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Abstract The heterogeneity of the physical environment determines the cost of transport for 
animals, shaping their energy landscape. Animals respond to this energy landscape by adjusting 
their distribution and movement to maximize gains and reduce costs. Much of our knowledge 
about energy landscape dynamics focuses on factors external to the animal, particularly the spatio-
temporal variations of the environment. However, an animal’s internal state can significantly impact 
its ability to perceive and utilize available energy, creating a distinction between the ‘fundamental’ 
and the ‘realized’ energy landscapes. Here, we show that the realized energy landscape varies along 
the ontogenetic axis. Locomotor and cognitive capabilities of individuals change over time, espe-
cially during the early life stages. We investigate the development of the realized energy landscape 
in the Central European Alpine population of the golden eagle Aquila chrysaetos, a large predator 
that requires negotiating the atmospheric environment to achieve energy-efficient soaring flight. We 
quantified weekly energy landscapes using environmental features for 55 juvenile golden eagles, 
demonstrating that energetic costs of traversing the landscape decreased with age. Consequently, 
the potentially flyable area within the Alpine region increased 2170-fold during their first three 
years of independence. Our work contributes to a predictive understanding of animal movement by 
presenting ontogeny as a mechanism shaping the realized energy landscape.

eLife assessment
This important study substantially advances our understanding of energy landscapes and their link 
to animal ontogeny. The evidence supporting the conclusions is compelling, with high-throughput 
telemetry data and advanced track segmentation methods used to develop and map energy land-
scapes. The work will be of broad interest to animal ecologists.

Introduction
The physical characteristics of the environment determine the energetic cost of transport for animals, 
defining their ‘energy landscape’ (Wilson et al., 2012; Shepard et al., 2013). Consequently, temporal 
dynamics in environmental conditions can affect the inherently spatially explicit energy landscapes 
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across time. For example, patterns of thawing and freezing of lakes and rivers shape the migratory 
routes of Caribou, as walking on ice is energetically preferable to swimming (Leblond et al., 2016). 
Variations of the energy landscape along the temporal axis are most notable for animals that move 
in moving media: water or air. Sharks adjust their core habitat use to make the most of temporary 
updrafts formed by tidal currents colliding with upward-facing slopes, which help them reduce the 
energetic costs of remaining buoyant (Papastamatiou et  al., 2021). Temporal variations in atmo-
spheric conditions shape hourly (Shepard et al., 2013) and seasonally (Nourani et al., 2016) optimal 
flight routes for birds.

The spatio-temporal variation in the energy landscape is predictable to a great extent. Animals 
reduce and thus optimize the cost of transport by tracking these changes as they move through 
the energy landscapes. As such, the distribution and movement patterns of animals can be largely 
explained by the energy landscape (Shepard and Lambertucci, 2013), making energy landscapes 
useful for understanding ecological and evolutionary processes. This knowledge is increasingly 
important for policymaking to reduce human–wildlife conflicts, particularly for development of infra-
structures (Péron et al., 2017; Scacco et al., 2023), and more generally in conservation planning 
(Berti et al., 2023). Based on the timing and location of movement, the energy landscape can be 
specific yet predictable for animals with similar morphology and movement modes, at the guild 
(Shepard et al., 2013; Masello et al., 2021), species (Scacco et al., 2023), or sub-species (Nourani 
et al., 2020) levels.

To date, our understanding of animals’ interaction with the energy landscape has depended on 
factors extrinsic to the moving animal. Reconstructing the energy landscape solely based on the 
characteristics of the environment can be conceptualized as similar to Hutchinson’s concept of the 
fundamental ecological niche (Hutchinson, 1957; Colwell and Rangel, 2009). Hutchinson defined 
the fundamental niche as the full range of environmental conditions in which a species can poten-
tially exist and reproduce. Here, we argue that the energy landscape too can, or possibly should, be 
conceptualized as the fundamental movement niche, defining the full range of physical environmental 
conditions within which a species can move while adhering to its movement-related energy budget 
or sustainable cost of transport. However, just as animals do not occupy the entirety of their funda-
mental Hutchinsonian niche in reality (Colwell and Rangel, 2009), for example, due to competition 
or predation risk, various factors can contribute to an animal not having access to the entirety of its 
fundamental movement niche. Our current understanding of the energy landscape lacks a differenti-
ation between a fundamental and a realized energy landscape.

