 1l). These 
results suggest that the networks derived from Go trails and Successful stop trials are specific to 
sustained attention.

No significant difference in Cig+CB was found between high and low sustained attention groups 
(obtained from both behavior level and brain activity) at age 14 (all p>0.462). Higher Cig+CB use 
was found in low sustained attention group compared to high sustained attention group at age 19 
(all p<0.021) and age 23 (all p<0.007) (Supplementary file 1v). In addition, no significant difference 
in Cig+CB was found at ages 14 (t=0.11, p=0.912), 19 (t=1.65, p=0.10), and 23 (t=1.43, p=0.154) 
between higher and lower SWM_BE groups (Supplementary file 1w).

CPM predictive performance derived from Failed stop trials
Positive, negative, and combined networks derived from Failed stop trials significantly predicted 
ICV: at age 14 (r=0.10, p=0.033; r=0.19, p<0.001; and r=0.17, p<0.001, respectively), at age 19 
(r=0.21, r=0.18, and r=0.21, all p<0.001, respectively), and at age 23 (r=0.33, r=0.35, and r=0.36, 
respectively, all p<0.001). We obtained similar results using a 5-fold CV and leave-site-out CV 
(Supplementary file 1f).

Predictive network similarity
With respect to Go trials, the mean DC values for the positive and negative networks across all three 
timepoints were 0.06 and 0.03, respectively, for ICV. With respect to Successful stop trials, the mean 
DC values for positive and negative networks predicting ICV across all three timepoints were 0.01 
and 0.01.

Positive and negative networks predicting ICV derived from Go trials were significantly similar 
between ages 14 and 19 (DC = 0.03, p=0.001 and DC = 0.03, p<0.001), and between ages 19 and 
23 (DC = 0.06 and DC = 0.04, respectively, all p<0.001) (FDR correction, 0.05). The positive network 
predicting ICV derived from Go trials was significantly similar between ages 14 and 23 (DC = 0.07, 
p<0.001) (FDR correction, 0.05). The mean DC of the positive and negative networks predicting ICV 
across three timepoints derived from Go trials are 0.06 and 0.03, respectively.

https://doi.org/10.7554/eLife.97150
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The negative networks predicting ICV derived from Successful stop trials were significantly similar 
between ages 14 and 19 (DC = 0.03, p=0.001) (FDR correction, q<0.05). The mean DC of the 
positive and negative networks predicting ICV derived from Successful stop trials was 0.01 and 0.01. 
Detailed results about DC between each pair of timepoints can be found in Supplementary file 1m.

Generalization in subgroups in STRATIFY
We examined generalization to separate patient cohorts in STRATIFY. Brain networks predicting 
ICV derived from Go trials defined at age 23 generalized to almost all patient cohorts, including 
AUD, MDD, BN, and AN (all p<0.05). The prediction for the healthy controls was moderately 
accurate (r~0.4), although this was not statistically significant due to the small sample size (n=19) 
for Go trials (Figure 4—figure supplement 1A, left panel). However, brain networks predicting 
ICV derived from Successful stop trials failed to predict ICV in individuals with AUD (p>0.05), 
although they generalized to other patient groups (Figure  4—figure supplement 1A, right 
panel). Furthermore, the correlations between sustained attention network strength of positive, 
negative, and combined networks derived from Successful stop trials and ICV in the groups 
with AUD were in the opposite direction compared with all other groups (Figure  4—figure 
supplement 1B).

Comparison of predictive performance at different timepoints
Steiger’s Z value was used to test if the difference in R values obtained using predictive networks at 
one timepoint versus another. For positive, negative, and combined networks predicting ICV derived 
from Go trials at age 19, the R values were higher when using predictive networks defined at 19 
than those defined at 14 (Z=3.79, Z=3.39, Z=3.99, all p<0.00071). Similarly, the R values for positive, 
negative, and combined networks predicting ICV derived from Go trials at age 23 were higher when 
using predictive networks defined at age 23 compared to those defined at ages 14 (Z=6.00, Z=5.96, 
Z=6.67, all p<3.47e–9) or 19 (Z=2.80, Z=2.36, Z=2.57, all p<0.005).

At age 19, the R value for the positive network predicting ICV derived from Successful stop 
trials was higher when using predictive networks defined at 19 compared to those defined at 
14 (Z=1.54, p=0.022), while the negative and combined networks did not show a significant 
difference (Z=0.85, p=0.398; Z=2.29, p=0.123). At age 23, R values for the positive and combined 
networks predicting ICV derived from Successful stop trials were higher when using predictive 
networks defined at 23 compared to those defined at 14 (Z=3.00, Z=2.48, all p<3.47e–9) or 19 
(Z=2.52, Z=1.99, all p<0.005). However, the R value for the negative network at age 23 did not 
significantly differ when using predictive networks defined at 14 (Z=1.80, p=0.072) or 19 (Z=1.48, 
p=0.138).

Correlation between drug use and behavior and brain activity
ICV negatively correlated with drug use at age 19 (Rho = –0.11, p=0.001) (Supplementary file 1n). 
ICV at age 23 negatively correlated with drug use at age 19 (Rho = –0.08, p=0.014) (Supplementary 
file 1q). Sustained attention network strength derived from Successful stop trials significantly 
correlated with drug use at age 19 for the positive network (Rho = –0.12, p<0.001; FDR correction, 
0.05) (Supplementary file 1r). Sustained attention network strength derived from Successful stop 
trials at age 23 correlated with drug use at age 19 (positive network: Rho = –0.09, p=0.005; negative 
network: Rho = 0.09, p=0.007) (Supplementary file 1u).

