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PROTEIN KINASES

Redox takes control
A study of two enzymes in the brain reveals new insights into how redox 
reactions regulate the activity of protein kinases.

IVÁN PLAZA-MENACHO

For decades reactive oxygen species were 
considered to be the by-products of cell 
damage. However, more recently these 

unstable molecules have been shown to play a 
role in cell signaling as secondary messengers 
that transfer electrons between proteins.

This exchange of electrons, known as a redox 
modification, typically takes place on a specific set 
of amino acids within the protein. Previous work 
showed that the removal of an electron (known 
as oxidation) from the amino acid cysteine can 
alter the structure and function of protein kinases 
(enzymes that phosphorylate molecules and 
have an essential role in cell signaling; Garrido 
Ruiz et al., 2022). As well as adding phosphoryl 
groups to other proteins, some kinases need 
to be phosphorylated themselves to switch on 
their catalytic activity (Cuesta-Hernández et al., 
2023). However, much less is known about how 
cysteine oxidation modulates the activity and 
structure of protein kinases, and the systematic 
effect this has on cell signaling.

Now, in eLife, Natarajan Kannan and colleagues 
– including George Bendzunas and Dominic 
Byrne as joint first authors – report how cysteine 
oxidation controls two kinases found in the brain 

(Bendzunas et  al., 2024). The team showed 
that the catalytic activity of these two enzymes 
– called AMPK-related Brain-selective kinases 
1 (BRSK1) and 2 (BRSK2) – is directly regulated 
through reversible oxidation. This redox reaction 
takes place at cysteine residues situated at key 
structural and functional sites within the catalytic 
domain (the part of the protein that causes the 
enzymatic reaction).

In particular, Bendzunas et al. (who are based 
at the University of Georgia and the University 
of Liverpool) identified two pairs of cysteine 
residues in both BRSK1 and BRSK2, which form 
a bridge between sulfur atoms when oxidized. 
These connections, known as disulfide bonds, 
help maintain the structure and shape of proteins. 
When the team mutated the cysteine residues in 
vitro, this increased the catalytic activity of the 
kinases. It also led to higher amounts of phos-
phorylated Tau, the primary substrate of BRSK1 
and BRSK2, in cells.

Molecular modelling and simulations revealed 
that oxidation of one of the four identified cyste-
ines (which resides on a motif that defines the 
end of the activation loop) destabilizes bonds 
required to allosterically activate the catalytic 
domain. Taken together, these findings suggest 
that oxidation of the four cysteines, and subse-
quent formation of the two intramolecular disul-
fide bridges, represses the activity of BRSK1 and 
BRSK2.

Many other protein kinases have cysteine 
residues situated in similar locations within their 
structure. It is therefore possible that redox regu-
lation of disulfide bridges may be a widespread 
mechanism for controlling protein kinase activity 
and signaling.

In a previous study led by Kannan, roughly 
10% of protein kinases present in humans 
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were hypothesized to be subjected to redox-
dependent regulation (Byrne et al., 2020). This 
includes key members of the CAMK, AGC, and 
AGC-like families, which each contain a cysteine 
residue that lies adjacent to the phosphorylation 
site in the activation loop. The transmembrane 
receptor EGFR also has a cysteine residue in 
another nearby location, which enhances cata-
lytic activity when oxidized (Truong et al., 2016). 
However, it is unclear how the redox state of 
these cysteine residues modulates the activity of 
kinases. As well as altering the conformational 
landscape of the activation loop itself, redox 
modifications may enhance the non-catalytic 
properties of the enzyme, or regulate intermo-
lecular interactions and oligomerization (Cuesta-
Hernández et al., 2023).

Cysteine residues have also been found in 
other parts of the kinase structure. Comprehen-
sive mapping revealed a group of cysteine resi-
dues that lie in or adjacent to the binding site 
for ATP, which are collectively referred to as the 
‘cysteinome’ (Chaikuad et  al., 2018). Further-
more, the protein kinases cAPK, c-Src and LRRK2 
among others, have all been shown to contain 
two cysteine residues which alter catalytic activity 
following redox modifications (Humphries et al., 
2005; Humphries et al., 2002; Heppner et al., 
2018; Trilling et al., 2024). Many of the motifs 
that contain cysteine residues also have a phos-
phorylation site, but it is poorly understood how 
phosphorylation impacts the oxidation of cyste-
ines (Kemper et al., 2022).

These redox-dependent molecular switches 
provide therapeutic advantages as they can 
be used to block the activity of kinases. Drugs 
targeting cysteine residues, known as covalent 
inhibitors, were initially designed for members of 
the EGFR family (Tsou et al., 2005). Since then, 
more than forty covalent inhibitors have been 
approved by the US Food and Drug Administra-
tion (FDA). Most of these target residues in the 
cysteinome, particularly a cysteine at the front 
site of the kinase in the F2 position (Chaikuad 
et al., 2018). However, other cysteine hotspots 
are yet to be fully explored (Yen-Pon et al., 2018; 
Chen et al., 2022; Zhang et al., 2016), including 
the cysteine disulfide bonds identified by Bend-
zunas et al. which could be important therapeutic 
targets.

The work of Bendzunas et al. and others 
highlights how significant redox biology is for 
understanding protein kinase function and phar-
macology. However, the regulatory power of 
cysteine oxidation is often underappreciated, 
and the effect it has on most human kinases 

remains unknown. Further exploration of the 
cysteines in protein kinases, together with more 
high-resolution structural data, will help to bridge 
this gap and may lead to the discovery of more 
drug targets for covalent inhibitors.
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