An animal’s realized energy landscape should depend on the motive to move and its internal 
state. For example, an animal’s decision-making when moving might be the outcome of its strategy 
to maximize long-term fitness rather than short-term energy savings. Halsey, 2016 introduced 
the concept of ‘individual energy landscapes’, stating that the energy landscape fluctuates, for 
example, when an animal increases its speed to out-run a predator (Halsey, 2016) or when infection 
or illness reduces an animal’s movement capacity (Binning et al., 2017; Risely et al., 2018). As 
a consequence, the realized energy landscape varies in time from the perspective of the moving 
animal, sometimes irrespective of, but in interaction with and as a consequence of, the immediate 
environment.

We would like to argue that the animals’ ability to exploit the energy landscape is transformed 
across one of the most fundamental progressions in all animals’ lives: the ontogenetic axis. In addi-
tion to morphological changes, as young animals progress through their developmental stages, their 
movement proficiency (Corbeau et al., 2020) and cognitive capabilities (Fuster, 2002) improve and 
memory manifests (Ramsaran et al., 2019). Cognitive capabilities allow the animal to improve the 
perception of its environment and make optimal decisions when choosing energy-efficient paths 
(Harten et al., 2020; Abrahms et al., 2021). Improved motor skills enable the animal to respond 
more appropriately to the perceived environment to utilize the maximum available energy and/or 
to avoid areas expensive to traverse (Scott et al., 2014; Sergio et al., 2014; Harel et al., 2016; 
Sergio et  al., 2022). Finally, memory allows the animal to recall past combinations of space and 
environmental conditions that affected its costs of movement (Abrahms et al., 2019). Developmental 
changes and improvements in all these elements should be reflected in the animal’s realized energy 
landscape, where hotspots of energy gain within the landscape expand as young animals gain expe-
rience and master their specific movement behaviors.

https://doi.org/10.7554/eLife.98818
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We investigated the demographic shift in the realized energy landscape by gaining experience as 
a movement specialist, the golden eagle Aquila chrysaetos. As obligate soaring birds, golden eagles 
utilize ascending air currents, known as uplifts, to gain vertical altitude, which subsequently enables 
them to glide for horizontal displacement, without relying on energetically expensive wing flapping. 
Soaring flight is a learned and acquired behavior (Harel et al., 2016; Ruaux et al., 2020), requiring 
advanced cognitive skills to locate uplifts as well as fine-tuned locomotor skills for optimal adjustment 
of the body and wings to extract the most energy from them, for example, by adopting high bank 
angles in narrow and weak thermals (Williams et al., 2018a) and reducing gliding airspeed when 
the next thermal has not been detected (Williams et al., 2018b). This flight mode enables soaring 
birds to cover long distances with minimal energy investments, almost as low as when resting (Duriez 
et al., 2014). We approach the energy landscape concept with a focus on energy availability. This is 
commonly done for soaring birds, as uplift and wind support can directly provide energy for flying 
birds (Nourani et al., 2020; Scacco et al., 2019).

We analyzed 46,000  hr of flight data collected from bio-logging devices attached to 55 wild-
ranging golden eagles in the Central European Alps. These data covered the transience phase of 
natal dispersal (hereafter post-emigration). In this population, juveniles typically achieve indepen-
dence by emigrating from the parental territory within 4–10 months after fledging. However, due to 
the high density of eagles and consequently the scarcity of available territories, the transience phase 
between emigration and settling by eventually winning over a territory is exceptionally long at well 
over 4 years. Our hypothesis posited that the realized energy landscape during this transience phase 
gradually expands as the birds age. More specifically, we expected the habitat to become progres-
sively cheaper to traverse as the birds aged, resulting in an expansion of flyable areas within the Alpine 
region as a consequence of gaining experience and flight proficiency.