Predictions across timepoints controlling for ICV at age 14
Positive and combined networks derived from Go trials defined at age 14 predicted ICV at ages 
19 (r=0.10, p=0.028; r=0.08, p=0.047) but negative network did not (r=0.06, p=0.119). Positive 
network derived from Go trials defined at age 14 predicted ICV at age 23 (r=0.11, p=0.013) but 
negative and combined networks did not (r=0.04, p=0.187; r=0.08, p=0.056). Positive, negative, 
and combined networks derived from Go trials defined at age 19 predicted ICV at age 23 (r=0.22, 
r=0.19, and r=0.22, respectively, all p<0.001).

Positive, negative, and combined networks derived from Successful stop trials defined at age 
14 predicted ICV at ages 19 (r=0.08, p=0.036; r=0.10, p=0.012; r=0.11, p=0.009) and 23 (r=0.11, 
p=0.005; r=0.13, p=0.005; r=0.13, p=0.017) respectively. Positive, negative, and combined networks 
derived from Successful stop trials defined at age 19 predicted ICV at age 23 (r=0.18, r=0.18, and 
r=0.17, respectively, all p<0.001).

https://doi.org/10.7554/eLife.97150
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Discussion
Sustained attention networks functioning as global activation
Our findings strongly indicate that sustained attention relies on global brain activation (i.e. network 
strength) rather than specific regions or networks (see also Zhao et al., 2021). We observed brain 
networks associated with high or low sustained attention span in large-scale networks across 
the cortex, subcortex, and cerebellum across adolescence to adulthood (see Figure  2—figure 
supplement 1, Figure 3—figure supplement 1, consistent with Rosenberg et al., 2020), instead 
of being confined to a few key regions. In our study, however, although the edges in the sustained 
attention networks were significantly similar from ages 14 to 23 (Supplementary file 1m), there 
were relatively few overlapping edges in the predictive networks over time. It is worth noting that 
DC values depend heavily on the significance threshold applied to the data (Fröhner et al., 2019). 
However, sustained attention network patterns identified could efficiently predict sustained attention 
for the subsequent timepoints. A prior study (Cai et al., 2019) has shown that children aged 9–12 
could recruit key nodes (e.g. rIFG and rMFG), eliciting an adult-like global activation pattern that 
predicted their inhibitory control abilities. Similarly, our findings suggest that adolescents likely 
exhibit adult-like global activation patterns predicting sustained attention.

Aberrant sustained attention network in AUD
A notable exception was the failure of the network derived from Successful stop trials to generalize 
to patients with AUD, requiring higher attention levels. We speculate that activity in the sustained 
attention network of individuals with AUD might be similar to healthy adults during low cognitive 
demands but abnormal compared to healthy adults when faced with higher cognitive demands. 
Evidence from past literature shows that alcohol misuse is associated with attention deficits and 
dysfunctional neural mechanisms (Gunn et al., 2018; Li et al., 2021; Narayan et al., 2021; Spear, 
2018). Furthermore, lower activation of parietal and prefrontal cortices has been observed in 
abstinent patients with AUD compared with healthy controls during visual attention tasks (Zehra 
et al., 2019), suggesting that differences in the attention network of individuals with AUD might 
underlie attention deficits in AUD.

Although the sustained attention network derived from Successful stop trials seen in healthy 
controls failed to generalize to AUD, we observed no significant difference in behavioral measures 
– ICV – between healthy controls and those with AUD. Our results may reflect compensatory 
mechanisms in AUD that allow these individuals to complete sustained attention tasks, which is 
consistent with prior studies (Tapert et  al., 2004; Zehra et  al., 2019). Compensation manifests 
as abnormal brain activity while performing normally on the task (Chanraud et al., 2013). Zehra 
et  al., 2019, found brain activation differences during attention tasks despite no differences in 
behavioral performance between the abstinent patients with AUD and healthy controls. Previous 
studies (Chanraud et al., 2013; Squeglia et al., 2009) pointed out that individuals with AUD might 
exhibit subtle neural reorganization or compensation to preserve normal cognitive abilities. Tapert 
et al., 2004, found that heavy and light drinkers had similar behavioral performance on a working 
memory task. Activation differences were found in the parietal and occipital lobes and the cerebellar, 
indicating subtle neuronal reorganization may occur in AUD. Similarly, a study found that individuals 
with AUD maintained standard working memory by recruiting other cerebellar-based functional 
networks to complete the task (Chanraud et al., 2013). Successful completion of working memory 
tasks requires sustained attention (Myers et al., 2017). These studies suggest that the failure of the 
sustained attention network derived from Successful stop trials to generalize AUD in the current 
study may be due to compensatory mechanisms employed by individuals with AUD while completing 
tasks requiring high-level sustained attention.

Specificity of the prediction of predictive networks
We found that task-related function connectivity derived from Go trials, Successful stop trials, and 
Failed stop trials successfully predicted sustained attention across three timepoints. However, 
predictive performances of predictive networks derived from Go trials were higher than those derived 
from Successful stop trials and Failed stop trials. These results suggest that sustained attention is 
particularly crucial during Go trials when participants need to respond to the Go signal. In contrast, 
although Successful Stop and Failed Stop trials also require sustained attention, these tasks primarily 
involve inhibitory control along with sustained attention.
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