Results
We explored the movement decisions of 55 juvenile golden eagles in the Central European Alps 
during their post-emigration commuting flights (i.e., nonstop flight bouts lasting at least 1 hr) from the 
first week until 3 years after emigration. Following a step-selection approach (Avgar et al., 2016), at 
each movement step, we compared the observed step to 50 alternative steps that were available to 
each bird in space and time. These steps were compared with respect to the topography of the terrain, 
specifically Topographic Ruggedness Index (TRI) and distance to ridge lines, both useful proxies for 
occurrence of uplifts (Scacco et al., 2019; Murgatroyd et al., 2018). The resulting step-selection 
model distinguishes between the used and available conditions with a good predictive performance 
based on the normalized root mean squared error (RMSE = 0.14). Overall, the birds preferred to 
fly over areas with high potential for uplift formation, characterized by high values of TRI and lower 
distance to ridge lines (Figure 1). The birds also preferred to fly with long step lengths, a trend that 
increased with age. As the birds grew older, they were less likely to avoid areas with lower TRI and 
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Figure 1. Coefficient estimates of the step selection function predicting the probability of use as a function of uplift proxies, week since emigration, and 
step length. All variables were z-transformed prior to modeling. The error bars show 95% confidence intervals.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Individual-specific slopes for Topographic Ruggedness Index (TRI) and distance to ridge line.

https://doi.org/10.7554/eLife.98818
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higher distance to ridge lines (Figure 2). We found individual variation in the coefficients for TRI and 
distance to ridge line (Figure 1—figure supplement 1).

We used the step-selection model to predict the flyability of the Alpine region for each devel-
opmental stage (week since emigration). This flyability index quantified the potential energy that a 
bird could obtain from its surroundings by considering topography and the bird’s movement. This 
index serves as a measure of the suitability of a location for energy-efficient flight, reflecting the 
bird’s ability to exploit favorable uplift conditions. We constructed energy landscapes for the juvenile 
golden eagles for each week since independence by predicting the flyability within the Alpine region. 
Based on these predictions, we determined the flyable area for the juvenile and immature golden 
eagles during the developmental phase at weekly increments. We defined flyable areas as the cells 
within a 100 * 100 m grid with a flyability value larger than 0.7. Our analysis shows that hotspots of 
energy availability in the birds’ landscape expanded over time (Figure 3, Video 1). We found that 
the flyable area increased 2170-fold from the first week until 3 years after emigration. From an initial 
0.038% in the first week after emigration, the flyable area followed a logistic growth curve to plateau 
at 81% of the entire Alpine region becoming flyable in the third year (Figure 4). The tracking data 
indicated that the golden eagles flew over an area of 92,000 km2 by the third year after emigration 
(Figure 4—figure supplement 1).

Discussion
We show that the flyable area for juvenile golden eagles increased during the developmental period. 
This increase, we argue, is most likely linked to the birds’ improving ability to negotiate their atmo-
spheric environment better as they aged due to an increasing capacity to perceive and exploit the 
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Figure 2. Flyability index predicted using the step-selection model for combinations of topography and week 
since emigration values. The interactions between Topographic Ruggedness Index (TRI) and distance to ridge lines 
with week are among the set of criteria that young eagles used for selecting where to fly during their commuting 
flights.
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energy available in the landscape. Because we estimated flyability based on proxies of uplift forma-
tion, an important component shaping the energy availability landscape for soaring birds (Nourani 
et al., 2020; Scacco et al., 2019), the gradual increase in flyable areas can be interpreted as a change 
in the realized energy landscape.

Figure 3. Hotspots of energy availability for golden eagles’ flight in the Alps. Flyable areas were defined as cells 
within a 100 * 100 m grid with predicted flyability above 0.7 based on our step-selection model. The maps show 
the 2D kernel density estimation of flyable areas for golden eagles at different timestamps since dispersal: week 
1, week 4 (1 month), week 24 (6 months), and week 52 (1 year). The raw prediction maps for every week since 
dispersal are shown in Video 1.

https://doi.org/10.7554/eLife.98818
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Our findings assert the concept of ‘individual 
energy landscapes’. Initially described by Halsey, 
2016, this concept suggests that the energy 
expenditure of an animal when moving is more 
complex than the cost of transport as determined 
solely by its morphology and the external envi-
ronment. The locomotor decisions that an animal 
makes to maximize its fitness at any given point 
in time would also affect its energy expenditure. 
We present evidence that ontogeny also serves 
as a potential mechanism giving rise to individual 
energy landscapes not only due to its impact on 
decision-making, but also due to the influence 
it exerts on the available options for the animal. 
During the early stages of their development, 
animals may not possess the full capacity to 
perceive their environment, as they will in later 
stages (Harten et  al., 2020; Abrahms et  al., 
2021). Additionally, their motor skills are still 
being honed (Harel et al., 2016). Consequently, 
younger individuals may respond less efficiently to 
the environmental conditions they must navigate, 
in contrast to older, more proficient individuals.

By relying on static topographic variables to 
build the energy landscapes, we ensured that 
the environment remained constant over time. 
Juvenile golden eagles complete their morpho-
logical development before gaining indepen-
dence from their parents, with their size and wing 
morphology remaining stable during the post-
emigration phase (Bortolotti, 1984; Katzner 
et al., 2020). Consequently, variations in flyability 

Video 1. The realized energy landscape of the aging 
golden eagles. We used a step-selection approach 
to determine how juvenile golden eagles responded 
to topographic conditions during their commuting 
flights. Topography is a predictor of uplift potential 
and can be used as a proxy for energy availability 
for soaring birds. We used a step-selection model to 
predict flyability across the Alpine region from 1 week 
to 3 years after emigration. The fundamental energy 
landscape, defined as the total amount of energy 
available in the landscape, is constant, but the realized 
energy landscape, here estimated as flyability, changes. 
This is because the birds’ ability to perceive and exploit 
the energy within the landscape improves as they age, 
making the landscape cheaper to traverse. Flyability 
quantifies the suitability of a location for efficient 
flight, with higher values indicating areas where the 
bird is more likely to benefit from favorable uplifts. It 
represents the realized energy landscape that a bird 
can exploit based on the given topographic conditions 
and its own cognitive and locomotor abilities.

https://elifesciences.org/articles/98818/figures#video1
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Figure 4. The flyable area for juvenile golden eagles in the Alpine region from the first week until 3 years after 
emigration. Flyable area was defined as the total number of cells within a 100 * 100 m grid with predicted flyability 
larger than 0.7 based on the step-selection model. The positive trend shows that juvenile golden eagles can fly 
over a larger portion of the Alpine region as they age.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Cumulative area used by juvenile golden eagles during each week after emigration.
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of the landscape for these birds predominantly reflect their improved mastery of soaring flight, rather 
than changes in their morphology. Our findings also reveal that as the eagles aged, they adopted 
longer step lengths, which could indicate an increasing ability to sustain longer uninterrupted flight 
bouts.

Furthermore, our results provide insight into the development of different flight modes. These birds 
can switch between orographic and thermal soaring (Katzner et al., 2015). Orographic soaring refers 
to the utilization of upward air currents generated when wind encounters and flows over elevated 
topographic features such as hills, mountains, or cliffs. Locating orographic uplifts requires less experi-
ence, as they form predictably at mountain ridges (Bohrer et al., 2012; Duerr et al., 2012), compared 
to locating and using more transient thermals which form less predictably over flat surfaces (Scacco 
et al., 2019). Our findings suggest that with increasing age, golden eagles place decreasing impor-
tance on ruggedness and proximity to ridge lines when deciding where to fly, indicating a learning 
progression from mastering orographic uplifts before tackling the more challenging thermal soaring.

The energy landscapes maps showed the amount of energy potentially available to juvenile 
golden eagles during progressing weeks since emigration (Video 1). These maps are based on a 
step-selection model built on the birds’ empirical use of the landscape, the energy availability thus 
represents the energy that would be theoretically perceivable and exploitable by the birds in a specific 
developmental phase or age. The detailed perspective on an energy landscape which transforms over 
time with the accumulation of experience highlights the process of changes in the realized movement 
niche that would be available to the animals at a certain age. These changes in the ability to extract 
energy from the atmospheric column will induce age-specific consequences on movement capacity 
and the cost of transport.

We argue that the realized energy landscape does not represent the realized ecological niche nor 
the distribution range of animals, but rather the subset of the fundamental energy landscape that is 
available to the individual based on its ability to perceive and exploit the energy in the landscape. In 
our study, the realized movement patterns of the golden eagles within the Alpine region covered a 
small portion of the area predicted as flyable. This is because the birds’ movement (and thus their real-
ized individual and age-specific movement niches) will be defined not only by the energy landscape, 
but also by the interplay of philopatry, developmental requirements, the social landscape, and anthro-
pogenic features. As golden eagles age, other crucial behaviors such as transitioning from predomi-
nantly scavenging to active hunting are also happening (Nygård et al., 2016). A transition that in itself 
also might depend on advanced flying skills. Thus, the choice of where to fly will not solely follow an 
energy-minimizing strategy while moving, but naturally also increasingly accommodate resource use 
opportunities. Additionally, older transient golden eagles are more susceptible to potentially deadly 
conflicts with territorial adult birds, influencing their movement decisions as they avoid established 
territories (Poessel et al., 2016) affecting their landscape of fear and thus their decision landscape 
overall (Laundré et al., 2001; Gallagher et al., 2017; Williams and Safi, 2021). The distribution of 
anthropogenic features could also impact the eagles’ decision-making on where to fly (Tack et al., 
2020). The strong individual variation that we observed in the birds’ response to distance to ridge 
lines (Figure 1—figure supplement 1) could indicate variable landscape utilization strategies among 
the juvenile golden eagles in response to these factors and their interaction.

Conclusion
Spatial maps serve as valuable tools in informing conservation and management strategies by showing 
the general distribution and movement patterns of animals. These tools are crucial for understanding 
how animals interact with their environment, including human-made structures. Within this context, 
energy landscapes play an important role in identifying potential areas of conflict between animals 
and anthropogenic infrastructures such as wind farms. The predictability of environmental factors 
that shape the energy landscape has facilitated the development of these conservation tools, which 
have been extrapolated to animals belonging to the same ecological guild traversing similar envi-
ronments. However, with recent development of concepts of species-specific (Scacco et al., 2023) 
and individual-specific energy landscapes (Halsey, 2016), the realistic prediction of animals’ energy 
landscapes appears a multifaceted challenge. By identifying the distinct dimensions along which indi-
vidual energy landscapes can vary, particularly along the demographic axis, we enhance our capacity 
to understand and predict these landscapes. Our research contributes to this broader understanding 

https://doi.org/10.7554/eLife.98818
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by revealing the stark influence of ontogeny in defining the aging of the realized energy landscape. 
By taking inspiration from the ecological niche definitions to conceptualize the energy landscape, we 
hope to improve further development of this concept, aiding the interpretation of variations in the 
energy landscape across many axes, both external and internal to the moving animal.

Materials and methods
Bio-logging dataset
We used Global Positioning System tracking data from a long-term study of juvenile golden eagles 
in the resident population of the Central European Alps. We used data collected for a total of 55 
juveniles tracked over 2017–2023 (Supplementary file 1) with a regular sampling schedule of one 
GPS fix every 20 min during day time (see Zimmermann, 2021 for details on fieldwork procedure and 
data sampling schedules). Nestlings were fitted with solar-powered loggers manufactured by e-obs 
GmbH (Munich, Germany) using a leg-loop harness. The weight of the harness and logger (in total 
maximum 60 g) was below the recommended maximum 3% of the birds’ body mass. We subset the 
data to correspond to the transient phase of natal dispersal up to 3 years after emigration. We iden-
tified emigration timing using recursions to the natal territory (Bracis et al., 2018). If an animal spent 
more than 14 consecutive days without recursions to a 7 km radius around its nest, we classified it as 
dispersed. These thresholds were chosen based on expert knowledge of golden eagle behavior in the 
region. For two animals that had exceptionally large natal territories to start with, we increased the 
radii to 30 km to compensate for this potential bias.

Track segmentation
We focused on commuting flights for investigating the energy landscape for the golden eagles. To 
extract commuting flights, we segmented the tracking data based on ground speed and flight altitude 
using Expectation-Maximization binary Clustering (Garriga et al., 2016) applied at the population 
level (i.e., to all individuals). To calculate flight altitude above ground for each tracking point, we first 
calculated altitude above mean sea level as the difference between altitude above ellipsoid recorded 
by the bio-logging devices and the Global Geoid Model EGM96 (WGS 84). We then subtracted the 
ground elevation (Copernicus Digital Elevation Model; 25 m resolution; https://land.coper-nicus.eu/) 
from altitude above mean sea level as an estimate of flight altitude. We labeled segments with high 
flight altitude and high speed as commuting flights and used these for further analysis. We sub-
sampled the tracking data to hourly intervals to focus on commuting flights that were longer than 1 hr.

Topographic variables
We used two topographic variables as proxies for uplift availability: TRI and distance to ridge lines. 
The former describes the topographic heterogeneity of the terrain by calculating the mean of the 
absolute elevation difference between a cell and its adjacent cells (Riley et al., 1999) and the latter 
represents a proxy for orographic updrafts generated by deflection of the air current by a physical 
barrier (Murgatroyd et al., 2018; Bohrer et al., 2012). To extract the ridge lines and TRI values, we 
used the Copernicus Digital Elevation Model. We identified the ridge lines based on the Weisss land-
forms classification using TPI, a scale-dependent index which compares the elevation of each cell to 
the neighboring cells within a given radius (Weiss, 2001). As the landform categories depend on the 
size of the radius, several TPI classifications at different scales were obtained using different radii (Das 
et al., 2015; Ilia et al., 2016). We selected a classification using a 10 m inner radius and 200 m outer 
radius on the basis of the narrow size of the identified ridge lines. Then, we calculated the distance 
from each pixel to the ridge line pixel using the function proximity raster from SAGA (Conrad et al., 
2015) to obtain a distance map to the ridge line. For both TRI and distance to ridge lines, we aver-
aged neighboring cell values to achieve a 100 m cell size.

Modeling the energy landscape
We used a step-selection approach (Avgar et al., 2016) to summarize the environmental conditions 
in which the birds chose to commute. Each pair of consecutive points in the tracking dataset was 
considered as one step. For each step, we generated 50 random steps that originated at the observed 
steps’ start point, but had alternative end points to represent alternative movement decisions that 

https://doi.org/10.7554/eLife.98818
https://land.coper-nicus.eu/


 Research article﻿﻿﻿﻿﻿﻿ Ecology

Nourani et al. eLife 2024;13:RP98818. DOI: https://doi.org/10.7554/eLife.98818 � 9 of 14

the bird could have taken. The location of the alternative end points was selected by drawing from a 
gamma distribution fitted to the step lengths and a von Mises distribution fitted to the turning angles 
of all the empirical tracking data. The result was a stratified dataset with one used and 50 alternative 
points in each stratum.

All used and available points were associated with TRI and distance to ridge line values. We found 
no autocorrelation (r < 0.5) among our predictor variables TRI, distance to ridge line, step length, and 
week since emigration (as a continuous variable). The predictor variables were z-transformed prior to 
modeling to ensure comparability of the coefficient estimates. We used a conditional logistic regres-
sion to build a step-selection function to model and predict the energy landscape. We included step 
length as one of the predictors in our model to take the movement characteristics of the growing 
juveniles into account (Avgar et al., 2016). To track the changes in the importance of the topographic 
variables over time, we included three-way interaction terms for the TRI and distance to ridge line, 
with step length and week since emigration. To account for individual variation, we included the 
random effect of individuals on the slopes of TRI and distance to ridge line. The model was fit using 
the Template Model Builder (Brooks et al., 2017) in R (R Development Core Team, 2022), following 
the procedure suggested by Muff et al., 2020.

To test the predictive performance of the model, we computed the normalized RMSE (Lüdecke 
et al., 2021). This metric can be interpreted as the standard deviation of the unexplained variance, 
with lower values indicating a smaller difference between observed data and the model’s predicted 
values.

To better interpret the interaction terms between the topographic variables and week since 
emigration, we made predictions using the model for different combinations of TRI and week as well 
as distance to ridge line and week. In the new datasets that we generated to make these predictions, 
we set the variables that were not represented in the interaction term to their average values and set 
the grouping factor that represented the stratum as missing data. We made the predictions on the 
scale of the link function and converted them to values between 0 and 1 using the inverse logit func-
tion (Bolker et al., 2022). These predicted values estimated the probability of use of an area based 
on the model. We interpreted these predicted values as the flyability index, representing the potential 
energy available in the landscape to support flight, based on the uplift proxies (TRI and distance to 
ridge line) and the movement capacity (step length) of the birds included in the model.

Energy landscape maps
To investigate the changes in the energy landscape across the ontogenetic axis, we used our model to 
create prediction maps for weekly increments during the first 3 years after emigration. We made our 
prediction maps for the entire extent of the Alpine region (‘Perimeter of the Alpine Convention’ layer 
available via Permanent Secretariat of the Alpine Convention). For each week since emigration, we 
created a new dataset to make predictions for each 100 m × 100 m cell. We assigned the mean step 
length value for each given week in the new datasets.

To explore the changes in flyable areas over time, we defined landscape flyability as flyability values 
above 0.7. We then estimated the total flyable areas for each week since emigration. The Alpine 
region covers 190,544.7 km2 (based on the Alpine perimeter layer mentioned above). As a final step, 
we compared the eagles’ flyable area in weeks 1 and 156 with the total area of the Alpine region.
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